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A Proofs

Proof of Theorem 1. First, we show that Ω is finite and positive definite.

Finiteness of Ω:

From Francq and Zaköıan (2004) it follows that Ωηη is finite and positive definite.

What remains to be shown is that Ωππ is finite and positive definite. If this is true,

then by the Cauchy-Schwarz inequality the “off-diagonal matrices” will also be finite

and positive definite. Recall from equation (19) that Ωππ = 1
4
(κZ − 1)E[r∞0,t(r

∞
0,t)
′]. It

follows from Assumption 2 that 0 < κZ − 1 < ∞. Moreover, ||E[r∞0,t(r
∞
0,t)
′]|| is finite if

E[||r∞0,t(r∞0,t)′||] <∞ (throughout the paper || · || denotes the Euclidean norm). A typical

element of the K × 1 vector r∞0,t is given by

r∞0,kt = (xt−k − α0
1

h∞0,t

∞∑
j=0

βj0ε
2
t−1−jxt−1−k−j)f

′
0. (44)

First, f ′0 is bounded by Assumption 4 and E[|xt−k|2] <∞ by Assumption 6. Second,E

∣∣∣∣∣
∑∞

j=0 α0β
j
0ε

2
t−1−jxt−1−k−j

h∞0,t

∣∣∣∣∣
2
1/2

≤

 ∞∑
j=0

E

∣∣∣∣∣α0β
j
0ε

2
t−1−j

h∞0,t
xt−1−k−j

∣∣∣∣∣
2
1/2

(45)

≤
∞∑
j=0

E

∣∣∣∣∣ α0β
j
0ε

2
t−1−j(

ω0 + α0β
j
0ε

2
t−1−j

)xt−1−k−j

∣∣∣∣∣
2
1/2

(46)

≤
∞∑
j=0

E

∣∣∣∣∣
(
α0β

j
0

ω0

ε2
t−1−j

)s

xt−1−k−j

∣∣∣∣∣
2
1/2

(47)

≤ αs0
ωs0

(
E
[
|εt−1−j|4sp

])1/(2p) (
E
[
|xt−1−k−j|2q

])1/(2q)

∞∑
j=0

βjs0 <∞

for any p > 1 and q > 1 such that p−1 +q−1 = 1. The arguments used above are similar to

the ones in Francq and Zaköıan (2004, Eq. (4.19), p.619). In particular, in equation (45)

we employ Minkowski’s inequality. In equation (46) we use that h∞0,t ≥ ω0 + α0β
j
0ε

2
t−1−j.

Next, in equation (47) we use the fact that w/(1+w) ≤ ws for all w > 0 and any s ∈ (0, 1).

In the next equation, we apply the Hölder inequality. Finally, Assumptions 1 and 2 imply

that under the null there exists some u > 0 such that E [|εt−1−j|2u] <∞ (see Proposition
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1 in Francq and Zaköıan, 2004, p.607). Thus, for any p > 1, we can always choose an s

small enough such that 2sp = u. By Assumption 6, E
[
|xt−1−k−j|2q

]
<∞.

This implies E[|r∞0,kt|2] < ∞ and E[|r∞0,ktr∞0,jt|] < ∞ by Cauchy-Schwarz inequality

which yields that Ωππ is finite.

Positive definiteness of Ω:

As κZ − 1 > 0, it remains to be shown that c′E

 y∞0,t

r∞0,t

( (y∞0,t)
′ (r∞0,t)

′
) c > 0

for any non-zero c ∈ R(3+K)×1. Assume the contrary, i.e., there exists a c 6= 0 such that

c′E

 y∞0,t

r∞0,t

( (y∞0,t)
′ (r∞0,t)

′
) c = 0. This implies E

c′

 y∞0,t

r∞0,t

2 = 0 and,

thus, c′

 y∞0,t

r∞0,t

 = 0 a.s.. The last expression can be written as

0 = c′

 (h∞0,t)
−1s∞0,t

f ′0xt

+ c′

 (h∞0,t)
−1β0

∂h̄∞t−1

∂η

∣∣∣∣
π=0

−f ′0α0(h∞0,t)
−1ε2

t−1xt−1 + f ′0(h∞0,t)
−1β0

∂h̄∞t−1

∂π

∣∣∣∣
π=0

 . (48)

Using the notation c = (c′1 c′2)′ where c1 = (c11 c12 c13)′ and c2 = (c21 . . . c2K)′ this can

be expressed as

c′1s
∞
0,t + f ′0h

∞
0,tc
′
2xt − f ′0α0ε

2
t−1(c′2xt−1) = −

(
β0c

′
1

∂h̄∞t−1

∂η

∣∣∣∣
π=0

+ f ′0β0c
′
2

∂h̄∞t−1

∂π

∣∣∣∣
π=0

)
(49)

or

c11 + c12Z
2
t−1h

∞
0,t−1 + f ′0(ω0 + α0Z

2
t−1h

∞
0,t−1 + β0h

∞
0,t−2)(c′2xt)− f ′0α0Z

2
t−1h

∞
0,t−1(c′2xt−1)

= −c13h
∞
0,t−1 −

(
β0c

′
1

∂h̄∞t−1

∂η

∣∣∣∣
π=0

+ f ′0β0c
′
2

∂h̄∞t−1

∂π

∣∣∣∣
π=0

)
= Ft−2,

where Ft−2 is a measurable function of {Zt−1−j,xt−1−j, j ≥ 1}. This implies that the

expression in the upper line must be degenerate. Hence,

Z2
t−1 =

−c11 + f ′0(ω0 + β0h
∞
0,t−2)(c′2xt)

h∞0,t−1(c12 − f ′0α0(c′2xt−1) + f ′0α0)
= At−2 +Bt−2(c′2xt)

with At−2 and Bt−2 measurable functions of {Zt−1−j,xt−1−j, j ≥ 1} is degenerate. This

equation could only be fulfilled either is left and right hand side are both degenerate, or

c′2xt is a linear function of Z2
t−1. The latter case, however, implies that Z2

t−1 is measurable
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with respect to {Zt−1−j,xt−1−j, j ≥ 1} which contradicts Assumption 2. The former case

is ruled out since c′2xt is non-degenerate by Assumption 5 and Z2
t is non-degenerate by

Assumption 2. Thus, Ω must be positive definite.

Next, E[d∞t (η0)|Ft−1] = 0. From Francq and Zaköıan (2004) and Assumptions 1-6 it

then follows that d∞t (η0) is a stationary and ergodic martingale difference sequence with

finite second moment. Applying Billingsley’s (1961) central limit theorem for martingale

differences gives the result.

The following proposition will be used in the proof of Theorem 2.

Proposition 1. Under Assumptions 1-7, we have that

− 1

T

T∑
t=1

∂d∞π,t(η̃)

∂η′
P−→ Jπη = −E

[
∂d∞π,t(η0)

∂η′

]
, (50)

where η̃ = η0 + oP (1).

Proof of Proposition 1. We obtain (50) by showing that Jπη(η) = −E
[
∂d∞π,t(η)

∂η′

]
is finite

with a uniform bound for all η ∈ Θ. Then a uniform weak law of large numbers (see, e.g.,

Theorem 3.1. in Ling and McAleer, 2003) implies

supη

∣∣∣∣∣∣∣∣− 1

T

T∑
t=1

∂d∞π,t(η)

∂η′
− Jπη(η)

∣∣∣∣∣∣∣∣ = oP (1).

Equation (50) follows from the triangle inequality and the fact that η̃ = η0 + oP (1).

Using equation (21) we obtain∣∣∣∣∣∣∣∣∂d∞π,t(η)

∂η′

∣∣∣∣∣∣∣∣ ≤ 1

2

(∣∣∣∣ ε2
t

h∞t

∣∣∣∣ · ||r∞t || · ||(y∞t )′||+
∣∣∣∣ ε2

t

h∞t
− 1

∣∣∣∣ · ∣∣∣∣∣∣∣∣∂r∞t
∂η′

∣∣∣∣∣∣∣∣)
≤ C|ε2

t + ω|
(
||r∞t || · ||(y∞t )′||+

∣∣∣∣∣∣∣∣∂r∞t
∂η′

∣∣∣∣∣∣∣∣) . (51)

The last inequality follows with a generic constant 0 < C <∞ and h∞t ≥ ω > 0.

First, consider the three elements of ||(y∞t )′||. To simplify the notation note that
∂h̄∞t
∂η
|π=0 =

∂h∞t
∂η

. Since
∂h∞t
∂ω

= 1/(1 − β), we have | 1
h∞t

∂h∞t
∂ω
| ≤ 1/(ω(1 − β)) < ∞. Then

α
∂h∞t
∂α

=
∑∞

j=0 αβ
jε2
t−1−j ≤ h∞t and, therefore, | 1

h∞t

∂h∞t
∂α
| ≤ 1/α < ∞. Finally,

∂h∞t
∂β

=
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∑∞
j=0 jβ

j−1(ω + αε2
t−1−j). We then obtain∣∣∣∣ 1

h∞t

∂h∞t
∂β

∣∣∣∣ ≤
∣∣∣∣∣ 1β

∞∑
j=0

jβj(ω + αε2
t−1−j)

ω + βj(ω + αε2
t−1−j)

∣∣∣∣∣
≤ 1

βωs

∞∑
j=0

j
∣∣βjs(ω + αε2

t−1−j)
s
∣∣ , (52)

where we again use the fact that w/(1 + w) ≤ ws for all w > 0 and any s ∈ (0, 1). It

follows that ||(y∞t )′|| ≤ C ′(1 +
∑∞

j=0 j
∣∣βjs(ω + αε2

t−1−j)
s
∣∣) for some constant C ′ > 0.

Hence, using the Cauchy-Schwarz inequality, the first summand in equation (51), i.e.

E
[
supη |ε2

t + ω| · ||r∞t || · ||(y∞t )′||
]
, can be bounded from above by the terms√

E[supη|ε2
t + ω|2]E[supη||r∞t ||2] (53)

and

supη

∞∑
j=0

jβjsE[supη(ω + αε2
t−1−j)

s|ε2
t + ω| ||r∞t ||] ≤

supη

∞∑
j=0

jβjs
√

E[supη(ω + αε2
t−1−j)

2s|ε2
t + ω|2]E[supη||r∞t ||2]. (54)

The finiteness of (53) follows from Assumption 7 and similar arguments as in the proof

of Theorem 1. The finiteness of (54) follows by applying Hölder’s inequality, since for the

elements in the sum which involve expectations of the squared observations we have

E[supη(ω + αε2
t−1−j)

2s|ε2
t + ω|2] ≤(

E[supη(ω + αε2
t−1−j)

2(1+s)]
)s/(1+s) (

E[supη|ε2
t + ω|2(1+s)]

)1/(1+s)
(55)

and Assumption 7 applies again.

Using the Cauchy-Schwarz inequality for the two factors in the second term in (51),

we are left with the need to show that E
[
supη

∣∣∣∣∂r∞t
∂η′

∣∣∣∣2] is finite. This follows from

(f ′0)−1∂r∞t
∂η′

=
∂

∂η′
xt −

∂

∂η′

(
1

h∞t

∞∑
j=0

αβjε2
t−1−jxt−1−j

)

=
∂

∂η′
xt −

1

h∞t

(
∞∑
j=0

αβjε2
t−1−j

∂

∂η′
xt−1−j

)

+

(
1

h∞t

∞∑
j=0

αβjε2
t−1−jxt−1−j

)
(y∞t )′

− 1

h∞t

∞∑
j=0

xt−1−j

(
∂

∂η′
αβjε2

t−1−j

)
. (56)
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The first two terms vanish in the model with an explanatory variable xt from outside the

model as ∂xt

∂η′
= 0 or in a model with xt−k = ε2

t−k.

Remark 7. There also exists a bound for E
[
supη

∣∣∣∣∂r∞t
∂η′

∣∣∣∣2] in the case of xt with ele-

ments xt−k =
ε2t−k

h∞t−k
(the ‘ARCH nested in GARCH’ case). Here, in the first two terms in

equation (56) we have ∂xt−k

∂η′
= − εt−k

(h∞t−k)2
∂h∞t−k

∂η′
and, hence, explicit bounds for terms of this

type can be obtained as before.

Boundedness of the norm of the third term follows for all η in expectation with a com-

bination of the argument directly above and the considerations in the proof of Theorem 1.

The fourth term can be written as:

1

h∞t


0

∑∞
j=0 β

jε2
t−1−jxt−2−j α

∑∞
j=0 jβ

j−1ε2
t−1−jxt−2−j

0
∑∞

j=0 β
jε2
t−1−jxt−3−j α

∑∞
j=0 jβ

j−1ε2
t−1−jxt−3−j

...

0
∑∞

j=0 β
jε2
t−1−jxt−1−K−j α

∑∞
j=0 jβ

j−1ε2
t−1−jxt−1−K−j

 . (57)

Hence, for typical elements of the second and third column it follows that

Esupη

∣∣∣∣∣ 1

h∞t

∞∑
j=0

βjε2
t−1−jxt−1−k−j

∣∣∣∣∣
2

<∞

and

Esupη

∣∣∣∣∣ 1

h∞t
α
∞∑
j=0

jβj−1ε2
t−1−jxt−1−k−j

∣∣∣∣∣
2

<∞

by similar arguments as used before.

Proof of Theorem 2. First, consider a mean value expansion of
√
TD∞η (η̂) around the

true value η0

0 =
√
TD∞η (η̂) =

√
TD∞η (η0) +

1

T

T∑
t=1

∂d∞η,t(η̃)

∂η′

√
T (η̂ − η0) (58)

with η̃ = η0 +oP (1). Under Assumptions 1 and 2, Francq and Zaköıan (2004) have shown

that

− 1

T

T∑
t=1

∂d∞η,t(η̃)

∂η′
P−→ Jηη = −E

[
∂d∞η,t(η0)

∂η′

]
(59)
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and, hence, equation (58) can be written as

√
T (η̂ − η0) = J−1

ηη

√
TD∞η (η0) + oP (1). (60)

Similarly, a mean value expansion of
√
TD∞π (η̂) around the true value η0 leads to

√
TD∞π (η̂) =

√
TD∞π (η0) +

1

T

T∑
t=1

∂d∞π,t(η̃)

∂η′

√
T (η̂ − η0). (61)

Combining equation (60) and Proposition 1 leads to

√
TD∞π (η̂) =

√
TD∞π (η0)− JπηJ−1

ηη

√
TD∞η (η0) + oP (1) (62)

= [−JπηJ−1
ηη : I]

√
T

 D∞η (η0)

D∞π (η0)

+ oP (1) (63)

= [−JπηJ−1
ηη : I]

√
TD∞(η0) + oP (1). (64)

Applying Theorem 1 gives the asymptotic distribution

√
TD∞π (η̂)

d−→ N (0, [JπηJ−1
ηη : I]Ω[JπηJ−1

ηη : I]′) (65)

which has the form of AΩA′ in Halunga and Orme (2009, p.372/373). The covariance

matrix can be written as

Σ = [−JπηJ−1
ηη : I]Ω[−JπηJ−1

ηη : I]′

= Ωππ + JπηJ−1
ηηΩηηJ−1

ηηJ′πη − JπηJ−1
ηηΩηπ −ΩπηJ−1

ηηJ′πη.

Finally, using equations (19), (22) and (23) the expression for Σ simplifies to:

Σ =
1

4
(κZ − 1)

(
E[r∞0,t(r

∞
0,t)
′]− E[r∞0,t(y

∞
0,t)
′]
(
E[y∞0,t(y

∞
0,t)
′]
)−1

E[y∞0,t(r
∞
0,t)
′]
)
. (66)

Proof of Theorem 3. We show that

√
TDπ(η̂) =

√
TD∞π (η̂) + oP (1). (67)

Hence, the observed quantity
√
TDπ(η̂) will have the same asymptotic distribution as

the unobserved
√
TD∞π (η̂). The asymptotic distribution of the test statistic then follows

directly from Theorem 2. Standardization with the consistent estimator Σ̂ instead of the
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theoretical Σ, has no effect on the final χ2-distribution of the LM test statistic. This can

be easily seen from similar considerations as the ones outlined above and below in detail.

Since

supη||
√
TD∞π (η)−

√
TDπ(η)|| ≤ 1√

T

T∑
t=1

supη||d∞π,t(η)− dπ,t(η)||, (68)

we establish equation (67) by showing that

1√
T

T∑
t=1

supη||d∞π,t(η)− dπ,t(η)|| = oP (1). (69)

Consider the following decomposition:

2(d∞π,t(η)− dπ,t(η)) =

(
ε2
t

h∞t
− 1

)
r∞t −

(
ε2
t

ht
− 1

)
rt

=

(
ε2
t

h∞t
− 1

)
r∞t −

(
ε2
t

ht
− 1

)
rt +

[(
ε2
t

ht
− 1

)
r∞t −

(
ε2
t

ht
− 1

)
r∞t

]
=

(
ε2
t

h∞t
− ε2

t

ht

)
r∞t +

(
ε2
t

ht
− 1

)
(r∞t − rt)

= ε2
t

(
ht − h∞t
h∞t ht

)
r∞t +

(
ε2
t

ht
− 1

)
(r∞t − rt) +[(

ε2
t

h∞t
− 1

)
(r∞t − rt)−

(
ε2
t

h∞t
− 1

)
(r∞t − rt)

]
= ε2

t

(
ht − h∞t
h∞t ht

)
r∞t − ε2

t

(
ht − h∞t
h∞t ht

)
(r∞t − rt) +

(
ε2
t

h∞t
− 1

)
(r∞t − rt).

Since ht ≥ ω > 0 and h∞t ≥ ω > 0 we have

||d∞π,t(θ)− dπ,t(θ)|| ≤ 1

ω

{
|ε2
t + ω| ||r∞t − rt||+ ε2

t ||r∞t ||
∣∣∣∣h∞t − hth∞t

∣∣∣∣+ ε2
t ||r∞t − rt||

∣∣∣∣h∞t − hth∞t

∣∣∣∣} .
First, note that

(f ′0)−1(r∞t − rt) = −α 1

h∞t

∞∑
j=t

βjε2
t−1−jxt−1−j. (70)
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Next, consider a typical element:

(f ′0)−1
(
Esupη|r∞k,t − rk,t|2

)1/2
=

Esupη

∣∣∣∣∣α 1

h∞t

∞∑
j=t

βjε2
t−1−jxt−1−k−j

∣∣∣∣∣
2
1/2

≤
∞∑
j=t

Esupη

∣∣∣∣∣ αβjε2
t−1−j

ω + αβjε2
t−1−k−j

xt−1−k−j

∣∣∣∣∣
2
1/2

≤
∞∑
j=t

(
Esupη

∣∣∣∣(αβjω ε2
t−1−j

)s
xt−1−k−j

∣∣∣∣2
)1/2

≤
(
E[|εt−1−j|4sp]

)1/(2p) (
E[|xt−1−k−j|2q]

)1/(2q)

supη

(α
ω

)s ∞∑
j=t

βjs (71)

=
(
E[|εt−1−j|4sp]

)1/(2p) (
E[|xt−1−k−j|2q]

)1/(2q)

supη

(α
ω

)s βst

1− βs
, (72)

where in equation (71) we have used the Hölder inequality with the same p and q as in

the proof of Theorem 1. This shows that Esupη||r∞k,t − rk,t||2 = O(βts/2).

Hence,

Esupη|ε2
t | ||r∞t − rt|| ≤

√
Esupη|ε4

t |Esupη||r∞t − rt||2 = O(βts/4)

by Assumption 1 and equation (72). Therefore, 1√
T

∑T
t=1 Esupη|ε2

t | ||r∞t −rt|| = o(1) and,

hence, by Markov’s inequality 1√
T

∑T
t=1 supη|ε2

t | ||r∞t − rt|| = oP (1).

For the treatment of the second term we use the fact that∣∣∣∣h∞t − hth∞t

∣∣∣∣ ≤ αs

ωs

∞∑
j=t

(βs)jε2s
t−j, (73)

where again we use that w/(1 + w) ≤ ws for all w > 0 and any s ∈ (0, 1). Then,

Esupηε
2
t ||r∞t ||

∣∣∣∣h∞t − hth∞t

∣∣∣∣ ≤ Esupη||ε2
t r
∞
t ε

2s
t−j|| supη

αs

ωs

∞∑
j=t

(βs)j

≤
√

Esupη||r∞t ||2E|ε4
t ε

4s
t−j| supη

αs

ωs
(βs)t

∞∑
j=0

(βs)j

=
√

Esupη||r∞t ||2E|ε4
t ε

4s
t−j| supη

αs

ωs(1− βs)
(βs)t

= O((βs)t). (74)
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The last line follows because it can be shown by similar arguments as in the proof of

Theorem 1 that Esupη||r∞t ||2 < ∞ and because Hölder’s inequality and Assumption 7

imply that E|ε4
t ε

4s
t−j| ≤

(
E|ε4(1+s)

t |
)1/(1+s) (

E|ε4(1+s)
t−j |

)s/(1+s)

<∞. Equation (74) implies

that
1√
T

T∑
t=1

Esupηε
2
t ||r∞t ||

∣∣∣∣h∞t − hth∞t

∣∣∣∣ = o(1), (75)

and, again, by Markov’s inequality 1√
T

∑T
t=1 supηε

2
t ||r∞t || |(h∞t − ht)/h∞t | = oP (1).

The third term can be treated as follows:

1√
T

T∑
t=1

supηε
2
t ||r∞t − rt||

∣∣∣∣h∞t − hth∞t

∣∣∣∣ ≤
√√√√ 1

T

T∑
t=1

supηε
4
t ||r∞t − rt||2

T∑
t=1

supη

∣∣∣∣h∞t − hth∞t

∣∣∣∣2

≤

{
1√
T

T∑
t=1

supηε
2
t ||r∞t − rt||

}{
T∑
t=1

supη

∣∣∣∣h∞t − hth∞t

∣∣∣∣
}

because
∑T

t=1 w
2
t ≤

{∑T
t=1wt

}2

when wt ≥ 0 for all t. Above, we have already shown

that
∑T

t=1 Esupηε
2
t ||r∞t − rt|| = O(1) and Esupη

∣∣∣h∞t −hth∞t

∣∣∣ = O(βts).
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B Mixed-Frequency LM Test

Here, we present the first variant of the LM test for the mixed-frequency setting from Sec-

tion 2.6. Since τ 0,t varies at the lower frequency only, we calculate the volatility adjusted

low-frequency returns ε̃t from the ‘deGARCHed’ high-frequency returns as follows:

ε̃t =
M∑
i=1

εi,t√
h̄∞0,i,t

=
√
τ 0,tZt, (76)

where Zt =
∑M

i=1 Zi,t is i.i.d. with mean zero and variance M by Assumption 2. This

leads to the score vector:

dt(η0) =
T∑
t=1

(
ε̃2
t

M
− 1

) M−1

f ′0xt

 . (77)

Thus, if ε̃t were observable, we could implement the test by simply regressing ε̃2
t on

a constant and xt. Again, this would be a test for heteroscedasticity in the spirit of

Godfrey (1978). To actually implement the test, we need to replace the unobservable ε̃t

by

ˆ̃εt =
M∑
i=1

εi,t√
ĥi,t

, (78)

where the ĥi,t are obtained by estimating the GARCH model under the null for the daily

data. However, a simple Taylor expansion shows that ˆ̃εt has measurement error due to

pre-estimating h̄∞0,i,t:

ˆ̃εt =
M∑
i=1

εi,t√
h̄∞0,i,t

(
1−

(√
ĥi,t −

√
h̄∞0,i,t

)
/
√
h̄∞0,i,t + oP (

√
T )

)
≈ ε̃t +Wt,

where Wt has mean zero but non-zero variance. Higher-order terms are negligible for

the test performance. Thus, tests based on the critical values from the χ2-distribution

(derived in Theorem 3) will be size distorted (see also Li and Mak, 1994). However, the

correct distribution of the test statistic based on ˆ̃εt can be obtained by simulation.
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C Simulations

C.1 Empirical Size as a Function of Sample Size T .

The following table shows the empirical size for model G-L with xt = ε2
t/ĥt and Zt ∼ t(7).

For this specification, we observed the strongest size distortion in Table 1. The column

labelled T = 1000 contains the same figures as in the respective column of Table 1. The

other columns show that the size distortion diminishes with increasing sample size.

Table 5: Empirical size for model G-L, Zt ∼ t(7) depending on sample size T .

xt = ε2t/ĥt T = 1000 T = 2500 T = 5000 T = 7500 T = 10000

1% 0.7 0.9 0.9 0.9 1.3

LM 5% 3.1 4.2 4.6 4.4 5.2

10% 7.2 7.7 8.5 9.4 10.0

1% 0.9 1.1 0.9 1.1 1.3

LMLT 5% 3.4 3.5 4.4 4.6 5.1

10% 6.7 8.0 8.6 9.3 9.5

Notes: The number of observations is T ∈ {1000, 2500, 5000, 7500, 10000}. Entries

are rejection rates in percent over R = 1000 replications at the 1%, 5% and 10%

nominal level. The model for the conditional variance is a GARCH(1,1) with ω0 =

0.05, α0 = 0.05 and β0 = 0.90 (i.e. model G-L). The LM tests are performed for a

GARCH(1,1) under H0. Otherwise see Table 1.

C.2 Size-Adjusted Power: Exponential Long-Term Component

and t Distributed Innovations.

The following table provides simulation results on the size-adjusted power for the case

that the innovation Zt is Student-t distributed with 7 degrees of freedom.
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Table 6: Size-adjusted power: exponential τ 0,t component, t distributed innovations.

xt V IXt V IX
(22)
t V IX

(65)
t

α0 = 0.09 α0 = 0.07 α0 = 0.09

weighting scheme I F S I F S I I

LM 54.9 44.1 32.1 59.3 57.1 39.3 20.1 13.9

LMLT,mod 30.5 25.8 22.7 50.7 48.7 39.4 12.2 9.5

LMLT 5.8 5.7 5.7 5.0 5.2 5.1 5.6 5.3

V R 12.8 12.4 12.1 28.2 27.9 27.0 12.0 9.7

Notes: Innovations Zt are Student-t distributed with 7 degrees of freedom. The

specification of the long-term component is given by τ0,t = exp(π′0xt). The number

of observations is T = 1000. Results are based on R = 1000 replications. The LM

tests are performed for a GARCH(1,1) under H0. Otherwise see Table 2.

C.3 Size-Adjusted Power for Different Values of K.

Table 7 illustrates how a misspecification of K affects the power of the LM test. We

simulate return data with the short-term component G-H (high persistence) and the

long-term component as in equation (5). We either choose π0 = 0.3, π0 = (0, 0.3)′ or

π0 = (0, 0, 0.3)′. The first option corresponds to the immediately decaying weighting

scheme from Table 2. The second and third weighting schemes are extreme in the sense

that all weight is put on lag 2 or 3, respectively. Clearly, the correct choice of K in the

LM test is either K = 1, K = 2 or K = 3. In Panel A, we use the VIX as the explanatory

variable. In Panels B-D, we first simulate an AR(1) process with autoregressive coefficient

δ and i.i.d. normal innovations with mean zero and variance 0.025 and use the generated

time series as the explanatory variable. We vary δ between 0.98, 0.9 and 0.8 to check

whether the persistence of the AR(1) process affects our findings.

As Table 7 shows, for all specifications we observe the highest size-adjusted power

when K is chosen correctly. This finding is also independent of the persistence of the

AR(1) process. Clearly, when the persistence of the AR(1) process decreases, the long-

term component becomes less variable relative to the short-term component and, hence,

the variance ratio (VR) decreases. For example, for δ = 0.8 the variance ratio is less than

2%. The low variance ratio then leads to a decline of the power of the test. Nevertheless,

the simulations show that choosing K = 1 always delivers a reasonable power even in

the extreme case when all weight is put on the second or third lag. At first, it might

13



be surprising that the power of the test is reasonably high for K = 1, even though zero

weight is attached to the first lag in the weighting scheme. However, for persistent xt, the

information in xt−1 is very similar to that in xt−2 and so the test works reasonably well

despite the misspecification of K. Given that in most real applications we can expect that

the true weighting scheme is declining from the first lag, we recommend always starting

with K = 1. If the test does not reject for K = 1 and xt has low persistence, it may be

advisable to redo the test for K = 2, K = 3, . . . .

Table 7: Size-adjusted power: exponential long-term component, variation in K.

K 1 2 1 2 3 1 2 3 4

weighting scheme π0 = 0.3 π0 = (0, 0.3)′ π0 = (0, 0, 0.3)′

Panel A: xt = V IXt

LM 74.4 68.3 51.4 68.6 67.5 42.7 46.7 67.0 61.1

V R 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6

Panel B: xt is AR(1) with δ = 0.98

LM 63.3 54.8 52.6 53.4 46.6 44.1 43.4 48.0 45.2

V R 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3

Panel C: xt is AR(1) with δ = 0.90

LM 37.0 30.3 24.0 29.0 23.6 13.8 18.2 24.8 21.5

V R 2.78 2.78 2.77 2.77 2.77 2.78 2.78 2.78 2.78

Panel D: xt is AR(1) with δ = 0.80

LM 36.0 29.0 21.3 29.1 23.8 13.2 16.2 25.0 21.2

V R 1.76 1.76 1.75 1.75 1.75 1.74 1.74 1.74 1.74

Notes: The number of observations is T = 1000. The table reports the size-

adjusted power in percent over the R = 1000 replications at the 5% nominal

level. The model for the conditional variance is a GARCH(1,1) with ω0 = 0.05,

α0 = 0.09 and β0 = 0.90 (i.e. model G-H). The specification of the long-term

component is given by τ0,t = exp(π′0xt) with parameter π0 as specified in the

table. We consider the LM test with the GARCH(1,1) under the null hypothesis.

K denotes the number of lags that are used in the test. The bold number indicates

the correct lag length. Otherwise see Table 2.
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C.4 Persistence in the GARCH component.

In this section, we investigate the power properties of the LM test when α̂ + β̂ is close

to or even above one. As in Appendix C.3, we first simulate an AR(1) process with

autoregressive coefficient δ and i.i.d. normal innovations with mean zero and variance 0.025

and use the generated time series as the explanatory variable. We choose δ ∈ {0.9, 0.98}
and impose an immediately decaying weighting scheme with π0 = 0.3 or π0 = 0.4. The

GARCH component has either moderate (G-M), high (G-H) or extreme (G-E, α0 = 0.095,

β0 = 0.90) persistence. As before, we choose T and R as 1000.

Table 8 shows that – despite the fact that the simulation is under the alternative –

the median of the estimates of α and β over the M = 1000 simulations is close to the true

parameter values. In particular, in all scenarios the median of α̂ + β̂ is below (or equal

to) α0 + β0. This suggests that the misspecified GARCH model does not suffer from the

so-called IGARCH effect. This is true even for cases in which the variance ratio is as high

as V R = 39.4.

Further, the table shows that for all specifications in which the GARCH component has

moderate persistence, we never observe that the sum of the estimated GARCH parameters

is greater than or equal to one. For example, in Panel B when α0 = 0.07, β0 = 0.90 (G-M)

and π0 = 0.4, the GARCH component is severely misspecified and the LM test rejects

in 92.9% of the simulations, there is not a single simulation in which α̂ + β̂ ≥ 1.

The picture changes slightly when the persistence in the GARCH component is high

(G-H). For this specification α̂ + β̂ is greater than or equal to one in 6 out of the 1000

simulations when δ = 0.9 and in 11 (π0 = 0.3) or 19 (π0 = 0.4) cases when δ = 0.98.

However, for these cases the LM test has rejection rates which are (in all but one case)

even higher than the average rejections rates over all 1000 simulations. For example, when

δ = 0.98 and π0 = 0.4, the LM test rejects in all 19 cases in which α̂ + β̂ ≥ 1.

Finally, when the persistence in the GARCH component is extreme (G-E), α̂ + β̂ is

greater than or equal to one in 54 simulations when δ = 0.9 and in 80 (π0 = 0.3) or

92 (π0 = 0.4) cases when δ = 0.98. Nevertheless, we find that the LM test has very

reasonable power and that the rejection frequency among those cases in which α̂+ β̂ ≥ 1

is typically higher than the average power.

Our results suggest that the main reason for obtaining estimates α̂+ β̂ ≥ 1 is unlikely

to be an omitted long-term component, but rather an extreme persistence in the true
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GARCH component. Nevertheless, the effect is strengthened if the omitted long-term

component is more relevant. However, the simulations also clearly suggest that – for a

given specification – the power of the LM test does not decrease in the persistence of the

estimated parameters (as measured by α̂ + β̂).

Table 8: Size-adjusted power: persistent GARCH component

Panel A: xt is AR(1) with δ = 0.90

G-M G-H G-E

α0 = 0.07, β0 = 0.90 α0 = 0.09, β0 = 0.90 α0 = 0.095, β0 = 0.90

π0 = 0.3 π0 = 0.4 π0 = 0.3 π0 = 0.4 π0 = 0.3 π0 = 0.4

median(α̂) 0.072 0.073 0.091 0.092 0.096 0.097

median(β̂) 0.890 0.888 0.894 0.893 0.894 0.893

median(α̂+ β̂) 0.965 0.964 0.986 0.986 0.991 0.991

LM 38.7 62.1 37.0 60.8 36.2 59.7

V R 7.68 12.9 2.78 4.82 1.97 3.44

#(α̂+ β̂ ≥ 1) 0 0 6 6 54 54

%reject|(α̂+ β̂ ≥ 1) - - 50.0% 50.0% 33.3% 64.8%

Panel B: xt is AR(1) with δ = 0.98

G-M G-H G-E

α0 = 0.07, β0 = 0.90 α0 = 0.09, β0 = 0.90 α0 = 0.095, β0 = 0.90

π0 = 0.3 π0 = 0.4 π0 = 0.3 π0 = 0.4 π0 = 0.3 π0 = 0.4

median(α̂) 0.076 0.081 0.095 0.099 0.100 0.103

median(β̂) 0.888 0.885 0.889 0.885 0.891 0.887

median(α̂+ β̂) 0.968 0.970 0.986 0.986 0.991 0.992

LM 73.4 92.9 63.3 86.9 58.2 83.9

V R 26.7 39.4 11.3 18.6 8.32 14.1

#(α̂+ β̂ ≥ 1) 0 0 11 19 80 92

%reject|(α̂+ β̂ ≥ 1) - - 72.7% 100% 70.0% 91.3%

Notes: The number of observations is T = 1000. median(α̂), median(β̂) and median(α̂+ β̂)

present the median of the parameter estimates over the R = 1000 replications. LM is

the size-adjusted power in percent at the 5% nominal level. V R is the variance ratio.

#(α̂+ β̂ ≥ 1) gives the number of simulations in which the condition α̂+ β̂ < 1 is violated.

%reject|(α̂+ β̂ ≥ 1) presents the percentage of cases in which the LM test rejects given that

α̂+ β̂ ≥ 1. The model for the conditional variance is a GARCH(1,1) with moderate (G-M),

high (G-H) or extreme (G-E) persistence. The specification of the long-term component is

given by τ0,t = exp(π′0xt) with parameter π0 as specified in the table. xt is an AR(1) with

autoregressive parameter δ. Otherwise see Table 2.

16



This observation is also confirmed by the plots in Figure 3. The figure shows a scat-

terplot of the estimate of the persistence (α̂ + β̂) in the GARCH component (x-axis)

and the corresponding LM statistics (y-axis). The horizontal green line indicates the 5%

critical value of the LM test and the vertical red line a persistence of one. In both plots

the true GARCH component has extreme persistence (G-E), the AR(1) parameter of the

explanatory variable is either δ = 0.90 (left plot) or δ = 0.98 (right plot) and π0 = 0.4.

Again, the figure shows that there is no indication that the power of the test decreases

when the estimated persistence is increasing.
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Figure 3: Scatterplot of estimated persistence (α̂ + β̂) and LM test statistics. Green

horizontal line: critical value 5% level. Vertical red line: persistence of one. The true

GARCH component has extreme persistence (G-E specification). We choose an immedi-

ately decaying weighting scheme with π0 = 0.4. The explanatory variable is an AR(1)

process with autoregressive parameter δ = 0.90 (left) and δ = 0.98 (right).

It is important to highlight that empirically α̂ + β̂ might be close to one for other

reasons than an omitted multiplicative component. For example, as shown in Hillebrand

(2005) the ‘IGARCH effect’ can be due to neglected parameter changes or, as discussed

in Baillie et al. (1996), due to neglected long-memory. Finally, even if the true model

is a stationary but very persistent GARCH model, it may happen that the sum of the

estimated GARCH parameters is above one.
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C.5 Size-Adjusted Power for Linear Long-Term Component.

Table 9: Size-adjusted power: linear long-term component, Zt normally distributed.

xt V IXt V IX
(22)
t V IX

(65)
t

α0 = 0.09 α0 = 0.07 α0 = 0.09

weighting scheme I F S I F S I I

LM 57.2 54.8 39.2 66.5 64.6 51.5 28.9 18.0

LMLT,mod 34.8 34.1 30.3 59.2 58.1 51.1 14.3 10.7

LMLT 5.9 5.9 5.4 5.6 5.6 5.3 4.8 4.6

V R 12.4 12.3 12.1 29.5 29.4 29.0 12.0 10.5

Notes: Innovations Zt are standard normally distributed. The specification of the

long term component is given by τ0,t = 1+
∑K
k=1 π0kxt−k. The number of observations

is T = 1000. Results are based on R = 1000 replications. The LM tests are performed

for a GARCH(1,1) under H0. Otherwise see Table 2.

Table 10: Size-adjusted power: linear long-term component, t distributed innovations.

xt V IXt V IX
(22)
t V IX

(65)
t

α0 = 0.09 α0 = 0.07 α0 = 0.09

weighting scheme I F S I F S I I

LM 39.7 34.5 28.4 48.3 46.7 37.9 17.4 12.3

LMLT,mod 27.4 25.9 24.6 43.0 42.8 38.5 11.1 9.1

LMLT 5.5 5.5 5.6 5.3 5.3 5.3 5.7 5.4

V R 10.0 9.9 9.8 23.0 22.9 22.5 9.7 8.5

Notes: Innovations Zt are Student-t distributed with 7 degrees of freedom. The

specification of the long term component is given by τ0,t = 1 +
∑K
k=1 π0kxt−k. The

number of observations is T = 1000. Results are based on R = 1000 replications. The

LM tests are performed for a GARCH(1,1) under H0. Otherwise see Table 2.
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C.6 Misspecification of the Short-Term Component.

In the following, we investigate the consequences of implementing the LM test under the

null of a GARCH(1,1) although the true short-term component is a GJR-GARCH(1,1), a

higher-order GARCH or a fractionally integrated GARCH (FIGARCH). We first consider

a situation in which the short-term component is given by a GJR-GARCH(1,1). We

simulate data from a model with a short-term component given by equation (35) with

parameters as specified in GJR-M and GJR-H and either τ 0,t = 1 or τ 0,t = exp(π′0xt).

Table 11, Panel A, presents the empirical size-adjusted rejection rates. First, consider

the case that τ 0,t = 1. When using V IXt as the explanatory variable, we find that the

empirical rejection rates are close to the 5% nominal level. That is, using a truly exogenous

explanatory variable the LM test does not detect a deviation from the null hypothesis.

Even when testing for ‘ARCH nested in GARCH’, i.e. when using the ‘endogenous’ xt =

ε2
t/ĥt as the explanatory variable, we obtain the same result. Second, we consider the case

that τ 0,t = exp(π′0xt). Although the short-term component is misspecified, the empirical

power is only slightly lower than when the short-term component is correctly specified.

For example, for the GJR-M model with an immediately decaying weighting scheme the

LM test rejects in 80.4% of cases at the 5% nominal level. The corresponding figure for

the correctly specified GJR-GARCH model from Table 2 is 82.8%. On the other hand,

when testing for remaining ARCH effects both tests, LM and LMLT , do not detect a

deviation.

Next, we investigate the performance of the LM test when the true short-term com-

ponent is higher-order GARCH or FIGARCH while the long-term component is constant

(τ 0,t = 1). We consider a GARCH(1,2) and denote the second order ARCH parameter

by α̃0. As in model G-L in Section 3.1, we choose ω0 = 0.01, α0 = 0.05, β0 = 0.9 in

combination with α̃0 ∈ {0.02, 0.04}. For the GARCH(2,2) model, we choose the parame-

ter estimates from Nelson and Cao (1992) for the Deutschmark/Dollar exchange rate (see

their Table 1):

h̄∞0t = 0.186 + 0.0573ε2
t−1 + 0.2262ε2

t−2 + 0.3833h̄∞0,t−1 + 0.3100h̄∞0,t−2. (79)

Finally, we consider a FIGARCH(1, d, 1) model which features long-memory in the con-

ditional variance. For this model, the conditional variance is given by

(1− β0L)h̄∞0t = ω0 + [1− β0L− (1− φ0L)(1− L)d0)]ε2
t−1 (80)
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Table 11: Misspecified short-term component.

Panel A τ0,t = 1 τ0,t = exp(π′0xt)

GJR-M GJR-H GJR-M GJR-H

xt V IXt ε2t/ĥt V IXt ε2t/ĥt V IXt ε2t/ĥt V IXt ε2t/ĥt

LM 5.4 5.8 5.0 5.9 80.4 6.4 70.6 6.2

LMLT /LMLT,mod 6.2 5.7 69.4 6.2 43.8 5.9

Panel B: τ0,t = 1 GARCH(1,2) GARCH(2,2) FIGARCH(1, d, 1)

α0 = 0.05, β0 = 0.9 parameters as in φ0 = 0.95, β0 = 0.9

α̃0 = 0.02 α̃0 = 0.04 equation (79) d0 = 0.3

xt V IXt ε2t/ĥt V IXt ε2t/ĥt V IXt ε2t/ĥt V IXt ε2t/ĥt

LM 4.2 9.2 3.2 19.4 5.8 88.0 6.1 40.4

LMLT 9.0 20.2 89.3 37.9

Notes: The table reports the empirical size-adjusted rejection rates over R = 1000 replications

at the 5% nominal level. In Panel A, the data generating process is a GJR-GARCH(1,1) with

parameters as given by GJR-M and GJR-H. In Panel B, the model for the conditional variance is

a GARCH(1, 2) with ω0 = 0.01, the GARCH(2,2) given in equation (79) and a FIGARCH(1, d, 1)

with ω0 = 0.05. The long-term component τ0,t is specified in the table. The LM tests are

performed for a GARCH(1,1) under H0. Innovations Zt are standard normal distributed. All test

statistics are based on K = 1. The number of observations is T = 1000.

under H0, where L denotes the lag operator and d0 the fractional differencing parameter.

We set ω0 = 0.05, φ0 = 0.95 and β0 = 0.9. For d0 = 0 the FIGARCH reduces to a

GARCH(1,1) model with α0 = φ0 − β0 = 0.05 and, hence, to model G-L. Also, note that

the parameters satisfy the conditions that ensure the positivity of the conditional variance

(see Conrad and Haag, 2006).

Again, Table 11, Panel B, shows that for all short-term specifications the rejection

rate of the LM test is quite close to the 5% nominal level for xt = V IXt. When searching

for remaining ARCH effects (xt = ε2
t/ĥt), the LM test tends to reject the null hypothesis

with higher rejection rates for models that are further away from the null hypothesis

(GARCH(2,2) and FIGARCH(1, d, 1). The table also shows that for this choice of xt the

LM test has a similar power as the Lundbergh and Teräsvirta (2002) test.
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C.7 Simulation Mixed-Frequency Test.

In this section we provide simulation evidence for the mixed-frequency version of the test.

All results are based on R = 1000 replications. We model xt as either evolving at a

quarterly or monthly frequency and assume that xt follows an AR(1), i.e.

xt = δxt−1 + νt, (81)

with δ = 0.98 and νt ∼ N (0, σ2
ν). As before, the specification of the long-term component

is given by τ 0,t = exp(π′0xt). The model for the short-term component is the GJR-GARCH

with high (GJR-H) or moderate (GJR-M) persistence. In the simulations, we employ the

immediate (I) and slow (S) decaying weighting schemes presented in Section 3.2. We

consider the regression of either
̂̃
RV t or RVt on a constant, xt−1 and its own first lag:

ln(DVt) = c̃+ π1xt−1 + ρ ln(DVt−1) + ζ̃t (82)

with DVt ∈ {
̂̃
RV t, RVt}. Table 12 reports the number of instances in which the null

hypothesis that the coefficient on xt−1 is zero is rejected (by comparing the squared t-

statistic with the critical value from the asymptotic χ2(1) distribution).
̂̃
RV is based on

the estimated conditional variances of the correctly specified GJR model.

Recall that in the mixed-frequency setting returns are denoted by εi,t, where i =

1, . . . ,M refers to the trading days within period t = 1, . . . , T . In the simulations, we first

fixed T = 172 and M = 66, which corresponds to 172 quarters of 66 days each. We then

choose M = 22 days which corresponds to monthly data. For M = 22, we either keep

the number of low frequency observations fixed at T = 172 (which reduces the number of

daily observations) or keep the number of daily observations fixed and, thereby, extend

the low frequency observations to T = 516.

Table 12 shows that under H0 (τ 0,t = 1) the empirical size is close to the nominal

5% level for all scenarios. Next, for M = 66 and under the alternative, we observe that

the test based on
̂̃
RV does indeed have a higher power than the test based on RV . For

example, for model GJR-H, an immediately decaying weighting scheme and σ2
ν = 0.025

the test rejects in 74.8% of cases for
̂̃
RV but only in 40.6% for RV . Interestingly, the

power decreases only modestly when the true weighting scheme has a slow decay but

the regression is still based on xt−1 only. As expected, increasing the variability of the

long-term component (σ2
ν = 0.030) increases the power of both tests. Similarly, reducing
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the persistence of the short-term component (i.e. considering GJR-M), strongly increases

the power of both tests. The same effect was already observed in Table 2. Nevertheless,

the power for the test based on
̂̃
RV still remains higher than the power of the test based

on RV .

Table 12: Empirical size and power of low-frequency regression-based test.

H0 : GJR-GARCH GJR-H GJR-M

τ0,t = 1 τ0,t = exp(π′0xt) τ0,t = 1 τ0,t = exp(π′0xt)

σ2
ν = 0.025 σ2

ν = 0.030 σ2
ν = 0.025 σ2

ν = 0.030

weighting scheme - I S I S - I S I S

M = 66, T = 172 “quarterly” observations of xt̂̃
RV 6.5 74.8 69.4 80.3 77.2 5.7 97.5 94.4 97.0 96.4

RV 4.4 40.6 38.1 48.6 44.1 5.8 89.4 86.5 91.7 89.0

V R - 5.81 5.39 7.15 6.48 - 19.2 18.2 22.2 21.1

M = 22, T = 172 “monthly” observations of xt̂̃
RV 6.4 38.7 38.0 47.4 43.4 6.5 74.6 70.3 79.9 77.8

RV 6.3 26.2 26.4 32.7 30.5 7.1 62.3 59.2 70.1 67.5

V R - 5.91 5.49 6.97 6.33 - 16.6 15.7 18.6 17.9

M = 22, T = 516 “monthly” observations of xt̂̃
RV 6.0 89.9 88.9 93.8 92.2 6.1 99.8 99.7 100 99.7

RV 6.8 61.4 63.9 67.7 69.6 5.2 99.2 97.9 99.5 98.8

V R - 7.54 7.28 8.76 8.67 - 21.5 20.6 24.4 23.5

Notes: The table reports size and power in percent over the R = 1000 replications at the 5%

nominal level. T denotes the number of low-frequency observations and M the number of days

within each period t. σ2
ν is the variance of the innovation of the AR(1) process for xt. The

low-frequency regression version of the test is based on equation (82) with either
̂̃
RV or RV as

dependent variable.
̂̃
RV is based on the estimated conditional variance from the correctly specified

GJR-GARCH model. I and S indicate the immediate and slow decaying weighting schemes and

V R denotes the variance ratio. In all tests, we choose K = 1.

Switching to monthly observations, i.e. choosing M = 22, reduces the power of both

tests when keeping the number of low frequency observations constant (T = 172). In-

tuitively, this is reasonable since the predictive regressions are now based on the same

number of low-frequency observations as before but the quality of the estimated con-

ditional variances deteriorates (because the number of high-frequency observations de-

creases) which means that the precision of
̂̃
RV t as an estimator of R̃V t decreases. On the
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other hand, when decreasing M from 66 to 22 while keeping the number of high-frequency

observations fixed, the power of the test increases. In this scenario, the number of obser-

vations in the predictive regression increases (T = 516) which makes it easier to detect

the omitted component.

Table 13 shows the empirical size and power for the same GJR models as before, but

with an
̂̃
RV that is based on the estimated conditional variances from a misspecified

GARCH(1,1). First, note that both tests appear to be slightly oversized in this situation.

Second, as a result of the misspecification of the short-term component the power of the

test based on
̂̃
RV is lower than in Table 12, but still higher than the power of the test

based on RV .

Table 13: Size and power of low-frequency regression test based on misspecified GARCH.

H0 : GARCH GJR-H GJR-M

τ0,t = 1 τ0,t = exp(π′0xt) τ0,t = 1 τ0,t = exp(π′0xt)

σ2
ν = 0.025 σ2

ν = 0.030 σ2
ν = 0.025 σ2

ν = 0.030

weighting scheme - I S I S - I S I S

M = 66, T = 172 “quarterly” observations of xt̂̃
RV 6.3 62.8 59.2 69.6 64.9 6.9 95.2 91.6 96.6 93.0

RV 4.1 43.7 38.1 49.5 44.3 6.8 88.8 87.8 92.6 88.3

V R - 5.87 5.54 7.11 6.50 - 18.4 18.4 22.4 20.9

M = 22, T = 172 “monthly” observations of xt̂̃
RV 6.7 32.3 29.7 37.0 34.0 6.5 69.2 63.9 76.2 71.0

RV 8.0 28.1 26.2 33.1 28.7 6.4 65.9 61.2 72.5 67.5

V R - 5.86 5.61 7.00 6.40 - 16.6 15.0 19.2 18.2

M = 22, T = 516 “monthly” observations of xt̂̃
RV 6.0 80.8 77.9 86.2 84.8 5.3 99.6 98.5 99.8 99.3

RV 7.2 64.8 63.3 72.9 70.0 6.5 98.8 98.0 99.3 98.2

V R - 7.52 7.18 9.12 8.49 - 21.5 20.9 24.5 23.7

Notes:
̂̃
RV is based on the estimate of the conditional variance from the misspecified GARCH

model. Otherwise see Table 12.
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D Correlations of Explanatory Variables

Tables 14 and 15 show the contemporaneous correlations between V XOt, RVt, EPUt and

ADSt. Among the daily variables V XOt and RVt have the highest correlation (0.52).

The other correlations also have the expected signs: V XOt is positively correlated with

economic policy uncertainty, EPUt, but negatively correlated with the business conditions

index, ADSt. The correlations of the rolling window versions of the four variables with

N = 22 are higher in absolute value but reveal the same relationships.

Table 14: Correlations between daily explanatory variables.

V XOt RVt EPUt ADSt

V XOt 1.00

RVt 0.52 1.00

EPUt 0.31 0.19 1.00

ADSt -0.48 -0.26 -0.28 1.00

Notes: The table presents the corre-

lations between the daily explanatory

variables. All correlation figures are for

the 1987M12-2016M06 period.

Table 15: Correlations between explanatory variables, x
(N)
t , for N = 22.

V XO
(22)
t RV

(22)
t EPU

(22)
t ADS

(22)
t

V XO
(22)
t 1.00 0.92 0.59 -0.68

RV
(22)
t 1.00 0.52 -0.57

EPU
(22)
t 1.00 -0.42

ADS
(22)
t 1.00

Notes: The table presents the correlations between

the rolling window explanatory variables. All corre-

lation figures are for the 1987M12-2016M06 period.
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