
Construction and Visualization of Confidence Sets for
Frequentist Distributional Forecasts∗

David Harris†, Gael M. Martin‡, Indeewara Perera§and D.S. Poskitt¶

March 5, 2018

Abstract

The focus of this paper is on the quantification of sampling variation in frequentist prob-

abilistic forecasts. We propose a method of constructing confidence sets that respects the

functional nature of the forecast distribution, and use animated graphics to visualize the

impact of parameter uncertainty on the location, dispersion and shape of the distribution.

The confidence sets are derived via the inversion of a Wald test, and the ellipsoid that de-

fines the boundary of the set computed numerically. A wide range of linear and non-linear

time series models - encompassing long memory, state space and mixture specifications - is

used to demonstrate the procedure, based on artificially generated data. An empirical ex-

ample in which distributional forecasts of both financial returns and its stochastic volatility

are produced is then used to illustrate the practical importance of accommodating sampling

variation in the manner proposed.
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1 Introduction

Probabilistic (or distributional) forecasting - namely, the assignment of a probability distribution

to the future values of a random variable - is a suitable way of approaching the act of prediction,

fitting naturally as it does with the human propensity to quantify uncertainty using probability

and to frame forecasts of an uncertain future in probabilistic terms. Probabilistic forecasts are

also consistent with the sample space of the variable in question, as well as being replete with

all important distributional (in particular tail) information. In contrast, point forecasts, based

on single summary measures of central location, convey no such distributional information and,

potentially, also lack coherence with the sample space as, for example, when a conditional mean

forecast of a discrete random variable assumes real values.

Despite earlier attempts to draw attention to the worth of probabilistic forecasts (e.g. Dawid,

1984), such forecasts have only started to gain some prominence in the literature in more re-

cent times. A focal point of much of this work has been the development of techniques for

ex-post evaluation of distributional forecasts using observed outcomes. Calibration with realized

values is assessed via the probability integral transform method (e.g. Dawid; Diebold et al.,

1998; Geweke and Amisano, 2010), predictive accuracy tests (e.g. Corradi and Swanson, 2006;

Amisano and Giacomini, 2007), or via the application of calibration criteria in combination with

measures of predictive ‘sharpness’, including the use of various scoring rules (e.g. Gneiting et al.,

2007; Gneiting and Raftery, 2007; Czado et al., 2009; Gneiting and Katzfuss, 2014). In contrast,

McCabe, Martin and Harris (2011) present the concept of an ex-ante efficient estimator of a

forecast distribution, within a particular class of (discrete) time series models. Explicit acknowl-

edgement therein of the dependence of the (estimated) forecast distribution on the frequentist

properties of the underlying parameter estimates prompted the use of a subsampling method

(Politis et al., 1999) to capture sampling variation in a manner that respected the functional

nature of the forecast distribution. No attempt was made, however, to extend the procedure

beyond the specific model class at hand, or to establish a general method of visualization.

The focus of this paper in on the derivation of a method for measuring sampling variation

in frequentist distributional forecasts, in any time series setting, and the provision of a com-

putational technique for visualizing that variation that exploits animated graphics. Whilst the

principle that underpins the approach is completely general, we demonstrate it solely within

the context of distributional forecasts produced via parametric time series models. In brief, we

produce the range of forecast distributions that bound the ‘set’ or ‘region’ within which the true
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forecast distribution lies with a given level of confidence. This range of distributions is, in turn,

determined by the range of values for the unknown (possibly vector-valued) parameter, θ say,

that defines the boundary of the confidence set for the given nominal value, with this bound-

ary produced via the inversion of a Wald test. Given the quadratic form of the Wald statistic,

the boundary so produced defines an ellipsoid, which can be readily traversed using numerical

methods.

We make it explicit from the outset that the exercise is undertaken with the frequentist

forecasting paradigm in mind. In this case the substitution of ‘plug-in’ estimators of unknown

parameters into a forecast distribution renders the latter a random function with sampling

variation that reflects parameter uncertainty. It is this sampling variation that we are attempting

to capture, and in a way that respects the integration to unity property of the random function

of interest. This situation contrasts with that which prevails under the Bayesian paradigm, in

which forecast distributions condition solely on past data, with unknown parameters integrated

out via the Bayesian probability calculus. The impact of parameter uncertainty in that case is

directly reflected in the form of the (single) forecast distribution so produced, with no additional

measurement step required. (See, for example, Geweke, 2005, for a textbook treatment of

Bayesian forecasting.)

We also emphasize the contrast between the approach adopted in this paper and other meth-

ods for representing (frequentist) sampling variation in a forecasting context. Such methods

have focussed on: the production of point-wise confidence intervals for estimated forecast prob-

abilities (Freeland and McCabe, 2004); the use of the bootstrap to extend (marginal) prediction

intervals to cater for parameter uncertainty (see De Gooijer and Hyndman, 2006, for an extensive

survey; and Rodriguez and Ruiz, 2009, 2012, for recent applications); or the use of the bootstrap

to construct joint prediction regions (over multiple forecast horizons) with correct (asymptotic)

coverage in the presence of estimation error (Wolf and Wunderli, 2015). Our focus, we reiterate,

is on representing the impact of sampling variation on the full forecast distribution for any single

forecast horizon, and visualizing the way in which that variation influences all aspects of that

distribution: location, dispersion and shape.

Finally, we note that our approach also differs from another interesting (frequentist) alter-

native, brought to our attention by a referee, in which the concept of a confidence distribution

(Schweder and Hjort, 2016) is applied to prediction. In common with our method, the procedure

of Schweder and Hjort also attempts to factor parameter uncertainty into a forecast distribution
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whilst respecting the distributional nature of the latter. However, the outcome of this exercise

is a single distribution, in which parameter uncertainty alters the nature of that distribution

- most notably rendering it more dispersed - relative to the plug-in version. Once again we

emphasize that a primary motivation of our work has been to visualize the precise way in which

different plug-in parameter estimates (yielded in hypothetical repeated sampling) would affect

the forecast distribution; hence our focus on explicitly producing the full range of distributions

that would result from parameter variation (at the boundary of the confidence set), rather than

a single distribution which (in a sense made clear by Schweder and Hjort, Chp 12) averages over

that variation.

The outline of the paper is as follows. In Section 2 we define the problem at hand, namely

the production of an estimated forecast distribution and the recognition of the random nature

of that quantity. We outline the approach that we adopt in producing forecast distributions

that define the ‘boundary’ of the confidence set over which sampling variation occurs, based

on the inversion of a Wald test procedure, with both unconditional and conditional versions of

the test entertained. The numerical technique used to compute that boundary is described. In

Section 3 a range of time series models, that encompass long memory, state space and mixture

models, are used to illustrate the proposed ideas. We highlight the wide range of forecast

distributions that could be encountered in hypothetical repeated sampling (even in these simple

examples) and provide visualization of that distributional variation using animated graphics.

An empirical illustration using returns and (an observable measure of) volatility of the S&P500

stock index is provided in Section 4. As part of that illustration we demonstrate the implications

of parameter variation for conclusions drawn regarding the predictive superiority of one model

over another. In short, scalar scoring rules (such as the logarithmic and quadratic scores used

in the demonstration) reflect the influence of parameter variation, as do the differences between

corresponding scores for two alternative models. In particular, parameter variation can induce

variation in the sign of score differences and, hence, alter the conclusion about relative predictive

performance. This effect is illustrated graphically for the particular financial models entertained,

with an appendix to the paper providing further details regarding the nature of the graphical

displays. Section 5 concludes with discussion of some matters that remain unresolved and that

form the basis of ongoing investigations by the authors.

The numerical results in the paper are produced using the computing languages: R and

MATLAB. To create the animated graphics in the paper we use the R package animation; see
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Xie (2013). In addition, we use the R package R.matlab of Bengtsson (2015) to read and write

MAT Files and call MATLAB from within R.

2 Frequentist Distributional Forecasts and Confidence Sets

Assume a time series of random variables, Y1, Y2, ..., YT , with observed values collected in the

vector y1:T = (y1, . . . , yT )′ . Without loss of generality, the object of interest is the conditional

forecast distribution,

f (.|y1:T ; θ0) ,

for YT+1, the unknown random variable at time T + 1, with θ0 the true value of the (p × 1)

vector of unknown parameters. We define

f
(
.|y1:T ; θ̂ (y1:T )

)
(1)

as the estimated (one-step-ahead) forecast distribution, where the average log-likelihood function

is `T (θ) = T−1
∑T

t=1 log f (yt|y1:t−1; θ) and

θ̂ (y1:T ) = arg max
θ
`T (θ) . (2)

The subscript T is used here as a reminder of the fact that what we refer to as the ‘log-likelihood

function’ without further qualification is indeed the average log-likelihood function over the

sample. Viewed as a random estimator, θ̂ (Y1:T ) in (2) has a sampling distribution which, in

turn, induces random sampling variation in the function f(.|y1:T ; θ̂(Y1:T )). For the purposes of

this paper we assume that the parametric form of f (.|y1:T ; θ) is known, although extension to

semi-parametric models could be undertaken without altering the qualitative nature of the key

points made herein. Extension to the case in which f (YT+k|y1:T ; θ0) is the object of interest,

with k > 1, is also conceptually straightforward and, hence, not considered.

Throughout the paper we adopt the conventional approach of defining the forecast distribu-

tion as the quantity in which the conditioning values, y1:T , are fixed at the observed values.1

Estimation of f (.|y1:T ; θ0) is thus viewed as a functional estimation problem in terms of YT+1

1This approach could be re-phrased as one in which θ̂T (Y1:T ) is assumed to be independent of the conditioning

values, in which case sampling variation in f
(
.|y1:T ; θ̂(Y1:T )

)
can be viewed as being driven by the (marginal)

sampling distribution of θ̂ (Y1:T ), rather than by the distribution of θ̂ (Y1:T ) conditional on any observed condi-

tioning values that define f
(
.|y1:T ; θ̂ (Y1:T )

)
; see Phillips (1979) for some early discussion of related issues. We

return briefly to this issue of conditioning in the Discussion section that completes the paper.
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for a fixed y1:T . The point estimator of f (.|y1:T ; θ0) is f(.|y1:T ; θ̂ (Y1:T )) and an asymptotically

valid confidence set for f (.|y1:T ; θ0) is a set Fα (Y1:T ) of distributions such that

pr (f (.|y1:T ; θ0) ∈ Fα (Y1:T )) →
T→∞

1− α.

As is described in the following section, we link the confidence set for f (.|y1:T ; θ0) to a confidence

set for θ0, produced, in turn, via the inversion of a Wald test. The quadratic form of the Wald

test statistic allows the boundary of Fα (.) to be readily traversed using numerical methods.

Forecast distributions that lie on that boundary can then be displayed graphically, illustrating

visually the range of forecast distributions that could possibly occur, in hypothetical repeated

sampling, in any given model.

2.1 Confidence sets based on the inversion of Wald tests

The standard Wald test statistic for H0 : θ0 = θ against H1 : θ0 6= θ is

ω (θ) = T
(
θ̂ − θ

)′
V (θ̂)−1

(
θ̂ − θ

)
, (3)

where V (θ̂)−1 is a consistent estimator of i(θ0) = − limT T
−1

T∑
t=1

E [ht(θ0)] and ht(θ) = ∂2 ln f(yt|y1:t−1;θ)
∂θ∂θ′

.

(Note that for the sake of notational simplicity, in (3) and hereinafter we denote the estimator

of θ0 as θ̂, rather than as θ̂ (Y1:T ) .)

Now defining cα as the α-level critical value from the (asymptotically valid) χ2(p) distribution

under the null, a (1− α) 100% confidence set is defined as the set of null values not rejected:

Cωα = {θ : ω (θ) ≤ cα} . (4)

By the definition of cα this set has coverage property, pr (θ0 ∈ Cωα) →
T→∞

1− α.2 We then define

the forecast confidence set for the true forecast distribution, f (.|y1:T ; θ0), as

Fα (.) = {f (.|y1:T ; θ) : θ ∈ Cωα} (5)

which, by definition, has the same coverage property as Cωα .

The forecast distributions on the boundary of Fα (.) are, by construction, characterized by

values of θ on the boundary of the (1− α) 100% confidence set for the parameters. Depending

on the nature of the problem, and the role of θ therein, the nature of these forecast distributions

2See Cox and Hinkley (1974), Le Cam and Yang (1990), Choi, Hall and Schick (1996) and Shao (2003), for
discussions of the link that can be established in certain special cases, between the properties of tests and the
properties of the confidence sets induced by their inversion.
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can differ substantially, one from the other, and one aim of the paper is to highlight that fact

by visualizing the distributions that can arise, at the extreme end of the spectrum, in a variety

of models. For one simple example, we also suggest a way of selecting ‘representative’ extreme

distributions, thereby avoiding the need to represent the full range of possibilities pictorially.

Given the requirement to solve (4) for θ in order to define (5), the algebraic form of the test

statistic, and the interpretation of the parameters themselves, obviously play a role in the

selection of such representative distributions on the boundary.

In view of the quadratic form of (3), the boundary set in (4) is an ellipsoid. In Section 2.2

we describe a numerical method to traverse the surface of such a boundary set. As is made clear

therein, the computational burden increases with the dimension of the parameter set. Hence, we

suggest a dimension reduction technique that may be appropriate in some cases. Specifically, it is

helpful to express the forecast distribution in terms of its ‘canonical’ or fundamental parameters;

for example, the (conditional) mean and variance for a Gaussian linear model. Denoting this

(vector) parameter as η (θ; y1:T ), the Wald test statistic for H0 : η (θ0; y1:T ) = η (θ; y1:T ) against

H1 : η (θ0; y1:T ) 6= η (θ; y1:T ) is thus T{η(θ̂; y1:T ) − η(θ; y1:T )}′Σ(θ̂)−1{η(θ̂; y1:T ) − η(θ; y1:T )},

where: Σ = ∇(θ̂; y1:T )V (θ̂)∇(θ̂; y1:T )′, with ∇ (θ; y1:T ) = ∂η (θ; y1:T ) /∂θ′, and if η(θ̂; y1:T ) is a

p-dimensional vector, then the (1− α) 100% confidence set for η(θ̂; y1:T ) is given by{
η(θ; y1:T ) : ω(η(θ; y1:T )) := T [η(θ̂; y1:T )− η(θ; y1:T )]′Σ(θ̂)−1[η(θ̂; y1:T )− η(θ; y1:T )] ≤ cα

}
. (6)

Henceforth the confidence set in (6) is referred to as the ‘conditional confidence set’, in contrast to

the (unconditional) confidence set in (4). In the simplest case in which the problem is described

by a scalar conditional mean and conditional variance, the quadratic form in (6) describes a

two-dimensional mean/variance ellipse in η (θ; y1:T ), which is all that is necessary to describe

the confidence set for f (.|η (y1:T ; θ)). This dimension reduction technique is demonstrated in

Section 3.2 and exploited in the empirical illustration in Section 4.

2.2 Numerical solution for the bounding set

In this section we describe the numerical method used to traverse the boundary of the confidence

set for the forecast distribution. Without loss of generality we use the four-dimensional case for

illustration, selecting a grid of points on the bounding set in (4) associated with the unconditional

Wald test. The method is clearly applicable to the bounding values in the conditional confidence

set in (6) as well, in which case the initial dimensionality of the problem would be reduced

accordingly.
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Let Bα = {T (θ̂ − θ)′V (θ̂)−1(θ̂ − θ) = cα} denote the (1− α)100% bounding set for the four-

dimensional vector θ obtained by inverting the Wald test, and let U be a matrix square root of

V (θ̂)−1 such that V (θ̂)−1 = UU ′, produced, for example, via a Cholesky decomposition of V (θ̂)−1.

Then, T (θ̂ − θ)′V (θ̂)−1(θ̂ − θ) = cα may be written as (θ̂ − θ)′ UU ′
cα/T

(θ̂ − θ) = 1, and hence, with

x = U ′(θ̂ − θ)/
√
cα/T , as x′x = 1. Therefore, if one can traverse the unit hyper-sphere defined

by x′x = 1 then for each x the corresponding θ may be recovered as θ = θ̂ −
√
cα/T [U−1]′x.

Traversing x′x = 1 may be undertaken in several different ways. For example, and with

reference to the four dimensional case, one may use the polar coordinates: x1 = cos(λ1),

x2 = sin(λ1) cos(λ2), x3 = sin(λ1) sin(λ2) cos(λ3) and x4 = sin(λ1) sin(λ2) sin(λ3) cos(λ4), for

λ1, λ2, λ3 ∈ [0, π] and λ4 ∈ [0, 2π). This represents a fairly natural way of constructing grids

in the four angles to traverse the sphere, and for each point to be translated back to θ and,

hence the forecast distribution, as a function of θ. Clearly this generalizes (in principle) to any

number of dimensions; however, as is the case with any grid-based deterministic method, the

so-called ‘curse of dimensionality’ applies, with the computational burden being exponential in

the number of dimensions. It is for this reason that the dimension reduction afforded by the

conditional method can yield benefits, with conditional method involving the replacement of θ̂,

θ and V (θ̂)−1 by η(θ̂; y1:T ), η(θ; y1:T ) and Σ(θ̂)−1, respectively.

In the next section we use this numerical technique to produce the bounding distributions for

the forecast distributions associated with several different time series models. In the first example

the parameter space is two dimensional, in which case the bounding set for θ is an ellipse and

it is easy to extract and display ‘representative’ bounding forecast distributions. In addition,

an animated plot can be used to display the full range of bounding distributions associated

with traversing (discretely) the ellipse of values for θ. In the second example the problem is

multi-dimensional, and encompasses a wide range of time series models, including long memory

models and state space specifications; however the conditioning method described in the previous

section can be used to reduce the problem to a two-dimensional one, rendering description (and

visualization) of sampling variation in the forecast distribution straightforward. In both cases

both the location and variance of the forecast distribution are affected by the variation in θ. In

the final two examples, which are three-dimensional and four-dimensional respectively, θ impacts

on the higher-order moments of the forecast distribution, with there being a much wider range

of possible distributions at the (1 − α)100% boundary as a consequence. For the purpose of

illustration, we set 1− α = 0.95 in all examples.
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Prior to proceeding to the illustrations however, we make two final comments regarding our

choice of confidence set in (4) and, hence, the numerical results that derive from that choice.

First, (4) could be based on an alternative test statistic, for example the likelihood ratio test

statistic, for which the rate of convergence to the asymptotic distribution may possibly be faster

in some cases than that of the Wald statistic, and the finite sample coverage of any confidence set

closer to the nominal level as a consequence. However, such an alternative choice would mean

that the distinct computational benefits yielded by the quadratic form of the Wald statistic

are lost. Secondly, an estimate of the finite sample critical value underpinning the following

illustrations could, in principle, be produced via a bootstrap method, rather than the asymptotic

value in (4) being used. However, further work would be required to establish the validity of

the bootstrap in all such settings. A similar comment applies to the sub-sampling method of

McCabe et al. (2011) cited earlier. Such extensions, including comparisons with the approach

adopted herein, are left for future investigation.

3 Illustrations

3.1 Gaussian AR(1)

We begin by considering a simple two parameter problem, that of a stationary Gaussian autore-

gressive model of order one (AR(1)):

Yt = α1Yt−1 + Ut, (7)

where Ut ∼ i.i.d.N (0, σ2), with σ2 > 0 and |α1| < 1. With reference to the general nota-

tion defined above, we have θ = (α1, σ
2)′. Given (7), the (average) log-likelihood function is

`T (θ) =
[
−1

2
log 2π − 1

2
log σ2 − 1

2Tσ2

∑T
t=1 (yt − α1yt−1)2

]
, conditional on y0, and the (condi-

tional) MLEs of the elements of θ have the familiar form, α̂1 =
(∑T

t=1 ytyt−1

)
/
(∑T

t=1 y
2
t−1

)
and σ̂2 = T−1

∑T
t=1 (yt − α̂1yt−1)2 . The Wald test statistic for H0 : (α10, σ

2
0)′ = (α1, σ)′ against

H1 : (α10, σ
2
0)′ 6= (α1, σ)′ assumes the following form:

ω (θ) =
T

2

(
σ2

σ̂2
− 1

)2

+
(α̂1 − α1)2

σ2

T∑
t=1

y2
t−1,

and the (1− α)100% confidence set for (α10, σ
2
0) in (4) defined accordingly, with cα the (1 −

α)100% quantile of the χ2(2) distribution. This defines a two-dimensional region bounded by

an ellipse centered at (α1, σ
2) = (α̂1, σ̂

2). Alternatively, using a transformation of variables,
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X =
(
σ̂2

σ2 − 1
)
, Y = (α̂1−α1)

σ
, we can consider the ellipse defined by

T̄ =

{
(X, Y ) :

X2

a2
+
Y 2

b2
= 1

}
, (8)

where

a :=

{
cα

(T/2)

}1/2

, b :=

{
cα∑T

t=1 y
2
t−1

}1/2

. (9)

The set T̄ has a one-to-one correspondence with the ellipse bounding (4), with the center

(X, Y ) = (0, 0) corresponding to (α1, σ
2) = (α̂1, σ̂

2). The bounding ellipse in (4) or, equiva-

lently, in (8), thus defines an infinite number of pairs of values for (α1, σ
2) that can be defined

as ‘extreme’ and that can be extracted to define forecast distributions that bound the forecast

confidence set in (5) via the numerical method described in Section 2.2.

In the top panel of Figure 1 the forecast distributions defined by traversing the boundary

in (8), with 1−α = 0.95, are reproduced, in animation, for T = 100 and (α10, σ
2
0) = (0.6, 1). The

single empirical forecast distribution is superimposed - represented by the (fixed) dotted line.

The full extent of the variation - in both location and dispersion - of the forecast distributions on

the 95th percentile, is in evidence, alerting the investigator to the varied probabilistic statements

about the unknown YT+1 that could arise due to parameter uncertainty. The bottom panel gives

a (static) snapshot of this variation, reproducing a set of selected bounding distributions.

Whilst the dynamic display in Figure 1 is instructive, in this simple two-parameter case it is

also possible to identify representative pairs of bounding distributions, based on simultaneously

choosing the pairs of largest and smallest of values on the ellipse for: 1) the conditional forecast

variance, σ2; and 2) the parameter α1, and, equivalently, the conditional forecast mean, α1yT ,

using the following steps:

1. Firstly, as −a ≤ σ̂2/σ2 − 1 ≤ a, with a as defined in (9), then σ̂2

1+a
≤ σ2 ≤ σ̂2

1−a . The

bounding forecast distribution with the largest (resp. smallest) conditional variance thus

corresponds to the boundary point:

(α1, σ
2) =

(
α̂1, σ̂

2/(1− a)
)

(resp. (α1, σ
2) =

(
α̂1, σ̂

2/(1 + a)
)

). (10)

2. Next, if (α1, σ
2) lies on the boundary of Cωα , then for any given σ2,

α1 = α̂1 ±

√√√√ σ2∑T
t=1 y

2
t−1

{
cα −

T

2

(
σ̂2

σ2
− 1

)2
}
.
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Figure 1: Forecast distributions at the 95th percentile boundary of the confidence set in (5), for
a sample of size T = 100 generated from Yt = 0.6Yt−1 + Ut; Ut ∼ i.i.d.N (0, 1) . The solid lines
represent the bounding distributions, whilst the empirical estimate of the true distribution is
given by the dotted line. The top panel uses animation to illustrate the full range of bounding
distributions. The bottom panel displays a static set of selected bounding distributions.
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The value of σ2 that produces the bounding values of α1 is thus

σ2
m := arg max(

σ̂2

1+a
≤σ2≤ σ̂2

1−a

)
{
cα −

T

2

(
σ̂2

σ2
− 1

)2
}
σ2

and the bounding values for α1 are respectively

αU1 = α̂1 +

√√√√ σ2
m∑T

t=1 y
2
t−1

{
c∗α −

T

2

(
σ̂2

σ2
m

− 1

)2
}

and

αL1 = α̂1 −

√√√√ σ2
m∑T

t=1 y
2
t−1

{
c∗α −

T

2

(
σ̂2

σ2
m

− 1

)2
}
.

The bounding forecast distribution with the largest (resp. smallest) degree of persistence

thus corresponds to the boundary point:

(α1, σ
2) =

(
αU1 , σ

2
m

)
(resp. (α1, σ

2) =
(
αL1 , σ

2
m

)
). (11)

Clearly, given the one-to-one relationship between α1 and the conditional forecast mean

in this case, the four bounding intervals in (10) and (11) also form the basis for bounding

the forecast uncertainty associated with estimation of the conditional mean itself.

In Figure 2 we illustrate the bounds in (10) graphically for a case of a sample size of T = 100

generated artificially from (7) with (α10, σ
2
0) = (0.6, 1). The corresponding plots associated with

the bounds in (11) are given in Figure 3. Each figure reproduces the estimated probability

density function (pdf) along with the two bounding pdfs. Such figures provide a visual snapshot

of the most extreme outcomes (in both dimensions) that could be observed in hypothetical

repeated sampling.
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Figure 2: Forecast distributions at the 95th percentile boundary of the confidence set in (5)
with the largest and smallest conditional variance. A sample of size T = 100 is generated from
Yt = 0.6Yt−1 +Ut; Ut ∼ i.i.d.N (0, 1) . The dotted line depicts the empirical estimate of the true
distribution; the dashed (dash-dot) line the bounding distribution associated with the smallest
(largest) conditional variance.
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Figure 3: Forecast distributions at the 95th percentile boundary of the confidence set in (5)
with the largest and smallest degree of persistence. A sample of size T = 100 is generated from
Yt = 0.6Yt−1 +Ut; Ut ∼ i.i.d.N (0, 1) . The dotted line depicts the empirical estimate of the true
distribution; the dashed (dash-dot) line the bounding distribution associated with the smallest
(largest) degree of persistence (or conditional mean value).
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3.2 Gaussian linear time series model

Now suppose that

Yt|Y1:t−1 ∼ N

(
t−1∑
j=1

ψj (ρ)Yt−j, σ
2

)
, (12)

where the ψj (ρ) may be, for example, the linear process weights defined by a stationary au-

toregressive (fractionally integrated) moving average AR(FI)MA model with p × 1 parameter

vector ρ or, indeed, a linear homoscedastic Gaussian state space model. Defining xt−1 (ρ) =∑t−1
j=1 ψj (ρ) yt−j and zt−1 (ρ) =

(∑t−1
j=1{∂ψj (ρ) /∂ρ}yt−j

)
we can define the average log-likelihood

as `T (θ) = −1
2

log 2π − 1
2

log σ2 − 1
2Tσ2

∑T
t=1 (yt − xt−1 (ρ))2 , where θ = (ρ′, σ2)′. The uncondi-

tional Wald test statistic is thus

ω (θ) = T

(
ρ̂− ρ
σ̂2 − σ2

)′( 1
T σ̂2

∑T
t=1 zt−1 (ρ̂) zt−1 (ρ̂)′ 0

0 1/ (2σ̂4)

)(
ρ̂− ρ
σ̂2 − σ2

)
,

with the boundary of (4) defining a (p+ 1)− dimensional ellipsoid in ρ and σ2, and cα being

the (1− α)100% quantile of the χ2(p+ 1) distribution.

Clearly, with p potentially very large for some models in the linear class, selecting dis-

tinct (p+ 1)-dimensional sets of parameters on the boundary - and their associated forecast

distributions - is computationally burdensome. In this case the conditional Wald approach

provides a more workable alternative. To this end, we express the forecast mean for YT+1 as

µ =
∑T

j=1 ψj (α) yT+1−j and its estimate as µ̂ =
∑T

j=1 ψj (ρ̂) yT+1−j, with ρ̂ defined as the MLE

of α. Given ∂µ/∂α′ = zT+1 (α) and

Υ =

(
1
T
zT+1 (ρ̂)

(
σ−2

∑T
t=1 zt−1 (ρ̂) zt−1 (ρ̂)′

)−1

zT+1 (ρ̂)′ 0

0 1/ (2σ̂4)

)
,

it follows that the boundary of

Cωα =

{
(µ, σ2) : T

(
µ̂− µ
σ̂2 − σ2

)′
Υ

(
µ̂− µ
σ̂2 − σ2

)
≤ cα

}
defines a two-dimensional ellipse in µ and σ2. In this case, a similar rationale to that adopted

for the two-dimensional problem in Section 3.1 could readily be adopted. We reiterate that the

approach delineated here, and associated computations, is applicable to any model that can be

expressed in the form of (12), highlighting the generality of the method.

3.3 Non-Gaussian AR(1)

All examples thus far are characterized by a (conditional) mean and variance component only.

When allied with the use of a conditional Wald test, this has amounted to a two-dimensional
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problem, with the properties of the bounding ellipse able to be exploited, and some mean-

ingful representative bounding forecast distributions extracted. In this section we consider a

non-Gaussian example. To simplify the exposition we focus only on the AR(1) case and the

unconditional Wald method, noting that more complexity in the conditional mean (and/or vari-

ance) could be readily managed via the conditional Wald test described above.

Assume the AR(1) model:

Yt = α1Yt−1 + Ut, Ut ∼ Fskt, (13)

where Fskt denotes the skewed Student t distribution of Hansen (1994) with degrees of free-

dom parameter v and skewness parameter, λ, and where this particular form of non-Gaussian

innovation is chosen for illustrative purposes only. Let fskt denote the pdf of Fskt,

fskt(y; v, λ) =

 bc
[
1 + 1

v−2

(
bx+a
1−λ

)2
]− (v+1)

2
, if x < −a

b

bc
[
1 + 1

v−2

(
bx+a
1+λ

)2
]− (v+1)

2
, if x ≥ −a

b
,

where a = 4λc
(
v−2
v−1

)
, b =

√
1 + 3λ2 − a2 and c Γ({v+1}/2)√

π(v−2)Γ(v/2)
, with v > 2 and−1 < λ < 1. Then,

the average log-likelihood is

`T (θ) = T−1

T∑
t=1

log [fskt (yt − α1yt−1; v, λ)] ; θ = (α1, ν, λ)′, (14)

and the one-step-ahead forecast distribution is given by f(YT+1|yT ; θ) = fskt (YT+1 − α1yT ; v, λ) .

Given θ̂ (y1:T ) = arg maxθ `T (θ) one obtains that under H0 : θ0 = θ, ω (θ)
d−→ χ2(3) as T →∞,

with ω (θ) as defined in (3), where V (θ̂)−1 therein is a consistent estimator of the information

matrix, which is unavailable analytically in this case. Denoting the elements in V (θ̂)−1 by

V (θ̂)−1 = [aij], then values on the boundary of the (1 − α)100% confidence set for θ0, as given

in (4), with cα the appropriate critical value from the χ2(3) distribution, define the surface

of a 3-dimensional ellipsoid in (α1, v, λ) centered at the MLEs, (α̂1, v̂, λ̂), where the latter are

obtained via numerical maximization of (14). Based on data generated from (13), with T = 100

and (α10, v0, λ0) = (0.8, 5, 0.5), we extract values of the triple (α1, ν, λ) from the ellipsoid in

the manner discussed in Section 2.2. Figure 4 provides the associated plot of the forecast

distributions corresponding to these parameter triples (and for 1 − α = 0.95) (in animation in

the top panel, and in static form in the bottom panel). The very wide range of distributional

shapes - and associated conclusions regarding the future YT+1 - that could legitimately arise is

thereby highlighted.
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Figure 4: Forecast distributions at the 95th percentile boundary of the confidence set in (5), for
a sample of size T = 100 generated from Yt = 0.8Yt−1 +Ut; Ut ∼ i.i.d.Fskt (ν = 5, λ = 0.5) . The
solid lines represent the bounding distributions, whilst the empirical distribution is given by the
dotted line. The top panel uses animation to illustrate the full range of bounding distributions.
The bottom panel displays a static set of selected bounding distributions.
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3.4 Mixture time series model

We complete the set of illustrations by adopting a model in which bimodality in the forecast dis-

tribution may feature. To wit, we assume an observable state variable dt that evolves according to

a simple Markov chain with transitions: pr(dt = 1 | dt−1 = 1) = p1|1; pr(dt = 1 | dt−1 = 0) = p1|0.

The time series of interest Yt is then Yt | dt,Ht−1 ∼ N (dtµ1 + (1− dt)µ0, σ
2) , where Ht−1 is the

information set available at time t − 1, and µ1, µ0, σ
2 are real constants with σ2 > 0. In this

simple example the information set Ht−1 comprises dt−1 only. The forecast distribution is either

of the following two mixtures of normals

YT+1 | {dT = 1} ∼ p1|1N(µ1, σ
2) + (1− p1|1)N(µ0, σ

2) (15)

YT+1 | {dT = 0} ∼ p1|0N(µ1, σ
2) + (1− p1|0)N(µ0, σ

2), (16)

where we are making explicit here the dependence of YT+1 on the two discrete values of dT , of

which HT is comprised. In this case the MLEs of µ1 and µ0 are readily available, and the MLE of

σ2 is produced in the usual way via the regression residuals, (Yt− Ŷt) = Yt− (µ̂1dt + µ̂0(1− dt)),

where d̂t = p̂1|1dt−1 + p̂1|0(1 − dt−1). The more common, and empirically relevant, case of dt

unobservable, as well as the case where Ht−1 includes lagged values of Yt (or additional lags of

dt) pose additional computational challenges, but provide no additional conceptual insights for

the purpose here, and so are not considered.

Now define θ̂ = (µ̂1, µ̂0, σ̂
2, p̂1)′, where p̂1 = p̂1|1dT + p̂1|0(1−dT ). Then, the estimated forecast

distribution for YT+1 | HT is

YT+1 | HT ∼ p̂1N(µ̂1, σ̂
2
T ) + (1− p̂1)N(µ̂0T , σ̂

2
T ). (17)

Note that this forecast distribution is conditional on (the observed) dT and this state is held

fixed in the confidence interval calculation, which only measures estimation uncertainty in θ̂.

That is, p̂1 in (17) is set to either p̂1|1 or p̂1|0 and not varied. Once again, the boundary of

the (1 − α)100% confidence set for θ0 is obtained by inverting the relevant Wald test in (4),

with V (θ̂)−1 the relevant (numerical) estimate of the information matrix and cα the appropriate

critical value from the (asymptotically valid) χ2(4) distribution. Figure 5 provides animated and

static plots of the range of forecast distributions corresponding to a grid of parameter values on

the surface of the 4-dimensional ellipsoid centered at θ̂ that is defined by (4) in this case. The

settings for the illustration are T = 100 and (µ10, µ00, σ
2
0, p11, p10) = (3, 0, 1, 0.6, 0.4), and dt is

generated recursively by

dt ∼ Bernoulli{s(t)}, s(t) = p10 + (p11 − p10)dt−1, d0 = 0, t = 1, · · · , T. (18)
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The variation in the shapes in the possible forecast distributions is marked, with bimodality a

feature of many. In comparison with the empirical estimate of the forecast distribution that

assigns highest probability mass to a range of values for YT+1 close to the origin, on this 95%

boundary bi-modal distributions that assign highest probability mass to regions in the support

quite distinct from that highlighted in the empirical forecast distribution, feature.

4 Empirical Illustration

Motivated by the increased interest in distributional forecasts of financial returns and/or volatil-

ity (see, Diebold et al., 1998, Tay and Wallis, 2000, Geweke and Amisano, 2010, Maheu and

McCurdy, 2011, Maneesoonthorn et al., 2012, and Maheu and Jensen, 2014, for examples) in this

section we consider a bivariate model for the daily return variance, {Vt}, measured as (annual-

ized) realized variance constructed from 5-minute values of the S&P500 index, and (annualized)

daily returns {rt}, where rt = (logPt − logPt−1)× 250, with Pt the S&P500 index at the end of

day t. The dataset spans the period September 14, 2005 to September 23, 2008. As is common

in the literature, at times we use the term ‘volatility’ to refer to Vt, despite this being a variance,

rather than a standard deviation, quantity.3

We assume that rt follows the following model

rt = µt + σtut, (19)

where ut ∼ N(0, 1), σ2
t = V art−1(rt) is the conditional variance of rt with respect to the infor-

mation set available at time t− 1, say Ht−1, and µt = Et−1(rt) = E(rt|Ht−1). We assume that

µt = α1 + α2rt−1, (20)

where |α2| < 1. In the spirit of Andersen, Bollerslev and Diebold (2007), Corsi (2009), Bollerslev,

Kretschmer, Pigorsch and Tauchen (2009) and Maheu and McCurdy (2011), amongst others,

we assume that σ2
t = Et−1(Vt) and that:

log(Vt) = βt + εt, εt ∼ N(0, σ2
V), (21)

with:

βt = ω + φ1 log(Vt−1) + φ2 log(Vt−5,5) + φ3 log(Vt−22,22) + γut−1, (22)

3All index data has been supplied by the Securities Industries Research Centre of Asia Pacific (SIRCA) on
behalf of Reuters, with the raw index data having been cleaned using methods similar to those of Brownlees
and Gallo (2006). For further details on data handing and the construction of the realized variance measure, see
Maneesoonthorn et al. (2012).
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Figure 5: Forecast distributions at the 95th percentile boundary of the confidence set in (5),
for a sample of size T = 100 generated from the normal mixture model defined by (15), (16)
and (18), with (µ10, µ00, σ

2
0, p11, p10) = (3, 0, 1, 0.6, 0.4). The solid lines represent the bounding

distributions, whilst the empirical distribution is given by the dotted line. The top panel uses
animation to illustrate the full range of bounding distributions. The bottom panel displays a
static set of selected bounding distributions.
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and

log(Vt−h,h) :=
1

h

h−1∑
i=0

log(Vt−h+i), h ≥ 1, (ω, φ1, φ2, φ3, γ)′ ∈ R5, 0 < σ2
V <∞.

The innovation in (21), εt ∼ N(0, σ2
V), is assumed to be independent of that in (19), with

any feedback from past shocks to volatility accommodated via the lagged innovation term in

(22). The process in (22) is referred to as a heterogeneous autoregressive (HAR) model for

the (log) realized variance and is designed to capture, in a simple way, the long memory that

characterizes observed variance measures (see Andersen, Bollerslev, Diebold and Labys, 2003, for

an early exposition of this empirical regularity). The horizons used to define the right-hand-side

variables in (22) correspond to the previous day, the previous (trading) week and the previous

(trading) month, with the rationale being that stock market volatility on day t is the outcome

of the behaviour of investors with different investment horizons.

Given σ2
t = Et−1(Vt), it follows that σ2

t = exp{Et−1[log(Vt)] + 0.5Vart−1[log(Vt)]} = exp{βt +

σ2
V/2}, and, conditional on Ht−1,[

rt
log(Vt)

]
∼ N

([
µt
βt

]
,

[
exp{βt + σ2

V/2} 0
0 σ2

V

])
.

Hence, the unknown parameter vector is θ = (α1, α2, ω, φ1, φ2, φ3, γ, σ
2
V)′ ∈ R7 × R+ and the

MLE is defined as θ̂ = (α̂1, α̂2, ω̂, φ̂1, φ̂2, φ̂3, γ̂, σ̂
2
V)′.

We conduct two exercises. First, we produce animated representations of the predictive dis-

tributions on the 95% boundary for the return and its variance for a selected day at the height

of the recent global financial crisis, namely September 24, 2008, in order to highlight the ex-

tent of the variation in predictive conclusions regarding both the market return and its variance

that could have arisen - as a consequence of parameter uncertainty - in this time of extreme

market volatility. Secondly, we consider an alternative (nested) bivariate model, and compute

the difference in (firstly) the logarithmic scores associated with the forecast distributions (for

rT+1 and VT+1 respectively) produced by the two models - general and nested - at correspond-

ing points in the 95% confidence set boundaries. By ‘corresponding’ we mean each pair of

forecast distributions produced by traversing the bounding parameter space described by the

corresponding ellipsoid for each of the two models, in the same ‘direction’. Note that, for each of

the two models, on the boundary of the conditional confidence set in (6), the plausible values for

η(θ; r1:T ,V1:T ) = (µT+1, βT+1, σ
2
V)′ (with the three elements of η(θ; r1:T ,V1:T ) defined according

to (20), (22) and (21) respectively) describe the surface of a three-dimensional ellipsoid, which
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is all that is necessary to describe a confidence set for the forecast distributions of both rT+1

and VT+1.4 We then produce the corresponding values for the difference in the quadratic scores

for each model (and for each of the two forecast variables, rT+1 and VT+1). Whilst informal

in nature, it is of interest to document the extent to which these two different measures of

relative predictive accuracy (log and quadratic score respectively) are influenced by parameter

uncertainty and, in particular, whether the sign of either difference switches and the conclusion

regarding predictive superiority changes, as the bounding parameter spaces are traversed.

4.1 Bounding sets for the distributions of rT+1 and VT+1 via the (con-
ditional) Wald method

Let η(θ; r1:t−1,V1:t−1) = (µt, βt, σ
2
V)′. Then η(θ̂; r1:t−1,V1:t−1) = (µ̂t, β̂t, σ̂

2
V)′, where µ̂t = α̂1 +

α̂2rt−1 and β̂t = ω̂ + φ̂1 log(Vt−1) + φ̂2 log(Vt−5,5) + φ̂3 log(Vt−22,22) + γ̂ut−1. The relevant test

statistic for H0 : η(θ0; r1:T ,V1:T ) = η(θ; r1:T ,V1:T ) against H1 : η(θ0; r1:T ,V1:T ) 6= η(θ; r1:T ,V1:T )

is thus given by

ω (η(θ; r1:T ,V1:T )) = T [η(θ̂; r1:T ,V1:T )− η(θ; r1:T ,V1:T )]′Υ−1[η(θ̂; r1:T ,V1:T )− η(θ; r1:T ,V1:T )],

where Υ = ∇(θ̂; r1:T ,V1:T )V (θ̂)∇(θ̂; r1:T ,V1:T )′,

∇(θ̂; r1:T ,V1:T ) =
∂η(θ; r1:T ,V1:T )

∂θ′

=

 1 rT 0 0 0 0 0 0
0 0 1 log(VT ) log(V(T+1)−5,5) log(V(T+1)−22,22) uT 0
0 0 0 0 0 0 0 1

 ,
and with V (θ̂)−1 being a numerical estimate of the information matrix. As noted in the previous

section, on the boundary of the confidence set in (6) the plausible values for η(θ; r1:T ,V1:T ) =

(µT+1, βT+1, σ
2
V) describe the surface of a three-dimensional ellipsoid, which is all that is necessary

to describe a confidence set for the true one-step-ahead forecast distribution for the stock index

return rT+1,

fr (.|r1:T ,V1:T ; θ0) ≡ N
(
µ0T+1, exp{β0T+1 + σ2

0V/2}
)
,

with µ0T+1 and β0T+1 defined according to (20) and (22) respectively, given the true values for

the base parameters. The boundary of the (1 − α)100% confidence set for fr (·|r1:T ,V1:T , θ0) is

4The nested model contains (by construction) less base parameters than the general model. However, for
both models, the confidence sets are defined by only η(θ; y1:T ) = (µT+1, βT+1, σ

2
V)′ and, hence, the ellipsoids that

correspond to both models are defined in this same three-dimensional space and can be traversed in the same
direction. More details on this point are provided in both Section 4.2 and the Appendix.
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given by

Brα = {fr (.|r1:T ,V1:T ; θ) : ω(η(θ; r1:T ,V1:T )) = cα} . (23)

Equivalently, we can focus on the forecast distribution of the (observable) variance itself,

fV (.|r1:T ,V1:T ; θ0) ≡ LN(β0T+1, σ
2
0V),

and define:

BVα = {fV (.|r1:T ,V1:T ; θ) : ω(η(θ; r1:T ,V1:T ) = cα} (24)

as the boundary of the (1− α)100% confidence set for fV (.|r1:T ,V1:T ; θ0) .

In Figure 6, we provide animated and static representations of the bounding distributions for

fr (.|r1:T ,V1:T ; θ0) produced from the boundary set in (23), with 1−α = 0.95. The corresponding

graphs of the bounding distributions for fV (.|r1:T ,V1:T ; θ0) defined by (24) are displayed in

Figure 7. The results are based on T = 762 observations for the period September 14, 2005

to September 23, 2008 leading up to the date September 24, 2008, for which predictions are

made, and on which values of rT+1 = −0.65 and VT+1 = 0.064 were observed. Once again, the

graphs in both figures indicate the range of different possible outcomes that could be observed

in hypothetical repeated sampling and, hence, the type of variation to be expected in any

probabilistic statements made about rT+1 (Figure 6) and VT+1 (Figure 7), respectively.

In particular, first with reference to the return (in Figure 6), whilst the empirical forecast

distribution assigns a very low density value to the observed (annualized) return on September

24, namely −0.65, the influence of parameter variation is such that a negative return of this

magnitude - and the consequences of that for any associated financial decisions - could have been

assigned either a much lower or a much higher density value! Corresponding to this variation

in possible outcomes, predictions of the one-day-ahead 5% Value at Risk (VaR) quantile for

the market portfolio associated with the S&P500 index would have produced either a notable

violation (i.e. the observed portfolio value being much less than the VaR value) or a clear absence

of such violation. Extrapolating these consequences to a realistic setting in which portfolios are

designed to track the market, and financial penalties are incurred for repeat violations of (or

overly conservative) VaR forecasts, parameter variation - and accommodation thereof - is seen

to have clear practical significance.

In contrast, the influence of parameter variation on the forecast distribution for the variance

itself (in Figure 7) is seen to be much less extreme, with the observed value of 0.064 (equivalent to

an annualized standard deviation (volatility) of approximately 25%) assigned a density ordinate
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Figure 6: Forecast distributions for the return rT+1, at the 95th percentile boundary of the
confidence set in (23). The results are conditional on T = 762 observations for the period
September 14, 2005 to September 23, 2008 leading up to the date September 24, 2008, for which
predictions are made. The curves with solid line represent the bounding distributions. The
dotted line depicts the estimated distribution. The vertical solid line represents the observed
value of rT+1, which is −0.65. The top panel uses animation to illustrate the full range of
bounding distributions. The bottom panel displays a static set of selected bounding distributions.
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Figure 7: Forecast distributions for the realized variance VT+1, at the 95th percentile boundary
of the confidence set in (24). The results are conditional on T = 762 observations for the period
September 14, 2005 to September 23, 2008 leading up to the date September 24, 2008, for which
predictions are made. The curves with solid line represent the bounding distributions. The
dotted line depicts the estimated distribution. The vertical solid line represents the observed
value of VT+1, which is 0.064. The top panel uses animation to illustrate the full range of
bounding distributions. The bottom panel displays a static set of selected bounding distributions.
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by the empirical forecast distribution that varies little from those associated with the extreme

95% boundary. This could be interpreted as a certain robustness of the variance forecast - and

any contingent financial decisions, such as derivative pricing - to parameter variation, at least

conditional on the given model. In the following section we go one step further, and assess the

robustness (or otherwise) of the difference in scores - for two different models - to parameter

uncertainty.

4.2 Bounding values for scoring rule differences

Scoring rules are scalar measures used to assess the relative performance of competing proba-

bilistic forecasts. In this illustration, we consider two proper scoring rules: the logarithmic score

(LS) and the quadratic score (QS), given respectively (and for the case of predicting the return,

for illustration) by

LS = log fr(r
o
T+1|r1:T ,V1:T ; θ0) (25)

QS = 2fr(r
o
T+1|r1:T ,V1:T ; θ0)−

∫
[fr(rT+1|r1:T ,V1:T ; θ0)]2drT+1, (26)

where roT+1 denotes the observed value of rT+1. The LS in (25) is a so-called ‘local’ scoring

rule which assumes a high value if roT+1 is in the high density region of fr(.|r1:T ,V1:T ; θ0) and a

low value otherwise. In contrast, QS depends on the shape of the entire predictive density, in

addition to the ordinate of the density at the realized value of rT+1. In particular, QS combines

a reward for a well-calibrated prediction (a high value of fr(r
o
T+1|r1:T ,V1:T ; θ0)) with a penalty

(−
∫

[fr(rT+1|r1:T ,V1:T ; θ0)]2drT+1) for misplaced ‘sharpness’, or certainty, in the prediction. That

is, if fr(rT+1|r1:T ,V1:T ; θ0) is a concentrated density (and not necessarily around roT+1), this

penalty will be high. (See Gneiting and Raftery, 2007, Gneiting, Balabdaoui and Raftery, 2007,

and Boero, Smith and Wallis, 2011, for expositions). Comparable definitions and interpretations

apply to the LS and QS scoring rules computed for VT+1.

We now denote the model given by (19) to (22) by M1, and for convenience reproduce that

model below, followed by a nested version, denoted by M2, in which a short memory structure

for Vt (i.e. a single lag of Vt in βt) is imposed:

M1 : rt = µt + σtut, µt = α1 + α2rt−1, ut ∼ N(0, 1), |α2| < 1,
σ2
t = V art−1(rt) = Et−1(Vt), log(Vt) = βt + εt, εt ∼ N(0, σ2

V),
βt = ω + φ1 log(Vt−1) + φ2 log(Vt−5,5) + φ3 log(Vt−22,22) + γut−1.

M2 : rt = µt + σtut, µt = α1 + α2rt−1, ut ∼ N(0, 1), |α2| < 1,
σ2
t = V art−1(rt) = Et−1(Vt), log(Vt) = βt + εt, εt ∼ N(0, σ2

V),
βt = ω + φ1 log(Vt−1) + γut−1.

(27)
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Whilst we would not necessarily expect M2 to provide more accurate probabilistic forecasts than

model M1, given the more restricted dependence structure, it is of interest to see if the expected

superiority of the long memory model does obtain for the short horizon and if it is uniform

over the bounding parameter space. To this end, we first provide, in Figure 8, an animated

representation of the full range of bounding distributions for rT+1 for both models: M1 and M2.

The corresponding animated graphs of the bounding pdfs for VT+1 under the two models are

displayed in Figure 9.

Figure 8: Forecast distributions for the return rT+1, at the 95th percentile boundary of the
confidence set in (23), for the Model M1 (solid line) and Model M2 (dashed line), defined in
(27). The setting is the same as that for Figure 6. The vertical solid line represents the observed
value of rT+1 which is −0.65.

With regard to the two forecast densities for rT+1 there is clearly a substantial difference

between the impact of parameter variation on the density under M1 and the corresponding

impact under M2, with the former density changing markedly in location and, hence, producing

very different values for the ordinate at the observed value of rT+1 = −0.65. This, in turn, implies

that the relative magnitudes of the log scores for the two models also change markedly at the

95% boundary. As a consequence, in Panel A of Figure 10 the difference in log scores is shown to

be either positive or negative depending on the precise position on the two bounding ellipsoids.

That is, despite the fact that the difference in empirical scores (not displayed) is positive - i.e.

M1 is estimated to have better predictive performance than M2 - the conclusion that one could

26



Figure 9: Forecast distributions for the realized variance VT+1, at the 95th percentile boundary
of the confidence set in (24), for the Model M1 (solid line) and Model M2 (dashed line), defined
in (27). The setting is the same as that for Figure 7. The vertical solid line represents the
observed value of VT+1, which is 0.064.

have drawn as to which model were superior switches due to sampling variation! A qualitatively

similar story - although with a somewhat different pattern exhibited for the log score differences

- holds for prediction of VT+1 (illustrated in Panel C). That is, sampling variation could invoke

different conclusions as to which were the superior model for predicting VT+1, M1 or M2, when

that decision is based on the difference of log scores.

In contrast, if the difference in the quadratic scores is used to assess relative performance,

parameter variation is seen (Panels B and D in Figure 10) to have no impact on the conclusion

drawn regarding predictive performance, with the more general model remaining superior for

all points on the bounding ellipsoids, and for the prediction of both random variables. In this

sense the quadratic score could be deemed to be more robust to parameter variation than the

log score, at least as concerns the comparison of these two particular models.

We conclude by noting that the precise patterns exhibited by all graphs in Figure 10 across

the 441 grid points that cover the bounding ellipsoids for the two different models simply reflect

the particular order in which those grid points are used to evaluate the forecast distributions

(and the resultant impact on the relevant scores).5 The key thing is that a common parameter

5The grid points are generated by using the Matlab function ‘ellipsoid ’. In Matlab, the function [x, y, z] =
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Figure 10: Panel A [Panel B]: Differences in LS [QS] scores that correspond to the bounding
distributions for rT+1, for the models M1 and M2, defined in (27). Panel C [Panel D]: Differences
in LS [QS] scores that correspond to the bounding distributions for VT+1, for the models M1

and M2, defined in (27). The results are conditional on T = 762 observations for the period
September 14, 2005 to September 23, 2008, leading up to the date September 24, 2008, for which
predictions are made.
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space, η(θ; r1:T , V1:T ) = (µT+1, βT+1, σ
2
V), characterizes both models and that the common space

is traversed in the same direction for both models. Had a different common direction been taken,

then the patterns exhibited would be different; however, the relative values (at any given grid

point) of the two scores - logarithmic or quadratic - would be the same as those displayed in

Figure 10, those relative values reflecting the values of (µT+1, βT+1, σ
2
V)′ for each model, at the

particular grid point. Further elaboration of this point occurs in the Appendix.

5 Discussion

We have used the inversion of a Wald test to produce a confidence region for a distributional

forecast. The method moves away both from the idea of placing point-wise confidence intervals

on the ordinates of the forecast density (or mass) function, and from the literature’s typical focus

on bootstrap prediction intervals/regions. The method is also completely general, and simple

to implement, with techniques of dimension reduction available in many cases via conditioning.

Visualization of the bounding distributions is possible using animated graphics, enabling the full

range of distributions that could have arisen as a result of parameter uncertainty to be clearly

displayed. Whilst the 95th percentile of the sampling distribution (for the estimated forecast

distribution) has been used throughout for illustration, a comparable type of computation (and

display) could of course be undertaken for any level of confidence.

Documenting the impact of sampling variation on relevant scalar functions, such as scoring

rules, is straightforward and has been illustrated in an empirical setting via the computation of

the log and quadratic scores. It has been possible to match the bounding ellipsoids in the case

of the nested models under comparison here and, hence, provide unambiguous results regarding

the behaviour of the score difference as the two 95% boundaries are traversed. In contrast,

for non-nested models, there is not necessarily a unique way in which forecast distributions for

two competing models can be ‘matched’ and differences in the log scores computed, and the

resolution of this ambiguity remains to be addressed.

Finally, as fits with convention, parameter uncertainty only has been the focus, with the

conditioning values viewed as fixed numbers. Any move away from this approach would require

the confidence set to accommodate the joint distribution of the estimated parameters and the

conditioning values; something that is the subject of ongoing work by the authors.

ellipsoid(xc, yc, zc, xr, yr, zr, n) generates a surface mesh described by three n + 1-by-n + 1 matrices. These
(x, y, z) coordinates describe a surface of an ellipsoid with center (xc, yc, zc) and semi-axis lengths (xr, yr, zr).
We used n = 20 and hence obtained 441 grid points.
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Appendix

For further illustration of the point made at the end of Section 4, we let (µ
(1)
T+1, β

(1)
T+1, σ

2(1)
V ) and

(µ
(2)
T+1, β

(2)
T+1, σ

2(2)
V ) denote the boundary values of (µT+1, βT+1, σ

2
V), for M1 and M2 respectively,

represented, in turn, by grid points on the surface of the two ellipsoids presented in Figure 11. It

can be shown that the difference in log scores (for forecasting rT+1) has the following closed-form
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representation,

LS1 − LS2 =
1

2

(
β

(2)
T+1 − β

(1)
T+1

)
+

1

4

(
σ

2(2)
V − σ2(1)

V

)
+

1

2

(
rT+1 − µ(2)

T+1

)2

exp
{
−(β

(2)
T+1 + σ

2(2)
V /2)

}
−1

2

(
rT+1 − µ(1)

T+1

)2

exp
{
−(β

(1)
T+1 + σ

2(1)
V /2)

}
, (28)

where the different terms on the right-hand-side of (28) capture the influence of the various

boundary values on LS1 − LS2 and, hence, explain the reason for the types of values plotted in

Panel A of Figure 10.

With reference to the ellipsoid in Panel A of Figure 11 (for M1), a1 = (µ
(1)
T+1, β

(1)
T+1, σ

2
1V) =

(−0.3526,−2.932, 0.3332) and b1 = (µ
(1)
T+1, β

(1)
T+1, σ

2
1V) = (0.3527,−2.932, 0.3332) represent the

two points, among all the values on the surface mesh, that are furthest apart along the X-

axis (i.e. µ
(1)
T+1 values). Points a2 = (µ

(2)
T+1, β

(2)
T+1, σ

2
2V) = (−0.0137,−3.044, 0.3466) and b2 =

(µ
(2)
T+1, β

(2)
T+1, σ

2
2V) = (0.0572,−3.044, 0.3466) denote the corresponding pair of points on the el-

lipsoid in Panel B of Figure 11 (for M2). For points a1 and a2, it can be seen that the associated

pairs of values, (β
(1)
T+1, σ

2(1)
V ) and (β

(2)
T+1, σ

2(2)
V ), are quite similar, such that the first two terms on

the right-hand-side of (28) are very small, and the exponential terms that feature in the next two

terms are very similar in magnitude. In contrast, the two values µ
(1)
T+1 and µ

(2)
T+1 are quite differ-

ent, one from the other. Given that rT+1 = −0.65, and since µ
(1)
T+1 = −0.3526 < −0.0137 = µ

(2)
T+1,

it follows that
(
rT+1 − µ(2)

T+1

)2

>
(
rT+1 − µ(1)

T+1

)2

, and that LS1 − LS2 > 0 as a consequence.

This LS1−LS2 value corresponds to the largest positive peak of the graph in Panel A of Figure

10 (occurring at grid point 211). Similarly, for the two points b1 and b2 on the relevant ellipsoids,

µ
(1)
T+1 = 0.3527 > 0.0572 = µ

(2)
T+1 and values (for the two models) for βT+1 and σ2

V are once again

similar. In this instance then, LS1−LS2 < 0, yielding the largest negative value of the graph in

Panel A of Figure 10 (occurring at grid point 221). The cyclic nature of LS1−LS2 in Panel A of

Figure 10 is simply a reflection of traversing the two ellipsoids in this fashion, from points such

as (a1, a2) to points such as (b1, b2). Comparable explanations can be provided for the patterns

exhibited in Panels B to D in Figure 10.
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Figure 11: Panel A: Ellipsoid defined by the 95th percentile boundary of the confidence set in
(6) for model M1 (general model), with η(θ; r1:T , V1:T ) = (µ

(1)
T+1, β

(1)
T+1, σ

2(1)
V ). Panel B: Ellipsoid

defined by 95th percentile boundary of the confidence set in (6) for model M2 (nested model),

with η(θ; r1:T , V1:T ) = (µ
(2)
T+1, β

(2)
T+1, σ

2(2)
V ); M1 and M2 are defined in (27). The results are condi-

tional on T = 762 observations of intraday spot price data from the S&P500 index for the period
September 14, 2005 to September 23, 2008 prior to the date, September 24, 2008, for which an
estimated forecast distribution is produced.
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