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S.1 Proofs

In this section we prove the theorems in the paper.

S.1.1 Proof of Theorem 1

We begin by establishing a lemma that will be used in the proof of Theorems 1 and 2.

Lemma 1. If Assumptions 1 and 2 hold, then conditionally on JF, in probability,

MX — My = OP|fn(7”_1/2)> (S.1)
186*(BMLE> -
ET = OP|.7:n (7" 1/2>, (82>

where R )

- 2 " w! *(x)T

My = la ¢ (IBMJI:E) _ i Z w; (/8MLE)*X7, (Xz)
n  0B03 nr <= !

Proof. Direct calculation yields
E(Mx|F,) = My. (5.3)

For any component 1\713)}” of My where 1 < ji, jo < d,
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where the second last inequality holds by the fact that 0 < wi(BMLE) < 1/4 and the last

equality is from Assumption 2. Using Markov’s inequality, this result and (S.3), implies
(S.1).
To prove (S.2), direct calculation yields,
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From Assumption 2,
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From (S.4), (S.5) and Markov’s inequality, (S.2) follows. ]

Now we prove Theorem 1. Note that t;(8) = y;logp:(8) + (1 — y;)log{1 — p;(8)},
t;(B) = y; logpi (B) + (1 = yi) log{1 — pj(B)},
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By direct calculation under the conditional distribution of subsample given F,,
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Note that |t;(8)| < log4 + 2||x;||||3||. Therefore, from Assumption 1,
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Therefore combing (S.6) and (S.7), n='¢*(8) —n~*¢(8) — 0 in conditional probability given

Fn. Note that the parameter space is compact and BMLE is the unique global maximum of
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the continuous convex function ¢(3). Thus, from Theorem 5.9 and its remark of van der

Vaart (1998), conditionally on F,, in probability,
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The consistency proved above ensures that 3 is close to ﬁMLE as long as r is not small.

Using Taylor’s theorem (c.f. Chapter 4 of Ferguson 1996),
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where K’J" (B) is the partial derivative of £*(3) with respect to f;, and

vdudv (B — BMLE).
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for all 8. Thus
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where the last equality is from the fact that
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in probability as 7 — oo by Assumption 2. From (S.9) and (S.10),
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From (S.1) of Lemma 1, My' = Op|z,(1). Combining this with (S.2), (S.8) and (S.12)
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which implies that
B - /BMLE = OPIfn (T_I/Q)' (813)
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S.1.2 Proof of Theorem 2

Note that
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Given F,,, 14, ...,m, are i.i.d, with mean 0 and variance,
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Meanwhile, for every € > 0 and some § > 0,

S B0 IIm, )| > %e) | Fu
i=1
1 T
S g S E{lIn P I(nil| > ') | Fu}
=1

—1 - 2+6
< oz O Bl F)
=1

1 1 1 i {yi - pi(éMLE)}2+5|’X’i"2+6

10/2 248 26 £ Wiua

_ L 1 HX |2+6
= /2 n2+6 =0 Z 1+5 =op(1)

where the last equality is from Assumption 3. This and (S.15) show that the Lindeberg-

Feller conditions are satisfied in probability. From (S.14) and (S.15), by the Lindeberg-Feller
central limit theorem (Proposition 2.27 of van der Vaart 1998), conditionally on F,,
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From (S.1) of Lemma 1,
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Based on Assumption 1 and (S.15), it is verified that,
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Thus, (S.16), (S.17) and (S.18) yield,
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The result in (5) of Theorem 1 follows from Slutsky’s Theorem(Theorem 6 of Ferguson
1996) and the fact that
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S.1.3 Proof of Theorems 3 and 4

For Theorem 3,
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where the last step is from the Cauchy-Schwarz inequality and the equality in it holds if
and only if when m; o |yz - pi(BMLE)|||M;(1XiH'

The proof of Theorem 4 is similar to the proof of Theorem 3 and thus is omit it to save

space.

S.1.4 Proof of Theorems 5

Since ror—1/?

— 0, the contribution of the first step subsample to the likelihood function
is a small term with an order op, 7, (r71/2) relative the likelihood function. Thus, we can
focus on the second step subsample only. Denote
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1% =~ ~ )
5, () ;ﬂ%)

5

—_




where 7} (8,) has the same expression as Ve except that BMLE is replaced by B,. We first

establish two lemmas that will be used in the proof of Theorems 5 and 6.

Lemma 2. Let the compact parameter space be © and X\ = supgeg ||B|. Under Assump-

tion 4, for ki > ke > 0,
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Proof. From the expression of ;(3,),
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Combining (S.20), (S.21) and (S.22), and using the Law of Large Numbers, (S.19) follows.

m
The following lemma is similar to Lemma 1.
Lemma 3. If Assumption 4 holds, then conditionally on JF, in probability,
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Proof. Direct calculation yields,
E(Mx|F,) = E {EMx|Fn, By)} = Eg (Mx|F,) = Mx, (S.25)

where E,éo means the expectation is taken with respect to the distribution of Bo given F,.

For any component M%%(3,) of I\N/I?(0 where 1 < j1, 72 < d,
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From Lemma 2, and (S.26),
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Using Markov’s inequality, (S.23) follows from (S.25) and (S.27).

Analogously, we obtain that
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From (S.28), (S.29) and Markov’s inequality, (S.24) follows. O

Now we prove Theorem 5. By direct calculation,
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Therefore, from Lemma 2 and (S.30),
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Therefore combing (S.31) and the fact that E{E}*3 (B)|F.} = £(B), we have n*1€; (B) —
0 0

n~14(B) — 0 in conditional probability given J,. Thus, conditionally on JF,,
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The consistency proved above ensures that Z3 is close to BMLE as long as r is large enough.

Using Taylor’s theorem (c.f. Chapter 4 of Ferguson 1996),
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where the last equality is from the fact that

P(%fi”jﬂiz n>_%§j (ux ||3)

in probability as 7 — oco. From (S.33) and (S.34),
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From (S.23) of Lemma 2, (1\7['?(0)*1 = Opjz,(1). Combining this with (5.25), (S.32) and
(S.36)
B = Buwe = Oz, (1) + 0p17, (18 = Buwsl)):
which implies that
B = Buwe = Or7, (r7'%). (.37)

S.1.5 Proof of Theorem 6

Denote
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where the last equality is from Lemma 2. This and (S.39) show that the Lindeberg-Feller
conditions are satisfied in probability. From (S.38) and (S.39), by the Lindeberg-Feller
central limit theorem (Proposition 2.27 of van der Vaart 1998), conditionally on F,, and
Bo: \
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in distribution.

Now we exam the distance between V2 and V.. First,
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For the last term in the above equation,
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From (S.40), (S.41), (S.42) and (S.43),
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V2 Y V) T (By) + Opyr, (172
= VM (Bye) — V(M) = M Y (Bye) + Opyr, (r7?)
= —VAM (VA2 (VT2 (B ) + Opys, (r7 7).

The result in Theorem 1 follows from Slutsky’s Theorem(Theorem 6 of Ferguson 1996) and
the fact that

V—1/2M)—(1 (V?O)l/Q(V_l/QM)}l (V§0)1/2)T :V—l/ZM;(lVCBOM;(lV—lﬂ
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which is obtained using (S.44).

S.1.6 Proofs for nonrandom covariates

To prove the theorems for the case of nonrandom covariates, we need to use the following

two assumptions to replace Assumptions 1 and 4, respectively.

Assumption S.1. Asn — oo, My = n~ ' S0 wi(Byue)XiX. goes to a positive-definite

matriz in probability and limsup, n™' >°7" | ||x;]|* < oo.

Assumption S.2. The covariate distribution satisfies that n=*y " x;xi converges to a

positive definite matriz, and limsup,n='> " eIl < 0o for any a € R.

Note that ﬁMLE is random, so the condition on Mx holds in probability in Assump-
tion S.1. m;’s could be functions of the responses, and the optimal 7;’s are indeed functions
of the responses. Thus Assumptions 2 and 3 involve random terms and remain unchanged.

The proof of Lemma 1 does not require the condition that n=* Y " | [|x;[|* = Op(1),
so it is automatically valid for nonrandom covariates. The proof of Theorem 1 requires
n~t L Ix])P = Op(1) in (S.11). If it is replaced with limsup,n™' Y7 [|x]]* < oo,
(S.11) still holds. Thus Theorem 1 is valid if Assumptions 2 and S.1 are true.

Theorem 2 is built upon Theorem 1 and does not require additional conditions besides

Assumption 3. Thus it is valid under Assumptions 2, 3 and S.1.
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Theorems 3 and 4 are proved by the application of Cauchy-Schwarz inequality, and they
are valid regardless whether the covariates are random or nonrandom.
To prove Theorems 5 and 6 for nonrandom covariates, we first prove Lemma 2. From

Cauchy-Schwarz inequality,
1 i T Y I i |20k ) (L i ot} 1
n =1 Z B n =1 l n i=1
20 = )N eV 1N vkt |
< Xi _ 2| Xq
< {EEobEy i Ty

i=1 =1

Thus, under Assumption S.2,
1 n
I =3 xRl < oo S.47
1msgp pa ||| e < o0 ( )

Combining (S.20), (S.21) and (S.47), Lemma 2 follows. With the results in Lemma 2, the
proofs of Lemma 3 and Theorem 5, and Theorem 6 are the same as those in Section S.1.4,
and Section S.1.5, respectively, except that (n7)™1 3" | [|x;]|* — 0 deterministically instead

of in probability in (S.35).

S.2 Additional numerical results

In this section, we provide additional numerical results for rare events data and uncondi-

tional MSEs.

S.2.1 Further numerical evaluations for rare events data

To further investigate the performance of the proposed method for more extreme rare events

data, we adopt the model setup with a univariate covariate in King & Zeng (2001), namely,

1
Ply =1) = 1+ exp(—fy — fiz)’

Following King & Zeng (2001), we assume that the covariate = follows a standard normal
distribution and consider different values of 5y and a fixed value of 8; = 1. The full data
sample size is set to n = 10% and Sy is set to —7,—9.5,—12.5, and —13.5, generating
responses with the percentages of 1’s equaling 0.1493%, 0.0111%, 0.0008%, and 0.0002%
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respectively. For the last case there are only two 1’s (0.0002%) in the full data of n = 10°,
and this is a very extreme case of rare events data. For comparison, we also calculate
the MSE of the full data approach using 1000 Bootstrap sample (the gray dashed line).
Results are reported in Figure S.1. It is seen that as the rare event rate gets closer to 0,
the performance of the OSMAC methods relative to the full data Bootstrap gets better.
When the rare event rate is 0.0002%, for the full data Bootstrap approach, there are 110
cases out of 1000 Bootstrap samples that the MLE are not found, while this occurs for 18,
2,4, and 1 cases when ro = 200, and r = 200, 500, 700, and 1000, respectively.
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r r
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53 - 5
2 ] E o
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S |85,
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© \ \ \ \ \ \ \ \ \ \
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r r
(c) 0.0008% of y;’s are 1 (d) 0.00002% of y;’s are 1

Figure S.1: MSEs for rare event data with different second step subsample size r and a
fixed first step subsample size o = 200, where the covariate follows the standard normal

distribution.
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S.2.2 Numerical results on unconditional MSEs

To calculate unconditional MSEs, we generate the full data in each repetition and then
apply the subsampling methods. This way, the resultant MSEs are the unconditional
MSEs. The exactly same configurations in Section 5 are used. Results are presented in
Figure S.2. It is seen that the unconditional results are very similar to the conditional
results, even for the imbalanced case of nzNormal data sets. For extreme imbalanced data
or rare events data, the conditional MSE and the unconditional MSE can be different, as

seen in the results in Section S.2.1.
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Figure S.2: Unconditional MSEs for different second step subsample size r with the first

step subsample size being fixed at ry = 200.
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