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Supplementary Tables
Supplementary Table 1 Dinucleotide representation analysis in various species during the evolution. 
[bookmark: _Ref482632708]Supplementary Table 1  List of the 4 types of regions (HVM, HEV, COG, COO) detected in human and mouse tissues using our genome partition algorithm. 
[bookmark: _Ref482714804]Supplementary Table 2  List of Pearson correlation coefficients between all pairs among the 18 human tissues.
[bookmark: _Ref482715658]Supplementary Table 3  List of Pearson correlation coefficients between all pairs among the 16 mouse tissues. 
[bookmark: _Ref482805348]Supplementary Table 4  The amount of various types of COGs detected in 18 human tissues and 16 mouse tissues.
[bookmark: _Ref484615220]Supplementary Table 5  tpCOGs and the genes coinciding with tpCOGs in at least one promoter in 18 human tissues and 16 mouse tissues. Score: the mean methylation in gene promoter; cgnum: the number of CpG sites in gene promoter; cogID: the identifier of tpCOGs; promNum: the number of promoters of one gene. 
[bookmark: _Ref484864810]Supplementary Table 6  List of tdCOGs and their target genes in 18 human tissues and 16 mouse tissues.

[image: supplementary%20figures/supplementary-figure1.pdf]
[bookmark: _Ref487641481]Supplementary Figure 1: Observed-to-expected ratio (O/E) for all 16 dinucleotides in various species.
CpG representation exhibits an obvious decrement along the evolution while the other 15 dinucleotides are barely changed. The four types of dinucleotides starting with A, T, C, and G are shown in panel (a), (b), (c), and (d) respectively.




[image: supplementary%20figures/supplementary-figure2.pdf]
Supplementary Figure 2: Enlarged Hilbert curves of CpG dinucleotide.
In higher organisms (M.musculus), CpGs are forming clusters while in lower organisms (D.rerio and C.elegance) CpGs are uniformly distributed. The clusters are discernible as red spots in the pale background in M.musculus.

[image: supplementary%20figures/supplementary-figure3.pdf]
Supplementary Figure 3: Inter-CpG distance distributions of various species.
The distance between CpG sites with defined numbers of CpG apart are shown in density plots. The tendency of forming two peaks along evolution is independent of the number of interpolated CpGs.



[image: supplementary%20figures/supplementary-figure4.pdf]
Supplementary Figure 4: Inter-ApT distance distributions of various species.
Single peaks indicate that ApT sites are almost evenly distributed, i.e., the distance between two ApTs approximately follow normal distribution, no matter in lower or higher organisms.




[image: supplementary%20figures/supplementary-figure5.pdf]
Supplementary Figure 5: Hillbert curves of CpG, ApT and ApC dinucleotides on chromosome 1 of human genome (hg38).
Comparing of different dinucleotides distribution show that only CpG dinucleotide possesses the ability of forming clusters.


[image: supplementary%20figures/supplementary-figure6.pdf]
Supplementary Figure 6: CpG and ApT dinucleotide representations in UCSC genome browser.
The sharp peaks are pretty clear in CpG tracks of H. sapiens, M.musculus, T. guttata, N.parkeri, and D.rerio. Comparing with ApTs, CpG content decreasing and CpG cluster emerging are two prominent characteristics along evolution.


[image: supplementary%20figures/supplementary-figure7.pdf]
Supplementary Figure 7: Inverse correlations of CpG density and DNA methylation in human tissue (aorta) and mouse tissues (cerebellum, sperm, day 6.5 embryo).
Most of the sites exhibit low CpG densities and high DNA methylation. This pattern is universal regardless of species and tissue types.





[image: supplementary%20figures/supplementary-figure8.pdf]
Supplementary Figure 8: Inverse correlations of CpG density and DNA methylation in various mouse tissues and developmental stages shown by DNA methylation vs. binned CpG density.


[image: supplementary%20figures/supplementary-figure9.pdf]
Supplementary Figure 9: Mirror symmetry of CpG density and DNA methylation along gene body in human ovary tissue.

[image: supplementary%20figures/supplementary-figure10.pdf]
Supplementary Figure 10: Determination of proper sliding window size based on negative correlation coefficient.
Optimized sliding window size were determined according to negative correlation coefficient to achieve the best algorithm effect. Different sliding window sizes were scanned from 500bp to 10k bp in various human and mouse tissues. Based on these results, the parameter was set to 2500bp in both human and mouse tissues in this study.
[image: supplementary%20figures/supplementary-figure11.pdf]
Supplementary Figure 11: Detailed views of CpG density and DNA methylation level in UCSC genome browser.
Complementarity between CpG density and DNA methylation level are discernible in both human (spleen, small-bowel, right-atrium) and mouse tissues (bone-marrow, cerebellum, heart).
[image: supplementary%20figures/supplementary-figure12.pdf]
Supplementary Figure 12: Large-scale view of the complementarity between CpG density and DNA methylation in UCSC genome browser.
In larger scales, the complementarity is still clearly discernible, demonstrating that it is a genome wide feature.

[image: supplementary%20figures/supplementary-figure13.pdf]
Supplementary Figure 13: Detailed views of the four types of genome regions (HMV, HEV, COG and COO).
CpG density and DNA methylation levels were rescaled and plotted in one graph to show the characteristics of HMV, HEV, COG and COO regions.





[image: supplementary%20figures/supplementary-figure14.pdf]
Supplementary Figure 14: Comparison of proportions of HMV, HEV, COG and COO regions in human and mouse tissues.
(a) The proportions of four region types are shown in pie chart for single human or mouse tissue and in boxplot across all 18 human tissues or all 16 mouse tissues. There were no obvious differences between the number of the 4 types of regions and the corresponding proportions in human and mouse tissues. (b) Proportions of COO and COG regions that overlap with SINEs in human and mouse tissues.
[image: supplementary%20figures/supplementary-figure15.pdf]
Supplementary Figure 15: Proportions of COGs and COOs in different feature regions of mouse genome.

[image: supplementary%20figures/supplementary-figure16.pdf]
Supplementary Figure 16: Dendrogram of hierarchical clustering analysis based on COGs from four mouse tissues.
Unsupervised clustering analysis of different COGs exhibited very similar results.



[image: supplementary%20figures/supplementary-figure17.pdf]
Supplementary Figure 17: Dendrogram of hierarchical clustering analysis based on COGs from four human tissues.





[image: supplementary%20figures/supplementary-figure18.pdf]
Supplementary Figure 18: Comparison of the correlation coefficients determined by DMRs and COGs in the top 10 tissue pairs.
Tissue pairs were ranked by DMR-determined correlation coefficients. The correlation coefficients determined by COGs were averaged across a) human and b) mouse tissues. The error bars are standard deviation.
[image: supplementary%20figures/supplementary-figure19.pdf]
Supplementary Figure 19: Comparison of the correlation coefficients determined by DMRs and COGs in all possible tissue pairs.
Correlation coefficients were calculated according to DMR or COG methylation for all possible human (n=153) or mouse (n=120) tissue pairs (Supplementary Table 3, Supplementary Table 4). Purpose points represent the mean correlation coefficient of each tissue pair determined by the COGs of 18 human tissues or 16 mouse tissues. The smooth line was fitted by LOESS method and 95% confidence intervals are shown in grey.
[image: supplementary%20figures/supplementary-figure20.pdf]
Supplementary Figure 20: Heatmap of DNA methylation in COGs of mouse cerebellum.
The heatmap was vertically ranked by standard deviation (SD) across 16 mouse tissues and horizontally clustered by Euclidean distance. Shown on the top is methylation mean of each tissue, on the right is SD of variable (red, SD > 0.15) and stable (green, SD < 0.15) COGs, on the top right corner is the histogram of SD.


[image: supplementary%20figures/supplementary-figure21.pdf]
Supplementary Figure 21: Comparison of the number of stable COGs, variable COGs, tdCOGs and tpCOGs in mouse and human tissues.
The p-values (T-test) indicate that significantly more tdCOGs, tpCOGs, and variable COGs, but not stable COGs, were detected in human tissues than in mouse tissues. It is the most obvious in tpCOGs with p-value of < .
[image: supplementary%20figures/supplementary-figure22.pdf]
Supplementary Figure 22: Scatterplots of the number of variable COGs, stable COGs and tdCOGs in eight common human and mouse tissues.
Smooth line was generated by LOESS method and 95% confidence intervals are shown in grey. Correlation coefficient (cor) was generated by Pearson method. High correlation between mouse and human tissues indicates that our genome partition algorithm is stable and robust among tissues and genomes.
[image: supplementary%20figures/supplementary-figure23.pdf]
Supplementary Figure 23: Epigenome analysis of tpCOG functions in mouse TAOK3 gene.
DNA methylation levels, CAGE signals, H3K4me3 signals and PolII signals are shown for 16 mouse tissues in TAOK3 gene in UCSC genome browser. H3K4me3 and PolII data were generated by ChIP-seq51. Cap analysis gene expression (CAGE) data were obtained from the FANTOM research projects52. TSS-I, TSS-II, and TSS-III denote the 1st, 2nd, and 3rd transcription start site. TSS-II and TSS-III (light blue colored) were identified as TCPs in bone marrow, spleen, and thymus, or cerebellum, cortex, and olfactory bulb, respectively. CpGposi is the CpG site position marked by blue bars. CpGsw shows the number of CpG sites in 2500bp-sliding windows. It suggests that tpCOGs play very important roles in alternative promoter selection in a tissue specific manner.










[image: supplementary%20figures/supplementary-figure24.pdf]
Supplementary Figure 24: Epigenome analysis of tpCOG function in 16 mouse tissues in mouse Elmo1 gene.
DNA methylation levels, CAGE signals, H3K4me3 signals and PolII signals are shown for 16 mouse tissues in Elmo1 gene in UCSC genome browser. H3K4me3 and PolII data were generated by ChIP-seq51. Cap analysis gene expression (CAGE) data were obtained from the FANTOM research projects52. TSS-I, TSS-II, and TSS-III denote the 1st, 2nd, and 3rd transcription start site. TSS-II and TSS-III (light blue colored) were identified as TCPs in bone marrow, spleen, and thymus, or cerebellum, cortex, and olfactory bulb, respectively.  CpGposi is the CpG site position marked by blue bars. CpGsw shows the number of CpG sites in 2500bp-sliding windows.











[image: supplementary%20figures/supplementary-figure25.pdf]
Supplementary Figure 25: Epigenome analysis of tpCOG function in 18 human tissues in human RORC gene.
DNA methylation levels, CAGE signals, H3K4me3 signals and PolII signals are shown for 18 mouse tissues in RORC gene in UCSC genome browser. H3K4me3 and PolII data were generated by ChIP-seq32. Cap analysis gene expression (CAGE) data were obtained from the FANTOM research projects52. TSS-I, TSS-II, and TSS-III denote the 1st, 2nd, and 3rd transcription start site. TSS-II and TSS-I (light blue colored) were identified as TCPs in spleen, and thymus, or adrenal and aorta, respectively.  CpGposi is the CpG site position marked by blue bars. CpGsw shows the number of CpG sites in 2500bp-sliding windows.











[image: supplementary%20figures/supplementary-figure26.pdf]
Supplementary Figure 26: Statistics of tpCOG-coincident promoters.
(a) Number of genes with different number of promoters. For instance, 105 genes, for which at least one promoter coincides with tpCOGs, possess three promoters. (b) Number of tpCOGs coincident with promoters in different human tissues. For instance, 683 promoters coincide with tpCOGs in two different tissues.



[image: supplementary%20figures/supplementary-figure27.pdf]
Supplementary Figure 27: Proportions of promoters coincident with tpCOGs in seven-promoter genes and ten-promoter genes.
P1, P2, P3, P4, P5, P6, P7 denote that 1, 2, 3, 4, 5, 6 or 7 promoters coincide with tpCOGs respectively.


[image: supplementary%20figures/supplementary-figure28.pdf]
Supplementary Figure 28: Density plots of the percentage of promoters overlapping with tpCOGs in genes.
Peak shift is discernible as the number of promoters in gene increases.
[image: supplementary%20figures/supplementary-figure29.pdf]
Supplementary Figure 29: DNA methylation and CpG number in promoters of some typical multiple promoter genes in 18 human tissues.
The number of CpGs in different promoters show negative correlations with DNA methylation. “ERG, P3” denotes the 3rd promoter of EGR gene coincides with tpCOGs.





[image: supplementary%20figures/supplementary-figure30.pdf]
Supplementary Figure 30: Comparison of TCPs and TICPs.
(a-d) Histogram of DNA methylation and H3K4me3 of TCPs and TICPs. DNA methylation was the median methylation of CpG sites in TCP or TICP promoters. H3K4me3 was the number of ChIP-seq reads in TCP or TICP promoters. (e) Boxplot of methylation maxdiff for TCP and TICP promoters. Maxdiff refers to the maximal difference of DNA methylation in TCPs or TICP among 18 human tissues. (f)  Boxplot of CpG number in TCP and TICP promoters. The number of CpGs in hypo-methylated (with an average value of 76) TICPs (TICP low) is much higher than that of hyper-methylated TICPs (TICP high) which is comparable to TCPs (with an average value of 24). TICPs were divided into TICP low and TICP high according to their methylation levels.
[image: supplementary%20figures/supplementary-figure31.pdf]
Supplementary Figure 31: Heatmaps of DNA methylation and H3K4me3 in TCPs and TICPs of two-promoter genes in human tissues.
The heatmap was vertically ranked by CpG number in promoter regions (500bp up- and down-stream of transcription start site). Maxdiff denotes the maximum difference of methylation among 18 human tissues. The smooth blue lines are the trend lines fitted by LOESS method. H3K4me3 signal refers to the number of ChIP-seq reads in promoter regions. Only the two-promoter genes that have one TCP and one TICP are included here. The genes are shown in the same order for TCPs and TICPs.



[image: supplementary%20figures/supplementary-figure32.pdf]
Supplementary Figure 32: Heatmaps of DNA methylation and H3K4me3 in TCPs and TICPs of all genes in mouse tissues.
The genes have at least one promoter coincident with tpCOGs.






[image: supplementary%20figures/supplementary-figure33.pdf]
Supplementary Figure 33: Heat maps of DNA methylation and H3K4me3 in TCPs and TICPs of two-promoter genes in mouse tissues.







[image: supplementary%20figures/supplementary-figure34.pdf]
Supplementary Figure 34: Overview of TF binding motif enrichments, DHS enrichments and sequence conservations in Circos plots in two human tissues (AO and OV).
Comparison of HMVs (H) and tdCOGs (G) show higher TF binding motif enrichment, DHS density and sequence conservation in tdCOGs.
[image: supplementary%20figures/supplementary-figure35.pdf]
Supplementary Figure 35: Higher sequence conservations and transcription factor motif enrichment in tdCOGs in mouse tissues.
(a) Both conservation and motif enrichment of tdCOGs, promoters and enhancers are comparable and higher than that of random selected genome regions in mouse bone-marrow tissue.  values were calculated by T-test. (b)  values between tdCOGs and random genomic regions in 16 mouse tissues are shown in empirical cumulative distribution plot. The vertical lines mark the x-axis value of  = 0.01.

[image: supplementary%20figures/supplementary-figure36.pdf]
Supplementary Figure 36: Overview and comparison of TF binding motif enrichments, DHS enrichments and conservations in tdCOGs and HMVs by Circos plots.
Both mouse tissues (bonemarrow and cerebellum) exhibit similar patterns as human tissues, i.e., the TF binding motif enrichment, DHS enrichment, and conservations in tdCOGs are higher than that in HMVs.
[image: supplementary%20figures/supplementary-figure37.pdf]
Supplementary Figure 37: Overview and comparison of H3K27ac, H3K4me1 and H3K4me3 intensities in tdCOGs and HMVs by Circos plots.
All three histone modification signals are higher in tdCOGs than in HMVs. Two human tissues, aorta (AO) and ovary (OV), are shown here. Other tissues exhibited the similar patterns.
[image: supplementary%20figures/supplementary-figure38.pdf]
Supplementary Figure 38: Enrichment of histone modifications and RNA polymerase II (PolII) in tdCOGs in mouse bone marrow and across eight mouse tissues.
(a-c) The regions, after expanding half of their length upstream and downstream, were divided into 100 equal bins. ChIP-seq reads falling in each bin were averaged. (d) Using promoters as standard, we calculated the fold changes of H3K4me1, H3K4me3 and PolII signals in tdCOGs and enhancers in eight mouse tissues and presented them after log2-transformation. ChIP-seq data were only available for these eight mouse tissues.
[image: supplementary%20figures/supplementary-figure39.pdf]
Supplementary Figure 39: Overview and comparison of H3K4me1, H3K4me3, and PolII intensities in tdCOGs and HMVs by Circos plots.
PolII signals in tdCOGs are higher than in HVMs, which is identical to histone modification signals H3K4me1 and H3K4me3. Two mouse tissues, bone marrow and cerebellum, are shown here. Other tissues exhibited the similar patterns.
[bookmark: _GoBack][image: ]
Supplementary Figure 40: tpCOGs show high resemblance with promoters. 
Analysis was done among tpCOG, gene promoter, enhancer, and random genome regions for (a) DNA sequence conservation, (b) DNase1 hyper sensitivity sites, (c) motifs, (d) H3K4me1 modification;(e) H3K4me3 modification;(f) H3K27ac modification. (g)Comparison of histone modifications between tpCOGs and enhancers in 18 human tissues.
[image: supplementary%20figures/supplementary-figure40.pdf]
Supplementary Figure 41: Comparison of H3K27ac signals and H3K4me1signals in human tissues.
ChIP-seq reads were counted for each tdCOG region. Shown are the mean  SD of tdCOGs for each tissue.






[image: supplementary%20figures/supplementary-figure41.pdf]
Supplementary Figure 42: Distribution of the number of genes targeted by the same tdCOGs and number of tdCOGs with the same target genes.
The results clearly show that most tdCOGs and target genes exist in multiple-to-multiple relationship.




[image: supplementary%20figures/supplementary-figure42.pdf]
Supplementary Figure 43: 3D genome evidence of tdCOG and its target gene.
(a) High-C interaction map shows an example that tdCOG and the corresponding target gene are in the same topologically associated domains (TAD). In single site tracks, each bar represents one CpG site. Sliding window size is 2500bp. H3K4me3 and H3K27ac data were generated by ChIP-seq. CAGE track presents the signals detected by the approach of cap analysis gene expression. (b) Scatter plot of H3K27ac signals in tdCOGs and H3K4me3 signals in LINC01133 promoter in all human tissues.

[image: supplementary%20figures/supplementary-figure43.pdf]
Supplementary Figure 44: Biological functions analysis of tdCOG-targeted genes.
Functions of the target genes are consistent with the corresponding tissues in both human (right ventricle, small bowel, spleen) and mouse tissues (cerebellum, heart, spleen). Red terms denote direct functional association with the corresponding tissue.
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