
S1 Appendix. Supplemental Methods Section 

Targeted Metabolomic Analysis 

Both mass spectrometry (MS) and NMR (nuclear magnetic resonance) platforms were 

used for targeted metabolomic analysis.  We have previously published details regarding the 

NMR-based approach [1, 2].
  

Briefly, serum samples were filtered through 3-kDa cut-off 

centrifuge filter units (Amicon Micoron YM-3; Sigma-Aldrich, St. Louis, MO) to remove blood 

proteins. Aliquots of each serum sample were transferred into the centrifuge filter devices and 

spun (10,000 rpm for 20 minutes) to remove macromolecules (primarily protein and 

lipoproteins) from the sample. The filtrates were checked visually for any evidence that the 

membrane was compromised and for these samples the filtration process was repeated with a 

different filter and the filtrate inspected again. The subsequent filtrates were collected and the 

volumes were recorded. If the total volume of the sample was under 300 µL an appropriate 

amount from a 50 mM NaH2PO4 buffer (pH 7) was added until the total volume of the sample 

was 300 µL. Any sample that had to have buffer added to bring the solution volume to 300 uL, 

was annotated with the dilution factor and metabolite concentrations were corrected in the 

2 containing 11.667 

mM DSS (disodium-2, 2-dimethyl-2-silceptentane-5-sulphonate), 730 mmol imidazole and 

0.47% NaN3 in H2O) was added to the sample. 

tube (Shigemi, Inc., Allison Park, PA). 
1
H-NMR spectra were collected on a 500-MHz Inova 

(Varian Inc, Palo Alto, CA) spectrometer with a 5-mm ITCN Z-gradient PFG room-temperature 

probe. The singlet produced by the DSS methyl groups was used as an internal standard for 

chemical shift referencing (set to 0 ppm) and for quantification. All 
1
H-NMR spectra were 



processed and analyzed using the Chenomx NMR Suite Professional Software package version 

7.6 (Chenomx Inc, Edmonton, AB, Canada) and were manually fitted to an internal database. 

Each spectrum was evaluated by at least 2 NMR spectroscopists to minimize errors. 

For the MS-based approach, targeted quantitative metabolomic analysis of the serum was 

performed by combining direct injection mass spectrometry with reverse-phase LC-MS/MS 

using the commercially available AbsoluteIDQ™ kit, which is available from BIOCRATES Life 

Sciences AG (Austria). A detailed description of this approach was also previously published by 

us [3]. Targeted identification and quantification of up to 180 different endogenous metabolites 

including amino acids, acylcarnitines, biogenic amines, glycerophospholipids, sphingolipids and 

sugars was performed using this technique.  

Untargeted Metabolomic Analysis 

Serum Metabolite Extraction 

Metabolites were extracted from serum samples via protein precipitation with methanol. 

Three volumes of ice-cold methanol were added to 20 μL of serum, vortexed and incubated on 

ice for 15 min. This was followed by centrifugation at 14,000 rpm for 15 min and then the 

supernatants were dried using a SpeedVac. 

Dansylation Labeling 

Serum samples were re-suspended in 25 μL of 5:1 v/v H2O:ACN. The 25 μL sample 

solutions were mixed with sodium carbonate/sodium bicarbonate buffer and ACN. The solutions 

were vortexed, spun down and mixed with 25 μL of freshly prepared 
12

C-dansyl chloride 

solution (18 mg/mL) (for light isotope labeling) or 
13

C-dansyl chloride solution (18 mg/mL) (for 

heavy isotope labeling) [4]. The dansylation reaction was allowed to proceed for 60 min at 40°C. 



After 60 min, NaOH was added to the reaction mixture to quench the excess dansyl chloride. The 

solution was then incubated at 40°C for another 10 min. Finally, formic acid in 50/50 

acetonitrile/H2O was added to consume excess NaOH and to make the solution acidic.  

LC-UV Quantification  

For sample normalization, a Waters ACQUITY UPLC system (Milford, MA, USA) with 

a binary solvent manager, a sampler manager, and a photodiode array (PDA) detector was used 

for the quantification of the labeled metabolites [5]. First, 5 μL of the labeled serum solutions 

were injected onto a Waters ACQUITY BEH C18 column (2.1 mm × 5 cm, 1.7 μm particle size, 

130 Å pore size) for a fast step-gradient run. Solvent A was 0.1% (v/v) formic acid in 5% (v/v) 

acetonitrile; Solvent B was 0.1% (v/v) formic acid in acetonitrile. The gradient started with 0% B 

for 1 min and was stepwise increased to 95% within 0.01 min and held at 95% B for 1 min to 

ensure complete elution of all labeled metabolites. The gradient was restored to 0% B in 0.5 min 

and held in this condition for 3.5 min to re-equilibrate the column. The flow rate was 0.45 

mL/min. The detection wavelength was set at 338 nm. 

LC-MS  

The labeled metabolites were analyzed using a Bruker Maxis Impact QTOF mass 

spectrometer (Bruker, Billerica, MA) linked to an Agilent 1100 series binary HPLC system 

(Agilent, Palo Alto, CA). The labeled serum samples were injected onto an Agilent reversed 

phase Eclipse Plus C18 column (2.1 mm × 10 cm, 1.8 μm particle size, 95 Å pore size) for 

separation. Solvent A was 0.1% (v/v) formic acid in 5% (v/v) acetonitrile, and solvent B was 

0.1% (v/v) formic acid in acetonitrile. The gradient started at 20% B and stepwise increased to 

35% B within 3.5 min, followed by 14.5-min ramp to 65% B, then raised to 99% B within 6 min 

and finally held at 99% B for 10 min to ensure complete elution of all labeled metabolites. The 



flow rate was 180 μL/min. The MS conditions were as follows: nebulizer gas pressure 1.8 bar; 

drying gas temperature 230°C; drying gas flow 8 L/min; capillary voltage 4500 V; and scan 

range 150–1000. All MS spectra were obtained in the positive ion mode.  

Data Analysis (untargeted metabolomics)  

The resulting MS data were internally calibrated and processed using our in-house peak-

pair picking software, IsoMS, written in the R language [6]. This program eliminates false 

positive peaks, such as isotopic peaks, common adduct ions, and multiple charged ions. Only the 

protonated ion pairs with S/N greater than 10 were exported for further analysis. The extracted 

peak-pair data from the LC-MS spectra were aligned by retention time matching (within 30 

seconds) and accurate mass matching (within 8 ppm). After alignment, missing values in the 

aligned files were filled by the Zerofill program [7]. Metabolite identification was performed 

based on accurate mass and retention time match to a dansyl standard library  [8]. Putative 

identification was done based on accurate mass match to metabolites in the human metabolome 

database (HMDB) (www.hmdb.ca) and the predicted human metabolite library in 

MyCompoundID (MCID) (www.mycompoundid.org) [9]. 

Overall Statistical Analysis 

 Our statistical approaches have been described in detail in prior publications [10, 11, 12]. 

Standard metabolomics statistical analyses were utilized [10, 11]. Log-transformation and 

Pareto-scaling were performed to normalize the metabolite concentration data for following 

multivariate analysis. Principal component analysis (PCA) and Partial Least Squares 

Discriminant Analysis (PLS-DA) were performed to identify distinct metabolite patterns. To 

assess the significance of the separations achieved by PLS-DA, permutation testing was 

performed (using 2000 data resampling steps) to determine the corresponding p-values. 

http://www.mycompoundid.org/


Permutation testing allows one to determine the likelihood that the observed separation between 

cases and controls on a PLS-DA plot is due to chance [3]. In addition, Variable Importance in 

Projection (VIP) plots were generated from the PLS-DA data. VIP plot scores estimate the 

importance of each variable in the projection used in a PLS-DA model which is often used for 

variable selection. MetaboAnalyst was used to perform univariate analysis as well as PCA and 

PLS-DA analyses [11]. Custom programs written using the R statistical software package 

(http://www.r-project.org) and STATA 12.0 (http://www.stata.com) were used to perform all 

other statistical analyses. 

 Mean (SD) metabolite concentrations in cases and controls were compared using a two-

tailed t-test. The Mann Whitney U test was performed for non-normal distribution of each 

metabolite. Logistic regression analysis was used to generate the optimal predictive models for 

stillbirth prediction. Independent variables and potential confounders considered in each of the 

prediction models. These included clinical or demographic factors such as maternal age, 

ethnicity, parity (multi- versus nulliparous), tobacco use, prior history of chronic hypertension, 

other medical disorders, conception method (spontaneous versus others), BMI, fetal CRL (crown 

rump length) measurement, delta NT (observed – expected based on CRL), UtPI, maternal serum 

PAPP-A (MoM) and β-hCG (MoM) concentrations.  

Two groups of models were developed, one was based on metabolites only, and the other was 

based on metabolites plus the other potential predictors listed above. We evaluated the diagnostic 

accuracy of these prediction models for overall stillbirth as well as several stillbirth subgroups:  

i) early occurring < 28 weeks, ii) < 32 weeks, iii) stillbirth related to fetal growth restriction/ 

placental abnormality and iv) unexplained stillbirth. Metabolite data were log-transformed, and 

metabolites with a p-value < 0.3 (using univariate analysis) were selected for developing logistic 



regression models. We employed a k-fold cross-validation (CV) technique to ensure that the 

logistic regression models were robust [12]. LASSO (Least Absolute Shrinkage and Selection 

Operator) was used for variable/predictor selection [13] and stepwise variable selection was 

utilized to optimize all the model components [14] via 10-fold CV. The threshold used for 

inclusion of a metabolite or other clinical or other variables required that the particular variable 

be selected > 8 times of the 10 cross-validations performed. From the selected features, robust 

logistic equations for stillbirth prediction were developed. Areas under the Receiver Operating 

Characteristic curve were (AUROC or AUC) [12] along with sensitivity and specificity values 

were calculated. 
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