Continuous metabolic energy model

The model by Umberger et al. [1,2] calculates the energy as a function of the heat rate from the
activation of muscles and its maintenance, liAM, the heat rate due to shortening and lengthing of
muscles, Ag;, and the mechanical work rate, wg:

E(t) = hay + hsy + weg 1
The following equation is used to find the activation/maintenance heat rate hyy:

Where S is a factor equal to 1.5 for aerobic conditions [3], A4 = A% is related to the activation and

stimulation as described in equation 6 of the paper (see below), and fl.; and EAM are determined as
follows:
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Equation 6 in the paper:

where 128 W/kg and 25 W/kg are constants found using regression, f(l.g) is the location on the force-
length relationship of the muscle, and FT and ST are the ratios of fast-twitch and slow-twitch fibers in
the muscle, respectively, lcgopr) is the optimal fiber length, and [ is the current fiber length.

When the fiber length is longer than optimal, fi4, is split up into two parts, where 40% represents the
activation heat rate and 60% the activation heat rate, which is dependent on the location on the force-
length relationship [4]. This does not create a discontinuity in the equation, since the derivative of

f(lcg) is zero when the fiber length is optimal. Also, equation 4 is continuous since hy,, is a constant.

The shortening-lengthening heat rate is calculated as follows:

hSL = ASLESLf lcgS >

Where Ag; is equal to A2, and ESL is determined as follows:

100 st VcE(max)sy < —AstVcE(s)ST

—AstUcp(5)ST  AsrVcE(max)sr > —AstVcE(s)ST
Where Ucg(py and Vg sy are the shortening and lengthening velocities normalized to optimal fiber
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length, respectively. Ucg(max) g, is the normalized maximum shortening velocity for slow-twitch fibers,



4.8 fiber lengths per second. agr, agr and @ are the shortening heat coefficients for slow-twitch and

fast-twitch fibers in J/kg, and the lengthening heat coefficient, respectively:
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Where Ucg(max) - IS the maximum shortening velocity for fast-twitch fibers, assumed to be 12 fiber
lengths per second.

The shortening and lengthening velocities are determined as described in the paper:
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Note that the term agrUcg(s)ST for ESL cannot exceed 100 W/kg. However, this level is not reached
during gait.

The work rate is determined as follows to ensure that it is never negative:
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Where my,,, is the muscle mass, F¢ is the force in the contractile element, and vy is the fiber
velocity, negative when shortening. € is a small number, used to decrease the nonlinearity of the
problem. For simplicity, the same value for ¢ is used for the shortening/lengthening velocity and the
work rate.

The muscle mass is determined as follows:

Fmaxp
ﬂlCE(OPT) 11

mmus -

Where F,, 4, is the maximum isometric force, g is the maximum muscle stress, 250 kPa, p is the muscle
density, 1059.7 kg/m?, and l¢g(opr) is the optimal fiber length.

Predictive gait simulation
The following objective was used with direct collocation using N collocation nodes:
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Where Wpg,4 is the weight of the regularization term, N is the number of states, and N, is the
number of controls. Note that an extra node (N + 1) was added for the periodicity constraint.

Predictive Gait Simulations

Figure 1 shows the five results with the highest objective that were found when minimizing metabolic
rate. Figure 2 shows the five results with the highest objective that were found when minimizing effort.
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Figure 1 - Ground reaction force, joint angles, moments, and muscle forces of the five solutions with the lowest metabolic rate.
The fill shows normal data from Winter [5]
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Figure 2 - Ground reaction force, joint angles, moments, and muscle forces of the five solutions with the lowest effort. The fill
shows normal data from Winter [5]
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