
Supplementary Material for Detecting changes in slope with an L0

penalty

A Proof of Theorem 2.1

Throughout this section m will denote the true number of changepoints. When we

consider possible segmentations with a general number of changepoints, we will tend

to let d denote the number of changepoints. For data Y1:n denote the penalised cost

of segmenting the data with d changepoints ⌧̂1:d by

Q(Y1:n; ⌧̂1:d) = min
�

"
dX

i=0

�
C(Y⌧̂i+1:⌧̂i+1 ,�⌧̂i ,�⌧̂i+1) + h(⌧̂i+1 � ⌧̂i)

 
+ �n(d+ 1)

#
. (10)

Further, denote the unpenalised cost by

Q0(Y1:n; ⌧̂1:d) = min
�

(
dX

i=0

C(Y⌧̂i+1:⌧̂i+1 ,�⌧̂i ,�⌧̂i+1)

)
. (11)

We will allow the second argument of both of these functions to be an unordered

vector of changepoints, in which case the penalised, or unpenalised, cost is calculated

in the obvious way: we remove any duplicate changepoints, order the changepoints

and use either (10) or (11) for the ordered changepoints. We also allow the vector of

changepoints to include times outside the time-interval for the data – in which case

those changepoints are ignored. We write Q0(Y1:n) for the unpenalised cost if we fit

a model with no changepoints.

We base our proof on related proofs for consistency of the number and location of

changepoints for change in mean (e.g. Yao, 1988). The extra complication comes

from the cost associated with a given segment depending on the location of the

other changepoints. To overcome this issue we will use the property of our model

that if we add two changepoints at consecutive time-points then the costs associated

with segmenting the data before and the data after the pair of changepoints can be
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calculated independently of each others. So given a set of d1 changepoints prior to t,

⌧̂⌧⌧ 1:d1 and a set of d2 changepoints after t+ 1, ⌧̂⌧⌧ (d1+1):(d1+d2), then

Q0(YYY 1:n; ⌧̂⌧⌧ 1:(d1+d2), t, t+ 1) = Q0(YYY 1:t, ⌧̂⌧⌧ 1:d1) +Q0(YYY (t+1):n, ⌧̂⌧⌧ (d1+1):(d1+d2)). (12)

This can be shown by a simple reparameterisation between the change in slope model

fitted for the left-hand side of the equation and the two change in slope models fitted

on the right-hand side. As adding changepoints can only lead to a reduction in the

unpenalised cost, this gives the following way of bounding the residual sum of squares

associated with a given segmentation, which we repeatedly use. For any s = 1, . . . , n,

Q0(YYY 1:n; ⌧̂⌧⌧ 1:d)�
nX

t=1

Z
2
t
�
(
Q0(YYY 1:s; ⌧̂⌧⌧ 1:d)�

sX

t=1

Z
2
t

)
+

(
Q0(YYY (s+1):n; ⌧̂⌧⌧ 1:d)�

nX

t=s+1

Z
2
t

)
,

(13)

where, as defined above, we interpret Q0(YYY 1:s, ⌧̂⌧⌧ 1:d), say, as the unpenalised cost for

segmenting YYY 1:s using just the subset of the changepoints ⌧̂⌧⌧ 1:d that lie between time

1 and time s� 1.

We define three events which depend on Y1:n. The first of these, which we call E1
n
, is

the event that, for suitable constants ↵ > 0 and ↵
0
> 0,

max
i=0,...,m

"
max
d,⌧̂⌧⌧1:d

(
Q0(YYY (⌧i+1):⌧i+1 ; ⌧̂⌧⌧ 1:d)�

⌧i+1X

t=⌧i+1

Z
2
t
+ d↵ log n+ ↵

0
p
log n

)#
> 0.

This event states that if you consider any segment, then the unpenalised cost for fitting

just the data in that segment with changepoints ⌧̂⌧⌧ 1:d is less than d↵ log n+↵
0(log n)1/2

lower than the sum of the square of the true residuals for that segment. This holds

for all segments and all choices of changepoints.

The second event, E2
n
, is that for ln = b�n/2c

min
i=1,...,m

�
Q0(YYY (⌧i�ln+1):(⌧i+ln))�Q0(YYY (⌧i�ln+1):(⌧i+ln); ⌧i)

 
>

1

50
l
3
n
�2

n

This event states that if you consider the ln data points either side of any changepoint,

then the reduction in the unpenalised cost of fitting a model with the true change,
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as compared to fitting a model with no change, to this data is greater than a term

proportional to l
3
n
�2

n
. This holds for all m changepoints.

The final event, E3
n
is similar to that for E2

n
but with a di↵erent number of data points

associated with each changepoint. For i = 1, . . . ,m let l
i

n
= bC2(log n)1/3(�i

n
)�2/3c

with C2 as defined in the statement of Theorem 2.1. The event E3
n
, is that

min
i=1,...,m

�
Q0(YYY (⌧i�lin+1):(⌧i+lin))�Q0(YYY (⌧i�lin+1):(⌧i+lin); ⌧i)

 
� 1

50
(li

n
)3(�i

n
)2
�
> 0.

Lemmas B.1 and B.3, which are stated and proved in Section B, show that each of

these three events occurs with probability tending to 1. Thus in the following we will

assume they hold, and show that if they do then, for su�ciently large n, the event in

the statement of Theorem 2.1 must also hold. We will do this in three stages.

First we show that, for su�ciently large n, m̂n � m if E2
n
occurs. To do this we

consider an arbitrary segmentation of the data ⌧̂⌧⌧ 1:d with d < m changepoints, and

show that the penalised cost for this segmentation must be higher than the cost of

another segmentation.

For such a segmentation, there must exist at least one true changepoint such that no

estimated changepoint lies within half the minimum segment length, ln = b�n/2c, of

it. Denoting such a changepoint by ⌧i,

Q0(YYY 1:n; ⌧̂⌧⌧ 1:d) � Q0(YYY 1:(⌧i�ln); ⌧̂⌧⌧ 1:d) +Q0(YYY (⌧i�ln+1):(⌧i+ln)) +Q0(YYY (⌧i+ln+1):n; ⌧̂⌧⌧ 1:d)

> Q0(YYY 1:(⌧i�ln); ⌧̂⌧⌧ 1:d) +Q0(YYY (⌧i�ln+1):(⌧i+ln); ⌧i) +Q0(YYY (⌧i+ln+1):n; ⌧̂⌧⌧ 1:d) + l
3
n
�2

n
/50

= Q0(YYY 1:n; ⌧̂⌧⌧ 1:d, ⌧i � ln, ⌧i � ln + 1, ⌧i, ⌧i + ln, ⌧i + ln + 1) + l
3
n
�2

n
/50

The first inequality comes from (13). We have then used (12) and the bound on the

change of unpenalised cost from adding a true changepoint that comes from event

E
2
n
. The penalised cost

Q(YYY 1:n; ⌧̂⌧⌧ 1:d)�Q(YYY 1:n; ⌧̂⌧⌧ 1:d, ⌧i � ln, ⌧i � ln + 1, ⌧i, ⌧i + ln, ⌧i + ln + 1)
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is thus bounded below by �2
n
l
3
n
/50 � 5|�| log n � 5�n. By the assumptions on �n

and �n, log n = o(�2
n
l
3
n
). If �n = o(�2

n
l
3
n
) this will be positive for su�ciently large

n. This argument applies for any segmentation with fewer than m changepoints, and

hence for su�ciently large n, if E2
n
occurs then no segmentation with fewer than m

changepoints can minimise the penalised cost.

Next we show that m̂n  m if the event E1
n
occurs. To do this we consider an arbitrary

segmentation of the data ⌧̂⌧⌧ 1:d with d > m changepoints, and show that the penalised

cost for this segmentation must be higher than the cost of the true segmentation.

First note that
nX

t=1

Z
2
t
� Q0(YYY 1:n;⌧⌧⌧ 1:m).

Hence

Q(YYY 1:n; ⌧̂⌧⌧ 1:d)�Q(YYY ;⌧⌧⌧ 1:m) � Q0(YYY 1:n; ⌧̂⌧⌧ 1:d)�
nX

t=1

Z
2
t
� d|�| log n+ (d�m)�n,

where we have used a simple bound on the di↵erence in the contribution of the h(·)

terms to the two penalised costs. We can bound the first part of the right-hand side

by repeated application of (13):

Q0(YYY 1:n; ⌧̂⌧⌧ 1:d)�
nX

t=1

Z
2
t

�
mX

i=0

(
Q0(YYY (⌧i+1):⌧i+1 ; ⌧̂⌧⌧ 1:d)�

⌧i+1X

t=⌧i+1

Z
2
t

)

> �↵d log n� ↵
0(m+ 1)

p
log n.

The last inequality comes from using event E1
n
to bound the contribution from each

term in the sum. If �n > C1 log n then

Q(YYY 1:n; ⌧̂⌧⌧ 1:d)�Q(YYY ;⌧⌧⌧ 1:m) > {C1(d�m)� d|�|� ↵d} log n� ↵
0(m+ 1)

p
log n.

For C1 > m(|�|+↵) this is positive for all d > m for su�ciently large n. Hence there

exists a constant C1 such that if �n > C1 log n a segmentation with d > m will never

minimise the penalised cost.

Taken together, the results shown so far show that m̂n = m with probability tending

to 1. The final part of the proof is to show that there exists a constant, C2, such that
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with probability tending to 1

max
i=1,...,m

�
|⌧̂i � ⌧i| (�i

n
)2/3
 
 C2(log n)

1/3
. (14)

We show that this is guaranteed, for su�ciently large n, if all events occur. Similar

to before, our proof will be to consider an arbitrary segmentation for which (14) does

not hold, and show that it cannot minimise the penalised cost. We will consider only

n large enough that li
n
is greater than �n for all i. This must be occur for large enough

n as ln increases at rate that is bounded above by a constant times (log n/�n)1/3,

while by the assumptions of the Theorem �n increases at a strictly faster rate.

As m̂n = m with probability tending to 1, we need only consider segmentations with

m changes. Let ⌧̂⌧⌧ 1:m be such a segmentation for which (14) does not hold, and let ⌧i

be a changepoint for which

|⌧̂i � ⌧i| (�i

n
)2/3 > C2(log n)

1/3
.

Define an event, E4
n
, to be the event that both

max
⌧̂⌧⌧1:d

8
<

:Q0(YYY (⌧i�1+1):(⌧i�lin); ⌧̂⌧⌧ 1:d)�
⌧i�l

i
nX

t=⌧i�1+1

Z
2
t

9
=

;+ d↵ log n+ ↵
0
p
log n > 0,

and

max
⌧̂⌧⌧1:d

8
<

:Q0(YYY (⌧i+lin+1):(⌧i+1); ⌧̂⌧⌧ 1:d)�
⌧i+1X

t=⌧i+lin+1

Z
2
t

9
=

;+ d↵ log n+ ↵
0
p
log n > 0,

occur for all i. This will occur with probability tending to 1 by Lemma B.1.

We have

Q(YYY 1:n; ⌧̂⌧⌧ 1:m)�Q(YYY 1:n;⌧⌧⌧ 1:m) � Q0(YYY 1:n; ⌧̂⌧⌧ 1:m)�
nX

t=1

Z
2
t
�m|�| log n.
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Now using (13)

Q0(YYY 1:n; ⌧̂⌧⌧ 1:m)�
nX

t=1

Z
2
t
�

i�2X

j=0

8
<

:Q0(YYY (⌧j+1):⌧j+1 ; ⌧̂⌧⌧ 1:m)�
⌧j+1X

t=⌧j+1

Z
2
t

9
=

;+

mX

j=i+1

8
<

:Q0(YYY (⌧j+1):⌧j+1 ; ⌧̂⌧⌧ 1:m)�
⌧j+1X

t=⌧j+1

Z
2
t

9
=

;+

8
<

:Q0(YYY (⌧i�1+1):(⌧i�lin); ⌧̂⌧⌧ 1:m)�
⌧i�l

i
nX

t=⌧i�1+1

Z
2
t

9
=

;+

8
<

:Q0(YYY (⌧i+lin+1):⌧i+1
; ⌧̂⌧⌧ 1:m)�

⌧i+1X

t=⌧i+lin+1

Z
2
t

9
=

;+

8
<

:Q0(YYY (⌧i+lin+1):(⌧i+lin))�
⌧i+l

i
nX

t=⌧i�lin+1

Z
2
t

9
=

; , (15)

where we interpret a sum from j = 0 to �1, or from j = m + 1 to m as having the

value 0. If E1
n
and E

4
n
occur then we can lower bound the sum of all terms except the

final one by �m↵ log n� (m+ 1)↵0plog n

The final term on the right-hand side of (15) can be written as

�
Q0(YYY (⌧i�lin+1):(⌧i+lin))�Q0(YYY (⌧i�lin+1):(⌧i+lin); ⌧i)

 
+

8
<

:Q0(YYY (⌧i�lin+1):(⌧i+lin); ⌧i)�
⌧i+l

i
nX

t=⌧i�lin+1

Z
2
t
.

9
=

;

Using events E
3
n
and E

1
n
, the two bracketed terms on the right-hand side can be

bounded below by 1
50(l

i

n
)3(�i

n
)2 and �↵ log n� ↵

0plog n respectively.

Thus

Q(YYY 1:n; ⌧̂⌧⌧ 1:m)�Q(YYY 1:n;⌧⌧⌧m) >
1

50
(li

n
)3(�i

n
)2�(m+1)↵ log n�(m+2)↵0

p
log n�|�|m log n.

(16)

By the definition of li
n
,

(li
n
)3(�i

n
)2 = (C2)

3 log n+ o(log n),

and thus we can choose C2 such that (16) is positive for large enough n. ⇤

B Lemmas for Proof of Theorem 2.1

Throughout this section Z1, Z2, . . . will denote an infinite set of independent, identi-

cally distributed standard Gaussian random variables.
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The following lemmas show that each of E1
n
, E2

n
and E

3
n
occur with probability tending

to 1.

Lemma B.1 Consider data from a segment of length l,

Yt = �0 +
�1 � �0

l
t+ Zt, for t = 1, . . . , l.

where, without loss of generality, we have assumed this is the first segment. Fix

✏ > 0 and choose any constant ↵ > 2(1 + ✏). For any set of d � 1 changepoints ⌧1:d

with 0 < ⌧1 < · · · < ⌧d < l, there exists a constant C independent of l, d and the

changepoint locations such that

Pr

 
lX

t=1

Z
2
t
�Q0(Y1:l; ⌧1:d) > d↵ log l

!
 Cl

�d(1+✏); (17)

and for any ↵
0
> 0,

Pr

 
lX

t=1

Z
2
t
�Q0(Y1:l) > ↵

0
p
log l

!
! 0 (18)

as l ! 1.

Furthermore as l ! 1,

Pr

(
max
d,⌧1:d

 
lnX

t=1

Z
2
t
�Q)(Y1:l; ⌧1:d)� d↵ log l � ↵

0
p
log l

!
> 0

)
! 0 (19)

Proof. For the first set of results ⌧1:d is a fixed set of d changepoints. Standard

results for the normal linear model give,

lX

t=1

Z
2
t
�Q0(Y1:l; ⌧1:d) ⇠ �

2
d+2,

as we are fitting a model with d+2 parameters. We can bound the upper tail of this

random variable using (see e.g. Lemma 8.1 of Birgé, 2001)

Pr
n
�
2
d+2 > (d+ 2) + 2

p
(d+ 2)x+ 2x

o
 exp(�x). (20)
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For any ↵ > 2(1 + ✏), for large enough l and any integer d > 0

d↵ log l > (d+ 2) + 2
p

(d+ 2)d(1 + ✏) log l + 2d(1 + ✏) log l,

and hence there exists an L0 such that for l > L0, using (20) with x = d(1 + ✏) log l,

Pr(�2
d+2 > d↵ log l)  exp{�d(1 + ✏) log l} = l

�d(1+✏)
.

As we can choose an L0 independent of d, this is su�cient to prove (17).

To show (18) we use (20) with d = 0. For any ↵
0
> 0

↵
0
p
log l > 2 + 2

p
2x+ 2x,

where x = (↵0
/3)(log l)1/2, for large enough l. Hence for large enough l

Pr

 
lX

t=1

Z
2
t
�Q0(Y1:l) > ↵

0
p
log l

!
 exp

✓
a
↵
0

3

p
log l

◆
,

and the right-hand side tends to 0 as l ! 1.

To show (19) holds it is su�cient to sum the probabilities in (17) over all segmenta-

tions of Y1:ln and show this sum tends to 0. To do this note that we can bound the

number of segmentations with d changepoints by l
d. Thus

Pr

(
max
d,⌧1:d

 
lX

t=1

Z
2
t
�Q0(Y1 : l; ⌧1:d)� d↵ log l � ↵

0
p

log l

!
> 0

)


l�1X

d=1

l
d
Cl

�d(1+✏)
< C

1X

d=1

l
�d✏

.

This is just Cl
�✏
/(1� l

�✏) which, as ✏ > 0, tends to 0 as l ! 1 as required. ⇤

Corollary B.2 Event E
(1)
n occurs with probability tending to 1 as n ! 1.

Proof. This follows immediately from using (19) for each of the m+ 1 segments. ⇤

Lemma B.3 For a given l and any �0, �1 and �2 with

� =

����
�1 � �0

l
� �2 � �1

l

����
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let

Yt = �0 +
�1 � �0

l
t+ Zt, for t = 1, . . . , l, and

Yt = �1 +
�2 � �1

l
(t� l) + Zt, for t = l + 1, . . . , 2l.

Then for l > 2

Pr

✓
Q0(YYY 1:2l)�Q0(YYY 1:2l; l) <

1

50
�2

l
3

◆
 exp

⇢
� 1

800
�2

l
3

�
.

Proof. Standard results for the normal linear model (e.g Theorem 15.8 of Muller

and Stewart, 2006) give that, for l > 2, Q0(YYY 1:2l) � Q0(YYY 1:2l; l) has a non-central

chi-squared distribution with 1 degree of freedom, and non-centrality parameter

⌫ = �2 l(l + 1)(l � 1)

24

⇢
4l2 + 2

4l2 � 1

�
.

For l > 2, ⌫ > �2
l
3
/25. We can bound the lower tail of such a random variable,

�
2
1(⌫), using (see e.g. Lemma 8.1 of Birgé, 2001)

Pr
⇣
�
2
1(⌫) < 1 + ⌫ � 2

p
(1 + 2⌫)x

⌘
 exp{�x}.

Taking x = (1+2⌫)/64, and noting that for such an x, (⌫+1)� 2
p

(1 + 2⌫)x > ⌫/2,

we get

Pr

✓
Q0(YYY 1:2l)�Q0(YYY 1:2l; l) <

1

50
�2

l
3

◆
 Pr (Q0(YYY 1:2l)�Q0(YYY 1:2l; l) < ⌫/2)  exp{�⌫/32}.

The result follows by noting that ⌫ > l
3�2

/25 for l > 2. ⇤

Corollary B.4 Events E
(2)
n and E

(3)
n occur with probability tending to 1 as n ! 1.

Proof. We can apply Lemma B.3 to each region around a changepoint as ln > 2 for

su�ciently large n. For event E2
n
, as �2

n
l
3
n
! 1 the probability of

Q0(YYY ⌧i�ln+1:⌧i+ln)�Q0(YYY ⌧i�ln+1:⌧i+ln ; ⌧i) >
1

50
l
3
n
�2

n

for a given changepoint, ⌧i, tends to 1. As there are a fixed number of changepoints,

we get that this must hold for all changepoints with probability tending to 1, as

required. A similar argument holds for event E3
n
. ⇤
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C Updates for Quadratic Functions

In Section 3 (equation 5) we define a function, f t

⌧ (�), as the minimum cost of seg-

menting y1:t with changepoints at ⌧ = ⌧1, . . . , ⌧k and fitted value �t = � at time t.

We then derived a recursion for these functions as follows

f
t

⌧ (�) = min
�0

n
f
⌧k
⌧1,...,⌧k�1

(�0) + C(y⌧k+1:t,�
0
,�) + � + h(⌧i+1 � ⌧i)

o
. (21)

The functions f t

⌧ (�) are quadratics in �, and we denote f
t

⌧ (�) as follows

f
t

⌧ (�) = a
t

⌧ + b
t

⌧�+ c
t

⌧�
2
, (22)

for some constants a
t

⌧ , b
t

⌧ and c
t

⌧ . We then wish to calculate these coe↵cients by

updating the coe�cients that make up f
⌧k
⌧1,...,⌧k�1

(�0) using (21). To do this we need

to write the cost for the segment from ⌧k + 1 to t in quadratic form. Defining the

length of the segment as s = t� ⌧k this cost can be written as

C(y⌧k+1:t,�
0
,�) =

(s+ 1)(2s+ 1)

6s�2
�
2 +

✓
(s+ 1)

�2
� (s+ 1)(2s+ 1)

3s�2

◆
�
0
�

�
✓

2

s�2

X
yj(j � ⌧k)

◆
�+

✓
1

�2

X
y
2
i

◆

+ 2

✓
1

s�2

X
yj(j � ⌧k)�

1

�2

X
yi

◆
�
0 +

(s� 1)(2s� 1)

6s�2
�
02
. (23)

Writing (23) as A�2 + B�
0
� + C� + D + E�

0 + F�
02 for constants A, B, C, D and

E, substituting (23) into (21) and minimising out �0 we can get the formula for the

updating the coe�cients of the quadratic f
t

⌧ (�):
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a
t

⌧ = A� B
2

4
⇣
a
⌧k
(⌧1,...,⌧k�1)

+ F

⌘ ,

b
t

⌧ = C �

⇣
b
⌧k
(⌧1,...,⌧k�1)

+ E

⌘
B

2
⇣
a
⌧k
(⌧1,...,⌧k�1)

+ F

⌘ ,

c
t

⌧ = c
⌧k
(⌧1,...,⌧k�1)

+D �

⇣
b
⌧k
(⌧1,...,⌧k�1)

+ E

⌘2

4
⇣
a
⌧k
(⌧1,...,⌧k�1)

+ F

⌘ + � + h(t� ⌧k). (24)

D Proofs from Section 3

D.1 Proof of Theorem 3.1

The proof of Theorem 3.1 works by contrapositive. We show that if (⌧ , s) 2
⇤
T t then

a necessary condition of this is that ⌧ 2
⇤
T s, taking the contrapositive of this gives

Theorem 3.1.

proof Assume (⌧ , s) 2
⇤
T t, then there exists � such that

f
t(�) = f

t

(⌧ ,s)(�),

Now for any �
⇤,

f
s(�⇤) + C(ys+1:t,�

⇤
,�) + � � min

�0,r
[f r(�0) + C(yr+1:t,�

0
,�) + �] ,

= f
t(�),

= f
t

(⌧ ,s)(�),

= min
�00

{f s

⌧ (�
00) + C(ys+1:t,�

00
,�) + �} , (25)

= f
s

⌧ (�
A) + C(ys+1:t,�

A
,�) + �,

where �
A is the value of �00 which minimises (25). As �⇤ can be chosen as any value,

we can choose it as �
A. By cancelling terms we get f

s(�A) � f
s

⌧ (�
A) and hence

11



f
s(�A) = f

s

⌧ (�
A) and therefore ⌧ 2

⇤
T s. We have shown that if (⌧ , s) 2

⇤
T t then

⌧ 2
⇤
T s, by taking the contrapositive the theorem holds. ⇤

D.2 Proof of Theorem 3.2

The proof for Theorem 3.2 follow a similar argument to the corresponding proof in

Killick et al. (2012). However we have to add a segment consisting of the single point

yt+1 to deal with the dependence between the segments.

Proof Let ⌧ ⇤ denote the optimal segmentation of y1:t. We will repeatedly use the

fact that

C(yt+1,�
0
,�) =

1

�2
(yt+1 � �)2,

and this does not depend on �
0.

First consider T = t+1. As adding a changepoint without penalty will always reduce

the cost, it is straightforward to show

f
T

⌧ (�) � min
�0

⇥
f
t

⌧ (�
0) + C(yt+1,�

0
,�)
⇤
,

= min
�0

[f t

⌧ (�
0)] + min

�0
[C(yt+1,�

0
,�)],

> min
�0

⇥
f
t(�0)

⇤
+K +min

�0
[C(yt+1,�

0
,�)],

� min
�0

⇥
f
t(�0) + C(yt+1,�

0
,�) + � + h(1)

⇤
.

Thus segmenting y1:T with changepoints ⌧ always has a greater cost than segmenting

y1:T with changepoints (⌧ ⇤
, t).

Now we consider T > t+1. We start by noting that by adding changes, at any point,

without the penalty term and minimising over the corresponding � values will also

decrease the cost. Therefore

f
T

⌧ (�) � min
�0,�00

⇥
f
t

⌧ (�
0) + C(yt+1,�

0
,�

00) + C(yt+2:T ,�
00
,�)
⇤
. (26)

12



So from (26) and using (8),

f
T

⌧ (�) � min
�0,�00

⇥
f
t

⌧ (�
0) + C(yt+1,�

0
,�

00) + C(yt+2:T ,�
00
,�)
⇤
,

� min
�0

[f t

⌧ (�
0)] + min

�0,�00
[C(yt+1,�

0
,�

00) + C(yt+2:T ,�
00
,�)],

> min
�0

⇥
f
t(�0)

⇤
+K + min

�0,�00
[C(yt+1,�

0
,�

00) + C(yt+2:T ,�
00
,�)],

� min
�0,�00

⇥
f
t(�0) + C(yt+1,�

0
,�

00) + � + h(1) + C(yt+2:T ,�
00
,�) + � + h(T � t+ 1)

⇤
.

Therefore the cost of segmenting y1:T with changepoints ⌧ is always greater than

the cost of segmenting y1:T with changepoints (⌧ ⇤
, t, t + 1) (where ⌧ ⇤ is the optimal

segmentation of y1:t) and this holds for all T > t+ 1 and hence ⌧ can be pruned. ⇤

E Pseudo-Code for CPOP

The CPOP algorithm uses Algorithm 2 to calculate the intervals on which each

function is optimal. This then enables the functions that are not optimal for any

value of � to be removed. The idea of this algorithm is as follows.

We initialise the algorithm by setting the current parameter value as �curr = �1

and comparing the cost functions in our current set of candidates (which we initialise

as Ttemp = T̂t) to get the optimal segmentation for this value, ⌧curr. This can be

optimisation can be done my noting that the quadratic with smallest cost will have

the smallest coe�cient of the quadratic term. If more than one quadratic has the

smallest coe�cient, we then choose the quadratic with the largest coe�cient of the

linear term; and if necessary, then choose the quadratic with the smallest constant

term.

For each ⌧ 2 Tcurr we calculate where f t

⌧ next intercepts with f
t

⌧curr (smallest value of

� for which f
t

⌧ (�) = f
t

⌧curr(�) and � > �curr) and store this as x⌧ . If for a ⌧ 2 Ttemp

we have x⌧ = ; (i.e. f
t

⌧ doesn’t intercept with f
t

⌧curr for any � > �curr) then we

13



Algorithm 1: Algorithm for Continuous Piecewise-linear Optimal Partitioning

(CPOP)

Input : Set of data of the form y1:n = (y1, . . . , yn).

A positive penalty constant, �, and a non-negative, non-decreasing

penalty function h(·).

Let n = length of data;

set T̂1 = {0};

and set K = 2� + h(1) + h(n);

for t = 1, . . . , n do

for ⌧ 2 T̂t do

if ⌧ = {0} then

f
t

⌧ (�) = min
�0

C(y1:t,�
0
,�) + h(t);

else

f
t

⌧ (�) = min
�0

n
f
⌧k
⌧1,...,⌧k�1

(�0) + C(y⌧k+1:t,�
0
,�) + h(t� ⌧k) + �

o
;

for ⌧ 2 T̂t do

Int
t

⌧ =

⇢
� : f t

⌧ (�) = min
⌧ 02T̂t

f
t

⌧ 0(�)

�
;

⇤
T t = {⌧ : Intt⌧ 6= ;};

T̂t+1 = T̂t [
⇢
(⌧ , t) : ⌧ 2

⇤
T t

�
;

T̂t+1 =

⇢
⌧ 2 T̂t+1 : min

�

f
t

⌧ (�)  min
�0,⌧ 0

⇥
f
t

⌧ 0(�0)
⇤
+K

�
;

fopt = min
⌧ ,�

f
n

⌧ (�);

⌧opt = argmin
⌧


min
�

f
n

⌧ (�)

�
;

Output: The optimal cost, fopt, and the corresponding changepoint vector, ⌧opt.

remove ⌧ from Ttemp. We take the minimum of x⌧ (the first of the intercepts) and

set it as our new �curr and the corresponding changepoint vector that produces it as

⌧curr. We repeat this procedure until the set Ttemp consists of only a single value ⌧curr

14



which is the optimal segmentation for all future � > �curr.

As written, our algorithm assumes there is a unique quadratic that is optimal for

each interval – which we believe will happen with probability 1. If this is not the

case, we can interpret the algorithm as choosing one of the optimal quadratics, and

outputing an optimal, as opposed to the unique optimal, segmentation. Obviously

the algorithm could be re-written to store and output multiple optimal segmentations

if they exist.

Algorithm 2: Algorithm for calculation of Intt⌧ at time t

Input : Set of changepoint candidate vectors T̂t for current timestep, t,

Optimal segmentation functions f t

⌧ (�) for current time step t and

⌧ 2 T̂t.

Ttemp = T̂t;

Int
t

⌧ = ; for ⌧ 2 T̂t;

�curr = �1;

⌧curr = argmin
⌧2Ttemp

⇥
f
t

⌧ (�curr)
⇤
;

while Ttemp\{⌧curr} 6= ; do

for ⌧ 2 Ttemp\{⌧curr} do

x⌧ = min{� : f t

⌧ (�)� f
t

⌧curr(�) = 0 & � > �curr};

if x⌧ = ; then

Ttemp = Ttemp\{⌧}

⌧new = argmin
⌧

(x⌧ );

�new = min
⌧

(x⌧ );

Int
t

⌧curr = [�curr,�new] [ Int
t

⌧curr ;

⌧curr = ⌧new;

�curr = �new;

Output: The intervals Intt⌧ for ⌧ 2 T̂t
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