Supplementary materials

Appendices

A.1 Identifying the posterior precision matrix

To identify the precision matrix of the joint posterior distribution of 3 and 6 for the PCP

we write:
m(B*,6ly) o« 7(Y|B",0)(8"0)x(0)
x exp ( - %[{Y ~ X,8" — X, (I - W)X, ) ey — X,8"
~X (I -W)X,}+ (B —WX,0) Cy' (8" — WX,0)
Ho-myCs'e - m))

1
= exp < _ §|: . +ﬁwT(X¥C;1X1 + Cz_l>16w
+28""{ XTC' X (I - W)X, — C;'WX,}0+ 6" {X5(I - W)"

XTCT'X((I-W)X,+ XoW'C,;' WX, +C5' 10+ .. D .

The entries of the precision matrix can then be read off of the final expression.

A.2 Convergence rate of the PCP
Consider Q}., and substitute W' from equation (8), then we have
g = XICU'X1(I-W)X,—Cy;'WX,
- (xierxyn{(xicr'x, + o) e x, - o {1 - (Xer' X,
+C3)7'C5 X
- {(XiCr' X )(X1Cr X, + €3 0y + G XTCT X + €5 e
~C3'} X,
= {(XICT X + O )(XCT X + €50y - O X
= {C;l — C;l}X2

= 0.
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Therefore by setting W = I — BC5,", Fb5 becomes the null matrix and immediate con-

vergence follows.

A.3 Convergence rate of the PCP

We now look at the implication of setting W according to (8) for the convergence rate
of a Gibbs sampler using the PCP. For Gibbs samplers with Gaussian target distributions
with known precision matrices we have analytical results for the exact convergence rate
(Roberts and Sahu, 1997, Theorem 1). Convergence here is defined in terms of how rapidly
the expectations of square integrable functions approach their stationary values.

Suppose that € | y ~ N(u,X). We let @ = X! denote the posterior precision matrix.
To compute the convergence rate first partition @ according to a number of blocks, denoted

by [, that are used for updating &, i.e.,

(Q)ij = Qyj, fori,j=1,...,1 (14)

Let A =1 —diag(Q.7,...,Q;")Q and F = (I — L,)"'U 4, where L is the block lower
triangular matrix of A, and U4 = A — L. Roberts and Sahu (1997) show that the
Markov chain induced by the Gibbs sampler with components block updated according to
matrix (14), has a Gaussian transition density with mean E{¢*1 €0} = F¢®) 1 £ where

f = (I —F)p and covariance matrix X — FXF". Their observation leads to the following;:

Theorem A.1 (Roberts and Sahu, 1997) A Markov chain with transition density
N{F¢" + £, -~ FXF"},

has a convergence rate equal to the mazimum modulus eigenvalue of F'.

Corollary A.2 If we update & in two blocks so that | = 2 then

Q _ Qll Q12 7 F— 0 _Q1_11Q12

Q21 Q22 0 Q2_21Q21Q1_11Q12

and the convergence rate is the mazimum modulus eigenvalue of Fay = Quy Qo Q11 Q1
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To compute the convergence rate of the PCP we first need the posterior precision matrix
of B* and 0, which we can identify by writing down 7(8", 8]y) explicitly (more details are
provided in Appendix A.1 in Supplementary materials). The posterior precision matrix for

the PCP is

pc pc
BY B

Q" = , (15)
pC pC
0w QG

where Qf., = X{CT' X1+ C;', Q) = XTCT'X (I - W)X, — C;'WX,, and Q) =
XT(I-W)'X[C{' X (I-W) X+ X3 WTC,'W X, +C5*. If we block update a Gibbs
sampler according to the partitioning of the precision matrix (15), by Corollary A.2, we
have that the convergence rate of the PCP is the maximum modulus eigenvalue of the
matrix F55 = (Q)) ' Q45 (Qf.) ' Qfuy. By construction we have a 2 x 2 block diagonal
posterior covariance matrix for 8% and 6. Therefore the precision matrix is also block

diagonal and F%; is null and immediate convergence is achieved.

A.4 Convergence rate of a three component Gibbs sampler

It can be shown that a Gibbs sampler with Gaussian target distribution with precision
matrix given by @ having elements (Q);; = Q;; for 4,7 = 1,2,3 has a convergence rate

which is equal to the maximum modulus eigenvalue of

0 _Q1_11Q12 —Q1_11Q13
F=1|o0 Q§21Q21Qf11Q12 Q521Q21Qf11Q13 - Q521Q23 )
0 F32 F33

where

Fs, = (Q3Q3 — Q33 Q305 Q4)Q11' Qs
Fy3 = (Q55Q3 — Q35 Q3Q5 Q21)Q11 Qi3 + Q33 Q3,Q5, Qs
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A.5 Proof of stationarity of the PCP

To demonstrate that stationarity is preserved we let p = 1 in model (4). The transition

kernel of the Markov chain is:

P{eMVe®) = {gutV|gl) 620 520 yirfaTV|ge T 520 520 4y
2 1 w 1 1 2
71-{O-O t+ |60 t+ ae((]H_ )70-0(”7 Q(t) y}

e Y

2(t+1) |ﬁ6"(t+1)

71-{0 e(t-s-l) 2(t+1)  _2(¢)

» Y0 700 70-5 ;y}

We have dropped the W's to save space, conditioning the variance parameters on their

current values where necessary. It follows that

/ PLEED[E0 ) (60 |y} dg®

B /W{Uz(t+l)|168u(t+l)a 9(()t+1)7 Ug(t+l)7 eQ(t)7 y}

7T{0'(2)(t+1)|,38)(t+1), (9(()t+1)7 Ug(t), Ug(t), y}w{@éﬂ_l) ’ﬁgj(t-s-l)’ 05 () Q(t : y}dE

? 6

6

0
7T'{9(()t+1)‘/68)(t+1) 2(t7 O 7y} |i/ {/60 gy Ota g(t)a O¢ ‘ }de(t):| dUO d02(t

(.

= /W{Uz(t+1)|lg’g(t+l)7Q(()t+1)702(t+1)7 2(t ,y}w{ao t+1)|50 (t+1) 76,(()t+1)70_(2)(t)70_62(t)7y}

= (B, 0, 620, 020 )
- / o216 65, o 020, )

[ / w{oo V1B 0, o0, 2y By Y 65, Q(t),af(t)!y}dag(t)] do?"

/

= {8y 9(”1 t“, o ”Iy}

€ Y

= {8y Gt gt g2 yy
= r{¢" |y},

and hence stationarity is preserved. The above argument can easily be extended for p > 1

or to include other correlation parameters if they are being modelled.
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If we update W and the end of each complete pass of the sampler then the station-

which is conditioned on o3

through W. If W is not recalculated using ao( ) then o™ is conditioned and 0'2(t),

arity condition (10) does not hold. For instance, consider o2,

and consequently

[ B 0 o, 0, {85, oY, 620y

A (B0 o ““%ae Dy},

but equality is required to complete step (16) in the string of equalities proving stationarity.

A.6 Joint posterior and full conditional distributions

We begin here by writing down the joint posterior distribution of the parameters in model
(4). Welet & = (B“",0",02%",0%)" be the vector containing all np partially centred random
effects, p global effects, p random effect variances, the data variance and p decay parameters
for the correlation functions. The joint posterior for £ is
m(&ly) o« w(Y]B8",0,07)n(B"|0,0%)n(0]0*)m(0?)7(0?)
p—1

~ H (Uz)—(n/2+1/2+ak+1) ]Rk]’l/z (0_52)—(11/24-(154-1)
k=0

eXp{ _ T;([Y — X, {BY+ (I - W)Xge}]T[Y — X B+

(I - W)XQO}} + 266) } exp { — %(5“’ _ WXQB)TC2—1 (5w _ WXQB) }
exp [—%i%{%:}—mm—l—%k}]a

k=0 K
where a description of the prior distributions 7(o?) and 7(c?) can be found in Section 2.1.
It is argued in Section A.3 that we must jointly update the 3"“’s and jointly update 0

and this is reflected in the conditional distributions given below.

e The full conditional distribution of 3 is 3|0, 02 02,y ~ N (mﬁ, C ) where C% =
(07°XTX, +C3Y) " and m = Cj [0, {y — X1(I — W)X,0} + C;' W X,0] .
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e The full conditional distribution of 8 is 8|3", 02,02,y ~ N (m}, C}) , where

1

C; = [0 1{X (I = W)X} { X1 (I - W)X} + (WX,)'Cy' WX, + Cy']
m; = C; [0 X1 (I - W)X} (y — X18") + (WX,)"C; '8 + Cy'm] .

e The full conditional distribution of o7 is 0|3, 0,02 4,02,y

e n+1

B 2
ba bt {8 =m0 B (81 -+ B

Uy,
for k =0,...,p — 1, where Wy, denotes the kmth, n x n block of W and 7, =
0> Wil

e The full conditional distribution of o2 given 8,0, 02,y is
n 1 T
1G5 + ac b6+§{(Y—Z) Y -2)}|,

where Z = X (8" + (I — W)X .0).
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