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1 Organization

The material in this supplement is organized as follows: In Section 1, we present simulation

results to illustrate the degradation in the performance of the original RSF algorithm in the

presence of error-prone outcomes. In Section 2, we present results from simulations based on

data from a cardiovascular disease Omics study. In Section 3, we present additional results

from the application of the proposed algorithm to GWAS data from subjects in the WHI.

2 Effects of error in self-reported outcomes on variable

selection by Random Survival Forests (RSF)

We illustrate the degradation in the variable selection performance of the original RSF al-

gorithm, with increasing error in the self-reported outcomes.

Each simulated dataset included N = 100 subjects and P = 100 covariates, of which the

first five (Z1, · · · , Z5) were assumed to be true biomarkers. We assumed that the duration

of follow-up was 4 years and that there were annual visits at which self-reported outcomes

were collected. We assumed that there were no missed visits. Each covariate was simulated

according to an independent standard normal distribution. We assumed that the true time to

event followed an exponential distribution and that the set of five biomarkers influenced the
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outcome through a proportional hazards model. Let λ0 denote the hazard corresponding to

the reference group (corresponding to Z1 = · · · = Z5 = 0). Under the proportional hazards

model, the hazard for a subject with arbitrary values of the covariates Z1, · · · , Z5 is given

by:

λZ1,Z2,Z3,Z4,Z5 = λ0e
β1Z1+β2Z2+β3Z3+β4Z4+β5Z5

We set the values of λ0 to correspond to values of cumulative incidence for the reference group

of 0.15, 0.25 and 0.5, respectively. The values of β1, · · · , β5 were set to 2. For each subject

i, observed values of the binary, self-reported outcomes at visits at years 1-4 (Ri1, · · · , Ri4)

were simulated by assuming specific values for the sensitivity and specificity of self-reports.

For example, assume that the simulated time-to-event for subject i is Xi = 2.5 years,

the sensitivity and specificity of self-reported outcomes are ϕ1 = 0.9 and ϕ0 = 0.7, respec-

tively. Then, the self-reported outcomes at visits 1-4 are simulated according to P(Ri1 = 1 |

Xi = 2.5, ti1 = 1) = P(Ri2 = 1 | Xi = 2.5, ti2 = 2) = 1− ϕ0 and P(Ri3 = 1 | Xi = 2.5, ti3 =

3) = P(Ri4 = 1 | Xi = 2.5, ti4 = 4) = ϕ1.

We fit the RSF algorithm to each simulated dataset, by setting the number of trees to

1000. The variables ranking among the top 5% were considered as “discovered biomarkers”.

Averaging over 100 simulations for each setting, we estimated the proportion of datasets in
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which each of the true five biomarkers (Z1 = · · · = Z5) was “discovered”.

Panels (a) - (b) of Figure 1 present the proportion of times that true biomarkers were

ranked among the top 5 by RSF as a function of sensitivity or specificity. We consider differ-

ent parameter settings corresponding to (sensitivity, specificity) of the self-reported outcome

and cumulative incidence (in the reference group). The results show that the reduction in

specificity has a deleterious effect on variable selection, when sensitivity is assumed to be

perfect (Figure 1 of Supplement, Panel (a)). On the other hand, when specificity is fixed

at 1, reduction in sensitivity has a modest effect on variable selection (Figure 1, Panel (b)).

When sensitivity, specificity and cumulative incidence were set to 0.61, 0.995 and 0.15 re-

spectively (characteristics of diabetes self-reports in the WHI), we observed that the true

five biomarkers were discovered among the top five variables on average 66% of the time - in

comparison, when self-reports are perfect, the true five biomarkers were discovered among

the top five variables on average 80% of the time.

3 Cardiovascular disease omics Study

The cardiovascular disease ‘omics’ omics study that was conducted to discover prognostic

biomarkers in blood plasma for near-term cardiovascular events. Subjects were selected from
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the CATHGEN project, which collected peripheral blood samples from consenting research

subjects undergoing cardiac catheterization at Duke University Medical Center from 2001

through 2011. 68 cases were selected from among individuals who had a major adverse

cardiac event (MACE) within two years following the time of their sample collection. In a

1:1 matched study design, 68 controls were selected from individuals who were MACE-free

for the two years following sample collection and were matched to cases on age, gender,

race/ethnicity and severity of coronary artery disease. High-content mass spectrometry

and multiplexed immunoassay-based techniques were employed to quantify 625 proteins and

metabolites from each subject’s serum specimen. Comprehensive metabolite profiling of

the individual samples was based on a combination of four platforms employing mass spec-

trometry (MS) based techniques to profile lipids, fatty acids, amino acids, sugars and other

metabolites. Proteomic analysis was based on a combination of targeted methods using a

quantitative multiplexed immunoassay technique as well as a comprehensive protein profiling

strategy based on tandem mass spectrometry. A detailed description of the mass spectrom-

etry based platforms and proteomics analysis can be found in a previous publication (Guo

and Balasubramanian, 2012).
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3.1 Illustrating variable importance from a single tree

A single tree was trained on a bootstrap sample from a simulated dataset to illustrate the

proposed variable importance metric. The covariate matrix was obtained as a random subset

of 100 out the 625 covariates for all 136 subjects in the cardiovascular disease omics study.

The event times were assumed to follow an exponential distribution, where the first five co-

variates (denoted Z1, · · · , Z5) from the ’omics’ study were assumed to be associated with the

outcome through a Cox proportional hazards model. Let λ0 denote the hazard correspond-

ing to the reference group (corresponding to Z1 = · · · = Z5 = 0). Under the proportional

hazards model, the hazard for a subject with arbitrary values of the covariates Z1, · · · , Z5 is

given by λZ1,Z2,Z3,Z4,Z5 = λ0e
β1Z1+β2Z2+β3Z3+β4Z4+β5Z5 . The regression coefficients were set to

β1 = · · · = β5 = 1.0. The hazard function for the reference group λ0 was set such that the

cumulative incidence rate during the four year follow-up period was 0.1. We assumed that

the duration of follow-up was 4 years, that there were annual visits at which self-reported

outcomes were collected, with sensitivity and specificity of 1.0 and with no missed visits. For

each subject i, binary self-reported outcomes at each visit at years 1-4 (Ri1, · · · , Ri4) were

simulated by assuming perfect sensitivity and specificity of self-reports.

A single tree was trained on a bootstrap sample of the simulated dataset, where each

split was selected from among a random subset of 10 covariates. In Figure 2 of the Supple-

ment, we show a realization of the fitted tree - of the five true biomarkers (labeled Var1-Var5),
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Var3 was selected as the primary (first level) splitting variable and Var2 selected as a third

level splitting variable. In Figure 3 [Panel (a)], the difference between the observed log like-

lihood for each subject i in the OOB dataset and the average log likelihood for each subject

i over 100 permutations of a covariate that is associated with outcome in the Cox model

is shown (that is, li − l̃i.). In comparison, Figure 3, Panel (b), shows the same metric for

each OOB subject i, averaged over 100 permutations of a noise covariate. Figure 3 shows

that when a variable that is truly associated with the outcome is permuted, this results

in a significant decrease in li (and a corresponding increase in variable importance) when

compared to permutations of a noise covariate.

3.2 Simulation details

The simulation study described in Section 3.3 of the main paper incorporated the structure

of observed data by setting the covariate matrix in each simulation to equal a randomly

selected subset of 100 covariates for all 136 subjects in the cardiovascular disease omics study.

Each of the 100 covariates was standardized to render it with mean 0 and unit variance. The

distribution of the Pearson correlation between pairs of selected covariates is shown in Figure

4. The pairwise Pearson correlations range from -0.54 to 0.99. Each simulated dataset was

generated according to the description in Section 3 of the main paper. Figure 5 shows the

marginal distributions of the standardized values of each of the five selected biomarkers in
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the Cox proportional hazards model . Table 1 presents the average proportions of simulated

datasets in which the five true biomarkers were ‘discovered’, for the settings of (1) No missing

data and (2) Missing all data following the first positive self-report, respectively.

4 Application: Women’s Health Initiative Clinical Trials

and Observational Study SHARe

Table 2 presents a summary of the baseline characteristics of the 9873 subjects in the WHI

Clinical Trials and Observational Study SHARe. Table 3 presents a summary of genes that

either contain or flank the SNPs identified among the top 10 by at least one analysis presented

in this paper that have been previously reported in association with Type 2 diabetes. Figure

6 shows a bar plot of the variable importance of each SNP (1 through 88,277) resulting

from the analysis based on the proposed algorithm - the horizontal dashed line indicates the

variable importance threshold separating the top 10 SNPs from the rest.
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No missing data
Missing all data following first

positive self-report

1− Sj+1 ϕ1 ϕ0 pRSF p1 pRSF p1

0.10 1.00 1.00 0.692(±0.0462) 0.700(±0.0458) 0.692(±0.0462) 0.728(±0.0445)

0.75 1.00 0.634(±0.0482) 0.722(±0.0448) 0.634(±0.0482) 0.736(±0.0441)

0.61 0.995 0.574(±0.0494) 0.702(±0.0457) 0.574(±0.0494) 0.706(±0.0456)

1.00 0.90 0.464(±0.0499) 0.698(±0.0459) 0.464(±0.0499) 0.534(±0.0499)

0.30 1.00 1.00 0.778(±0.0416) 0.752(±0.0432) 0.778(±0.0416) 0.772(±0.0420)

0.75 1.00 0.742(±0.0438) 0.76(±0.0427) 0.742(±0.0438) 0.772(±0.0420)

0.61 0.995 0.700(±0.0458) 0.744(±0.0436) 0.700(±0.0458) 0.738(±0.0438)

1.00 0.90 0.654(±0.0476) 0.748(±0.0434) 0.654(±0.0476) 0.638(±0.0481)

Table 1: Simulation - Cardiovascular Disease Omics Study: The average proportion of datasets (±SE)

in which the five true biomarkers are ranked among the top five according to three measures of variable

importance, namely (1) original RSF algorithm (pRSF ); and (2) variable importance from the modified RSF

algorithm (p1). 1 − SJ+1, ϕ1, ϕ0 denote the cumulative incidence in the reference group, sensitivity and

specificity, respectively.
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Gene Symbol Association Type PubMed Example

DCN Biomarker Bolton et al., 2008

WWOX Genetic Variation Sakai et al., 2013

RYR2* Biomarker Palmer et al., 2012; Dong et al., 2011

DACH1* Biomarker McDonough et al., 2011

ESRRG* Biomarker, Genetic Variation Murea et al., 2011

USH2A Biomarker, Genetic Variation Yeh et al., 2016

GPATCH2* Biomarker, Genetic Variation Murea et al., 2011

CDC123 Biomarker, Genetic Variation Fogarty et al., 2014

Table 3: Genes selected by the modified RSF algorithm that were reported to be related

to risk of type 2 diabetes in previous literature. * indicates genes that were reported to be

associated with type 2 diabetes in African Americans or Hispanic Americans.
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Continuous Variables Mean(SD)

Age(years) 60.65(6.768)

Dietary Energy Intake 1121.56(932.210)

Minutes of recreational physical activity per week 153.41(171.475)

Body Mass Index 30.02(6.043)

Categorical Variables N (%)

Smoking Status

Never smoked 5372 (54%)

Past smoker 3567 (36%)

Current smoker 934 (10 %)

Alcohol Intake

Non-drinker 1597 (16%)

Past drinker 2693 (27%)

<1 drink per month 1375 (14%)

<1 drink per week 2088 (21%)

1 to <7 drink per week 1647 (17%)

7+ drink per week 473 (5%)

Hormone Therapy Use

Never use hormones 4310 (43 %)

Past hormone user 2340 (24%)

current hormone user 3223 (33%)

Family History of Diabetes

No 4838 (49%)

Yes 4198 (43 %)

Don’t know 837 (8 %)

Education

<8 grade 1244 (13%)

High school 1404 (14%)

College 3743 (38%)

Post-graduation 3482 (35%)

Table 2: Baseline characteristics of the subjects in the WHI Clinical Trials and Observational

Study SHARe (n = 9, 873).
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Figure 1: Effects of error in self-reported outcomes on Random Survival Forests. Proportion of

datasets in which the true biomarkers ranked among the top five by Random Survival Forests, under different

parameter settings with respect to sensitivity (ϕ1), specificity (ϕ0) and cumulative incidence in the reference

group during study period. Data were simulated assuming no missed visits.
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Figure 2: Cardiovascular Disease Omics Study. Realization of a single tree fit to

an bootstrap dataset. Var1-Var5 (red) denote true biomarkers and Var6-Var100 denote

covariates with no association with outcome.
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Panel (b): Noise covariate

Figure 3: Cardiovascular Disease Omics Study. The average change in log likelihood

for each subject i in the OOB dataset over k = 1 · · · 100 permutations of a specific covariate

is shown (li − l̃i.). Panel (a) Permuted covariate is associated with the outcome in the Cox

proportional hazards model (true biomarker); Panel (b) Permuted covariate is not associated

with outcome (noise covariate).
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Figure 4: Cardiovascular Disease Omics Study. Distribution of Pearson correlation

between pairs of 100 selected covariates.
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Figure 5: Cardiovascular Disease Omics Study. Marginal distributions of the standard-

ized values of each of the five true biomarkers in the Cox proportional hazards model.
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Figure 6: Women’s Health Initiative Genome-wide association study (GWAS) of incident, Type

II diabetes. Bar plot of variable importance for each of 88,277 SNPs. The horizontal dashed line indicates

the threshold of selecting top 10 SNPs.


