
Supplementary materials

1 Comparison study

In this section we compare our animint implementation with other similar systems by creating a given
visualization in each system and discussing the pros and cons of the different approaches.

1.1 The Grand Tour

The Grand Tour is a well-known method for viewing high dimensional data which requires interactive and
dynamic graphics (Asimov 1985). Figure 1 shows a grand tour of 300 observations sampled from a correlated
tri-variate normal distribution. The left-hand view shows the marginal density of each point while the
right-hand view “tours” through 2D projections of the 3D data. There are many ways to choose projections
in a tour, and many ways to interpolate between projections, most of which can be programmed fairly easily
using R and relevant add-on packages. In this case, we used the R package tourr, which uses the geodesic
random walk (i.e., random 2D projection with geodesic interpolation) in its grand tour algorithm (Wickham
et al. 2011).

When touring data, it is generally useful to link low-dimensional displays with the tour itself. The video in
Figure 1 was generated with our current animint implementation, and points are selected via mouse click
which reveals that points with high marginal density are located in the ellipsoid center while points with a
low marginal density appear near the ellipsoid border. In this case, it would be convenient to also have brush
selection, as we demonstrate in Figure 2 which implements the same touring example using the R packages
ggvis and shiny. The brush in Figure 2 is implemented with shiny’s support for brushing static images,
which currently does not support multiple brushes, making it difficult to select non-contiguous regions.

This example helps point out a few other important differences in using animint versus ggvis+shiny to
implement “multiple linked and dynamic views” as described in Ahlberg, Williamson, and Shneiderman
(1991) and Buja et al. (1991). Maintaining state of the linked brush in Figure 2 requires both knowledge and
clever use of some sophisticated programming techniques such as closures and reactivity. It also requires
knowledge of the shiny web application framework and a new approach to the grammar of graphics. On the
other hand, maintaining state in Figure 1 requires a few different clickSelects/showSelected mappings.
As a result, we believe animint provides a more elegant user interface for this application.

The touring example also helps point out important consequences of the design and implementation of
these two different systems. As mentioned in Section 3, our current animint implementation requires every
subset of data to be precomputed before render time. For visualizations such as tours, where it is more
efficient to perform statistical computations on-the-fly, this can be a harsh restriction, but this is a restriction
of our current implementation (not a restriction of the framework itself). As a result, when touring a
large high-dimensional space, where many projections are needed, ggvis+shiny may be desirable since the
projections are computed on the server and sent to the browser in real-time. This works fine when the
application is running and viewed on the same host machine, but viewing such an application hosted on a
remote machine can produce staggered animations since client-server requests must be performed, processed,
and rendered roughly 30 times a second. Also, generally speaking, the animint system results a more pleasant
experience when it comes to hosting and sharing applications since it doesn’t require a Web Server with R
and special software already installed.

1.2 World Bank example

Even as experienced ggvis+shiny users, we found it quite difficult to replicate the World Bank example
using ggvis+shiny and Tableau, and were not able to completely replicate it due to a lack of a mechanism

1



Figure 1: Linked selection in a grand tour with animint. A video demonstration can be viewed online at
https://vimeo.com/160720834

Figure 2: Linked selection in a grand tour with ggvis and shiny. A video demonstration can be viewed
online at https://vimeo.com/160825528

2

https://vimeo.com/160720834
https://vimeo.com/160825528


Table 1: Characteristics of 11 interactive visualizations designed with animint. The interactive version of
these visualizations can be accessed via http://members.cbio.ensmp.fr/~thocking/animint/. From left to
right, we show the data set name, the lines of R code (LOC) including data processing but not including
comments (80 characters max per line), the amount of time it takes to compile the visualization (seconds),
the total size of the uncompressed TSV files in megabytes (MB), the total number of data points (rows), the
median number of data points shown at once (onscreen), the number of data columns visualized (vars), the
number of clickSelects/showSelected variables (int), the number of linked panels (plots), if the plot is
animated.
Figure LOC seconds MB rows onscreen vars int plots animated?
worldPop 17 0.2 0.1 924 624 4 2 2 yes
WorldBank 20 2.3 2.1 34132 11611 6 2 2 yes
evolution 25 21.6 12.0 240600 2703 5 2 2 yes
change 36 2.8 2.5 36238 25607 12 2 3 no
tornado 39 1.7 6.1 103691 16642 11 2 2 no
prior 54 0.7 0.2 1960 142 12 3 4 no
compare 66 10.7 7.9 133958 2140 20 2 5 no
breakpoints 68 0.5 0.3 4242 667 13 2 3 no
climate 84 12.8 19.7 253856 88980 15 2 6 yes
scaffolds 110 56.3 78.5 618740 9051 30 3 3 no
ChIPseq 229 29.9 78.3 1292464 1156 44 4 5 no

for coordinating indirect and direct manipulations. Overall the visualization is pretty similar, but lacks a few
important features. In particular, there is no way to control the selected year using both the slider (indirect)
and clicking on the ggvis plot (direct). It also lacks the ability to click on a country time series and label
the corresponding point on the scatterplot. This might be possible, but we could not find a way to update
a plot based on a click event on a different plot. Even with this lack of functionality, the ggvis+shiny is
significantly more complicated and requires more code (about 100 lines of code compared to 30).

It was also impossible to completely replicate World Bank example using Tableau essentially because the
example requires a layered approach to the grammar of graphics. In particular, since graphical marks and
interaction source/target(s) must derive from the same table in Tableau, it was impossible to control the
clickable multiple time series and the clickable tallrects in different ways based on the two different selection
variables. In other words, in Tableau, selections are managed on the plot level, but in animint, selections
are specific to each graphical layer.

2 Additional examples

Summary statistics describing complexity and performance of a variety of examples are displayed in Table
1. The climate data visualization has noticeably slow animations, since it displays about 88,980 geometric
elements at once. We observed this slowdown across all browsers, which suggested that there is an inherent
bottleneck when rendering large interactive plots in web browsers using JavaScript and SVG. This performance
could be improved by leveraging canvas-based (rather than vector-based) rendering, but at the time of writing,
animint does not support canvas-based rendering. Another animint visualization with a similar amount of
total rows is based on the evolution data, but since it shows less data onscreen (about 2,703 elements), it
exhibits faster responses to interactivity and animation.

3 Additional implementation details

As shown in Figure 3, the animint system is implemented in 2 parts: the compiler and the renderer. The
compiler is implemented in about 2000 lines of R code that converts a list of ggplots and options to a JSON

3

http://members.cbio.ensmp.fr/~thocking/animint/


timeSeries

line tallrect

scatterPlot

text pointtext

time
variable=year
ms=3000

R objects: ggplots, geoms, option lists
duration
year=1000

Data­dependent files

Compilation
(R code)

Data­independent files

Rendering in an HTML5­compliant web browser

Plot meta­data
(JSON)

index.html d3.v3.jsanimint.js

Database (TSV)

Figure 3: A schematic explanation of compilation and rendering in the World Bank visualization. Top:
the interactive animation is a list of 4 R objects: 2 ggplots and 2 option lists. Center: animint R code
compiles data in ggplot geoms to a database of TSV files (_). It also compiles plot meta-data including
ggplot aesthetics, animation time options, and transition duration options to a JSON meta-data file (_).
Bottom: those data-dependent compiled files are combined with data-independent JavaScript and HTML
files which render the interactive animation in a web browser (_).

plot meta-data file and a tab-separated values (TSV) file database.

The compiler scans the aesthetics in the ggplots to determine how many selection variables are present, and
which geoms to update after a selection variable is updated. It uses ggplot2 to automatically calculate the
axes scales, legends, labels, backgrounds, and borders. It outputs this information to the JSON plot meta-data
file.

The compiler also uses ggplot2 to convert data variables (e.g. life expectancy and region) to visual properties
(e.g. y position and color). The data for each layer/geom are saved in several TSV files, one for each
combination showSelected values. Thus for large data sets, the web browser only needs to download the
subset of data required to render the current selection (Heer 2013).

When repeated data would be saved in each of the TSV files, an extra common TSV file is created so that the
repeated data only need to be stored and downloaded once. In that case, the other TSV files do not store the
common data, but are merged with the common data after downloading. This method for constructing the
TSV file database was developed to minimize the disk usage of animint, particularly for ggplots of spatial
maps as in the tornado example.

Finally, the rendering engine (index.html, d3.v3.js, and animint.js files) is copied to the plot directory.
The animint.js renderer is implemented in about 2200 lines of JavaScript/D3 code that renders the TSV
and JSON data files as SVG in a web browser. Importantly, animation is achieved by using the JavaScript
setInterval() function, which updates the time selection variable every few seconds. Since the compiled
plot is just a directory of files, the interactive plots can be hosted on any web server. The interactive plots
can be viewed by opening the index.html page in any modern web browser.

Our current implementation of animint depends on a fork of ggplot21 that contains some minor modifications
which are needed to support interactive rendering on web pages.

1https://github.com/faizan-khan-iit/ggplot2/tree/validate-params

4

https://github.com/faizan-khan-iit/ggplot2/tree/validate-params


3.1 Caption of Tornadoes figure

Particular queries may also be stored and shared via a URL, for example: https://bl.ocks.org/faizan-khan-iit/
raw/b3912f21ec2750f96e8d1bd4b66463b2/#year=%7B1982%7Dstate=%7BTX%7D. In this link to the
interactive version, we also demonstrate the ability to dynamically rescale axes when a new query is triggered.
The middle and right panel display the same data, but use different scaling: the middle panel reflects the
“global” range (US) while the right panel reflects the “local” range (Arkansas). Furthermore, when an axis
update is triggered, it smoothly transitions from one state to next (preserving object constancy in the axis
ticks). This helps the viewer better perceive/understand how the range has changed from one state to the
next.

References

Ahlberg, Christopher, Christopher Williamson, and Ben Shneiderman. 1991. “Dynamic Queries for In-
formation Exploration: An Implementation and Evaluation.” In ACM Chi ’92 Conference Proceedings,
21:619–26.

Asimov, Daniel. 1985. “The Grand Tour: A Tool for Viewing Multidimensional Data.” SIAM J. Sci.
Stat. Comput. 6 (1). Philadelphia, PA, USA: Society for Industrial; Applied Mathematics:128–43. https:
//doi.org/10.1137/0906011.

Buja, Andreas, John Alan McDonald, John Michalak, and Werner Stuetzle. 1991. “Interactive data
visualization using focusing and linking.” IEEE Proceedings of Visualization, February, 1–8.

Heer, Zhicheng Liu AND Biye Jiang AND Jeffrey. 2013. “ImMens: Real-Time Visual Querying of Big Data.”
Computer Graphics Forum (Proc. EuroVis) 32 (3). http://vis.stanford.edu/papers/immens.

Wickham, Hadley, Dianne Cook, Heike Hofmann, and Andreas Buja. 2011. “tourr: An R Package for
Exploring Multivariate Data with Projections,” April, 1–18.

5

https://bl.ocks.org/faizan-khan-iit/raw/b3912f21ec2750f96e8d1bd4b66463b2/#year=%7B1982%7Dstate=%7BTX%7D
https://bl.ocks.org/faizan-khan-iit/raw/b3912f21ec2750f96e8d1bd4b66463b2/#year=%7B1982%7Dstate=%7BTX%7D
https://doi.org/10.1137/0906011
https://doi.org/10.1137/0906011
http://vis.stanford.edu/papers/immens

	Comparison study
	The Grand Tour
	World Bank example

	Additional examples
	Additional implementation details
	Caption of Tornadoes figure
	References


