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Video: Fixed Rank Kriging (FRK) of daily XCO2 data from OCO-2 in 2015, where the
model is spatio-temporal (defined on geoid×time, in days). Click here to view
[Also available on YouTube at https://www.youtube.com/watch?v=KXId_dBuHoU]

Figure 1: “Blue Marble” (Credit: Astronaut Photograph, NASA Johnson Space Center, 7
December 1972)
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(a) Launch of OCO-2 satellite on 2 July 2014 (Credit:
Photo from NASA)

(b) OCO-2 satellite in orbit (Credit: Illustration from
NASA)

Figure 2: OCO-2 launch and NASA illustration of OCO-2 satellite in orbit
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Details of the Main Paper’s Section 2.1: Optimal retrievals for a linear forward
model

In order to understand the so-called Optimal Estimation retrieval (Rodgers, 2000; Miller
et al., 2007; Connor et al., 2008; Bréon and Ciais, 2010; Bösch et al., 2011; O’Dell et al.,
2012) used by OCO-2, it helps to consider initially what a retrieval would look like if the
forward model were linear:

FL(X) ≡ c + KX ,

where c is nε-dimensional and K is an nε×nα matrix. Clearly, FL(X) could be thought of as
an approximation to a nonlinear vector-valued function F(X), subjected to a Taylor-series
expansion about a known vector X0:

F(X) = F(X0) +
∂F(x)

∂x

∣∣∣∣
x=X0

× (X−X0) + λ

≡ c + KX + λ ,

where λ models the lack of fit of FL to (the non-linear) F, and the choice of linearization
point X0 is important. Thus, if F is non-linear and the linear forward model, FL(X) =
c + KX, were used, then the forward-model error ε would contain yet another component
of variability.

In this subsection, I assume a linear forward model,

Y = c + KX + ε ,

and I describe Optimal Estimation (Rodgers, 2000) in terms of it. Section 2.2 of the
Main Paper considers a more realistic non-linear forward model. Instead of working with
the marginal distribution of Y in the forward model, a strategically clever alternative is
to describe the probability structure (from which the uncertainty is quantified) through
conditional distributions. Let [Y|X] denote the density of Y given X. Then

−2 ln[Y|X] = (Y− c−KX)′S−1ε (Y− c−KX) + c1 .

This distribution corresponds to the so-called measurement equation in a state-space model
or, equivalently, corresponds to the data model in a hierarchical statistical model (and it is
called a forward model in Optimal Estimation).

The so-called state equation (equivalently a process model in a hierarchical statistical
model, or a prior distribution in Optimal Estimation) is,

X = Xα +α ,
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where α ∼ Gau(0,Sα) independent of ε, and X, Xα, and α are nα-dimensional vectors.
Notice that biases, or systematic errors, can be incorporated into this model, along with
random errors whose variances characteristically decrease with averaging. Hence, the den-
sity [X] of the atmospheric state is given by:

−2 ln[X] = (X−Xα)′S−1α (X−Xα) + c2 .

The implication of this is that the “true” state X is random, although some geophysicists
find this a leap too far. While the true state might be independent of the scientist modeling
it, the lack of complete knowledge of the state is inside the head of the modeler (perhaps
representing a consensus model after much discussion with fellow scientists). Thus, the
source of randomness here is the scientist’s uncertainty about the true state.

Now assume that all parameters necessary for retrieval (e.g., K, Sε, Xα, Sα) are known.
Inference on the nα-dimensional state vector X is based on its predictive distribution (called
a posterior distribution in Optimal Estimation) of X given Y, namely [X|Y]. From Bayes’
Rule:

−2 ln[X|Y] = (Y− c−KX)′S−1ε (Y− c−KX) + (X−Xα)′S−1α (X−Xα) + c3

= (X− X̂)′Ŝ
−1

(X− X̂) + c4 ,

where the posterior mean is:

E(X|Y) ≡ X̂ = Xα + G(Y− c−KXα) ;

the posterior covariance matrix is:

cov(X|Y) ≡ Ŝ = {S−1α + K′S−1ε K}−1 ;

the so-called “gain matrix” G is:

G = {S−1α + K′S−1ε K}−1K′S−1ε ;

and the so-called “averaging kernel matrix” is:

A = GK = {S−1α + K′S−1ε K}−1K′S−1ε K .

Hence, the retrieved state is:

X̂ = Xα + {S−1α + K′S−1ε K}−1K′S−1ε (Y− c−KXα) ,
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and no iterative scheme is needed to obtain X̂. Provided the forward model F is linear,
the predictive distribution, [X|Y], is Gaussian; specifically,

X|Y ∼ Gau(X̂, Ŝ) .

Finally, it is straightforward to see that the prediction error is:

X̂−X = (A− I)α+ Gε ,

where recall that ε is the error in the measurement equation, which is independent of α,
the error in the state equation. This relationship becomes a first-order approximation when
the forward model is non-linear, as do many other relationships given in this subsection;
see Section 2.2 of the Main Paper.

Details of the Main Paper’s Section 3.1: Optimal spatial prediction (kriging)
In what follows, I consider the generic spatial prediction problem of predicting the

underlying univariate spatial process X(·) defined by the vector,

Xp ≡ (X(u1), . . . , X(uN))′ , (1)

whose elements are indexed by the centroids {u1, . . . ,uN} of the N BAUs that tessellate
D. The application in Subsection 3.3 of the Main Paper is to the underlying random field
X(·) = XCO2(·), the true column-averaged CO2 values. Kriging is a statistical method
of spatial prediction originally proposed by Matheron (1963). It is linear, unbiased, and
amongst all such predictors minimizes the mean squared prediction error; see (9) and (10)
below. With a slight abuse of notation, after tessellation, I re-define the spatial domain of
interest to be

D ≡ {u1, . . . ,uN}, (2)

recognizing that uj represents the j-th BAU, for j = 1, . . . , N . The prediction of Xp is
obtained from the L2 retrievals Yd, given by (15) in the Main Paper, and I shall now
review briefly how to do this optimally using kriging (i.e., so that the uncertainty of the
predictor is minimized). Visualization in the form of a map of the L3 data and a map of
their uncertainties is a powerful way to generate hypotheses about the behavior of Xp.

Data are incomplete and noisy; now model the data Yd = (Y (s1), . . . , Y (sn))′ with a
data model,

Y (si) = X(si) + ξ(si); si ∈ DO, (3)

where ξ(·) is defined on DO = {s1, . . . , sn} and represents mean-zero independent measure-
ment errors that are also independent of X(·). Then var(Y (si)|X(si)) = var(ξ(si)) ≡ σ2

ξ ,
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which is the measurement-error variance. The BAUs are defined at a very fine resolution, so
in practice locations in DO are moved slightly in order that DO ⊂ D (Cressie and Kornak,
2003). Often n = |DO| << |D| = N . In what follows, it is useful to write

Xd:p ≡ (X(s1), . . . , X(sn))′, (4)

which is the hidden process X(·) restricted to the data locations, DO.
Now model the true process X(·) with a process model,

X(s) = µ(s) + δ(s); s ∈ D, (5)

where µ(·) represents large-scale spatial variation (deterministic trend) that is often as-
sumed to be a regression, µ(·) ≡ f(·)′β, for covariates f(s) ≡ (f1(s), . . . , fp(s))′ known at all
s ∈ D; and δ(·) represents small-scale spatial variation modeled as a mean-zero stochastic
process with second moment,

cov(δ(s), δ(u)) ≡ C(s,u;φ). (6)

When the process X(·) is Gaussian, it is usually called a Gaussian Field (GF); see, for
example, Banerjee et al. (2015). While the ensuing development does not require an as-
sumption of a GF, relying instead on optimality of linear predictors, henceforth I assume
that both measurement error in (3) and the underlying spatial process in (5) are Gaussian.
Some discussion of how to handle non-Gaussian L2 retrieval data is given in Section 5 of
the Main Paper.

The optimal spatial predictor of X(s) (for squared error loss) is E(X(s)|Yd), for all
s ∈ D, which is the mean of the predictive distribution. Note that it is implicit in what
follows that all parameters are fixed, so the statistical analyses I give are not fully Bayesian
(Section 5 of the Main Paper). In practice, the parameters are estimated from Yd and
“plugged in” to the spatial predictor. This is called a “Case 1” state-of-knowledge in
Section 5 of the Main Paper, and the resulting inference on X(·) has been called empirical
BLUP (Best Linear Unbiased Prediction); in the context of small area estimation, bias-
corrected inference for this problem has been considered by Prasad and Rao (1990).

The predictive mean is linear in Yd if all processes are GFs, which is henceforth assumed.
Consider the class of linear predictors,

X∗(s) = λ(s)′Yd + κ(s); s ∈ D,

where λ(s) ≡ (λ1(s), . . . , λn(s))′ is an n-dimensional vector of real numbers and κ(s) is
a scalar. Under squared-error loss and assuming E(X∗(s)) = E(X(s)) (unbiasedness),
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the optimal (i.e., minimum mean squared prediction error) linear predictor is a (simple)
kriging predictor (e.g., Cressie, 1993, pp. 109-110). Because I assume known parameters
for this derivation, the subtle differences between simple, ordinary, and universal kriging
are avoided. The kriging coefficients, λ(s) and κ(s), are obtained by minimizing the mean
squared prediction error (MSPE),

E(X∗(s)−X(s))2 , (7)

with respect to λ1(s), . . . , λn(s), and κ(s), subject to unbiasedness, namely

E(X∗(s)) = E(X(s)). (8)

Assuming µ(·) = f(·)′β in (5) and using the method of Lagrange multipliers, the optimal
coefficients λ̃(s) and κ̃(s) are (e.g., Cressie, 1993, p. 110),

λ̃(s)′ = cX(s)′Σ−1Yd and κ̃(s) = {f(s)′ − cX(s)′Σ−1Yd F}β,

where cX(s)′ ≡ cov(X(s),Xd:p), recall that Xd:p is given by (4), ΣYd ≡ cov(Yd), and
F ≡ (f(s1), . . . , f(sn))′. Finally, the kriging predictor of X(s) is:

X̃(s) ≡ λ̃(s)′Yd + κ̃(s); s ∈ D , (9)

and its MSPE (or kriging variance) is:

E(X̃(s)−X(s))2 = C(s, s;φ)− cX(s)′Σ−1Yd cX(s) . (10)

It is straightforward to show (e.g., Cressie and Wikle, 2011, p. 141) that the predictor
E(X(s)|Yd) has MSPE given by E(var(X(s)|Yd)). Under the Gaussian assumptions de-
tailed above, E(X(s)|Yd) = X̃(s), the kriging predictor, and hence

E(X̃(s)−X(s))2 = E(var(X(s)|Yd)) = var(X(s)|Yd) . (11)

Computing Σ−1Yd is generally O(n3), which means that kriging given by (9) and (10) is
not generally scalable. In Subsection 3.2 of the Main Paper, I present a spatial random
effects (SRE) model for C(s,u;φ) defined by (6) that results in scalable kriging. Another
way to reduce the computational burden of kriging is to use a moving window around the
prediction location that limits the dimension of the data vector Yd and hence of the matrix
Σd (Haas, 1995; Hammerling et al., 2012; Tadić et al., 2017). Zammit-Mangion et al. (2017)
discuss the pros and cons of both approaches and point out that local kriging’s underlying
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probability model is not coherent, which will lead to difficulty when making change-of-
support calculations or when attempting to carry out flux inversion from the L3 maps.

Details of the Main Paper’s Section 3.2: The spatial random effects (SRE)
model

There are a number of ways to make spatial predictions scalable: Reduced-rank methods
are reviewed by Wikle (2010), and the use of sparse precision matrices have been proposed
by Lindgren et al. (2011) and Nychka et al. (2015). In what follows, I shall use one of the
reduced-rank methods known as Fixed Rank Kriging (FRK), which is derived from the
spatial random effects model.

Assume in (5) that
δ(s) = Φ(s)′η + ν(s); s ∈ D, (12)

where η is an r-dimensional random vector with mean 0 and var(η) = Kη; Φ(s) is an r-
dimensional vector of spatial basis functions of s ∈ D, and write Φ(·) = (Φ1(·), . . . ,Φr(·))′;
r is fixed << n; and ν(·) is a stochastic process defined on D that represents fine-scale
variation. One could think of ν(·) as having (equivalent) range less than the smallest
distance between any pair of data locations or with support below the spatial resolution
of the data. Model (12) has been called a spatial random effects (SRE) model (Cressie
and Johannesson, 2006, 2008), where the k-th spatial random effect is ηk with contribution
ηkΦk(s) to the error (12); k = 1, . . . , r.

Recall that µ(·) in (5) is given by

µ(·) = f(·)′β =

p∑
j=1

βjfj(·) , (13)

which is a linear combination of p spatial covariates that defines a deterministic spatial
trend. Because this term represents deterministic large-scale variation, the covariates’ role
in describing spatial variation is different from the role of the spatial basis functions. It
is important to choose the fixed effects, {fj(·) : j = 1, . . . , p}, and the random effects,
{Φk(·) : k = 1, . . . , r}, wisely. Intuitively, dependence of Yd on a basis function Φk(·) could
be positive or negative for data collected under similar circumstances. The same intuition
tells us that dependence of Yd on a covariate fj(·) should always be the same sign for
data collected under similar circumstances. Hughes and Haran (2013) give ways to avoid
confounding fixed effects (covariates) and random effects (basis functions).

When there is no physical reason for using a specific collection of basis functions, multi-
resolutional classes could be used, such as Fourier functions, wavelets, or bisquares. They
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do not have to be orthogonal, but generally they are multiresolutional with centers that
are space-filling as resolutions get finer and finer, and their apertures are the same for a
given resolution (Cressie and Johannesson, 2008). For example, the bisquare spatial basis
function φ(·) centered at c with aperture w is defined by,

φ(s; c, w) ≡ (1− ‖s− c‖2/w2)2I(‖s− c‖ ≤ w); s ∈ Rd,

where I(·) denotes the indicator function. Figure 3(a) of the Supplemental Material shows
a bisquare basis function in R2, and Figure 3(b) of the Supplemental Material is an example
of basis-function centers at three resolutions, distributed regularly across the plane. Then
Φk(s) = φ(s; ck, wk) for some choice of center ck and aperture wk; k = 1, . . . , r.

The SRE model given by (12) has covariance function,

cov(δ(s), δ(u)) = Φ(s)′KηΦ(u) + Cν(s,u); s,u ∈ Rd, (14)

where Kη ≡ cov(η) is an r × r positive-definite matrix with r fixed << n; and Cν is a
covariance function that is often represented as white noise:

Cν(s,u) = σ2
νI(s = u); s,u ∈ Rd. (15)

That is, the spatial covariance function, C(s,u;φ) defined in (6), is given by (14) and (15)
for the SRE model, where φ ≡ {K, σ2

ν} denotes the SRE model’s parameters. It should be
noted that (14) is spatially non-stationary, and it is a valid covariance function for s and u
defined on the surface of the sphere (or any other manifold). Other covariance models on
the sphere embed it in R3 and assume stationarity, isotropy, and a chordal distance; the
use of the SRE model avoids this non-physical feint to ensure that all covariance functions
are non-negative definite.

The covariance matrix of the data, Yd, is of particular interest because its inverse, Σ−1Yd ,
appears prominently in the kriging predictor (9) and its MSPE (10). Now under the SRE
model,

ΣYd = var(Yd) = Φ′KηΦ + σ2
νE + σ2

ξV, (16)

where Φ ≡ (Φ(s1), . . . ,Φ(sn))′ is an n × r matrix of basis functions evaluated at data
locations DO; recall that Kη = var(η) and σ2

ν is given in (15); σ2
ξ is the measurement-error-

variance parameter of the measurement-error term ξ(·) in (3); and E and V are known
diagonal matrices.

Inversion of ΣYd is generally O(n3) in computational complexity. However, for the
SRE model (12), it is O(nr2) = O(n), for r fixed (Cressie and Johannesson, 2008). The
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inverse of the data covariance matrix using the Sherman-Morrison-Woodbury formula (e.g.,
Henderson and Searle, 1981), is

Σ−1Yd = U−1 −U−1Φ′(K−1η + ΦU−1Φ′)−1ΦU, (17)

where U ≡ σ2
νE + σ2

ξV is a diagonal n× n matrix. Notice that the only non-trivial inverse

in (17) is that of (K−1η + ΦU−1Φ′), which is of fixed dimension r × r.
Several comments should be made about the SRE model: It looks like a truncated

Karhunen-Loéve expansion (e.g., Papoulis, 1965), except that for the SRE model the basis
functions do not have to be orthogonal and Kη does not have to be diagonal. It defines a
spatial process that is not stationary and hence not isotropic, and its covariance parameters
are given by the r × r positive-definite matrix Kη and the fine-scale variance σ2

ν ≥ 0; note
that it is possible to parameterize Kη, although when datasets are large, estimation of
Kη and σ2

ν can proceed directly via the method of moments (Cressie and Johannesson,
2008), the EM algorithm (Katzfuss and Cressie, 2009), or maximum likelihood estimation
(Tzeng and Huang, 2017). From a rich class of multi-resolution spatial basis functions
(e.g., wavelets), one can approximate stationary covariance models (e.g., Matérn) with an
SRE model as described in Kang and Cressie (2011). The SRE model also handles spatial
change-of-support seamlessly: On spatial support B ⊂ D,

δ(B) ≡ 1

|B|

∫
B

δ(s) ds = Φ(B)′η + ν(B),

where Φ(B) ≡ 1
|B|

∫
B

Φ(s) ds and ν(B) ≡ 1
|B|

∫
B
ν(s) ds. Upon comparing this expression

to (12), it is clear that the process δ with spatial support B also follows an SRE model
with the same parameter Kη and basis functions Φ(B) that can be obtained by (off-line)
integration of Φ(·).

The model has been criticized as giving realizations that are too smooth (Stein, 2014),
but that is relative to what “too” means. Bradley et al. (2015) and Zammit-Mangion et al.
(2017) address this by establishing that less-smooth predictors lack the full optimality ob-
tained from kriging. Further, since the variance of the fine-scale variation, σ2

ν , is estimated
and not specified, the SRE model is adaptive to the smoothness of the process; further
details are given in Zammit-Mangion and Cressie (2017).

The more important generalization is to move away from fine-scale variation ν(·) having
white-noise covariance given by (15). That is, instead of using a nugget effect (Matheron,
1963) for the fine-scale variation, one could use a model that incorporates local spatial
dependence while maintaining fast computation for the inverse of the no-longer-diagonal
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matrix U in (17). A nearest-neighbor conditional autoregressive (CAR) process at the
BAU scale is one possible choice for ν(·); then the matrix E in (16) (and hence U in (17))
is not diagonal, but it is very sparse and its inverse can be obtained quickly (Ma and Kang,
2017).

Details of the Main Paper’s Section 3.4: Equal area hexagonal grids
The latitude-longitude (lat-lon) coordinate system has served navigation on the geoid

well, but for the purpose of mapping geophysical variables aggregated onto equal fractions
of longitude, every change in latitudinal zone results in a change of the cells’ areas, with
the biggest areal difference occurring between cells in the equatorial zones and cells in the
polar zones. The geophysical variable X(B) on spatial support B is:

X(B) =
1

|B|

∫
B

X(s) ds,

and the variability of X(B) is greater for smaller B. For this reason, global gridding systems
that have (mostly) equal area have been developed (e.g., Sahr et al., 2003).

The Icosahedral Snyder Equal Area (ISEA) grid tessellates the sphere and offers hexag-
onal Basic Areal Units (BAUs) of equal area, apart from a small number of pentagons
(Sahr et al., 2003). The ISEA grid is based on a hexagonal tessellation of the sphere with
12 pentagons at corners of the icosahedron. All calculations are done on the flattened
icosahedron superimposed on a hexagonal grid; see Figure 5. Whether a latitude-longitude
grid or a hexagonal grid is used, the per-grid-cell computation time for FRK is the same.

The hexagons are wrapped back onto the sphere and different views of Earth show a
map of the geophysical variable. Figure 6 shows two successive resolutions of an ISEA
grid, a map of the geophysical variable XCO2 from the Parametrized Chemistry Transport
Model (or PCTM; see Kawa et al., 2004) on the flattened icosahedron, and an Earth view
of the same map over North America (Stough et al., 2014).

When areas of spatial support are equal, the comparative interpretation of grid values is
uncomplicated, as is the computation of kriging standard errors. In the case of OCO-2, the
high-latitude regions generally have no OCO-2 data, and kriging is done in the convex hull
of the retrieval locations, DO. Consequently, the difference between kriging on latitude-
longitude grids and kriging on hexagonal grids will be small for L3 maps based on OCO-2
data. For other geophysical variables, like stratospheric ozone, the polar regions are the
most important, and L3 maps on equal area grids like ISEA have a distinct advantage.
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(a) Generic bisquare basis function in R2

(b) An example of multi-resolution centers of a collection of spatial basis
functions on a sub-geoid flattened onto R2. The symbols ‘o’, ‘+’, and ‘x’ are
used to distinguish coarse, medium, and fine resolutions, respectively

Figure 3: Multi-resolution bisquare spatial basis functions in R2 (Credit: Sengupta et al.,
2016)
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Figure 4: Comparison of XCO2 values for FRK predictors from OCO-2 data and Total
Carbon Column Observing Network (TCCON) averages of measurements in a 60-minute
window around the satellite’s local crossing time at the Lamont, OK TCCON site. The
dark-blue shading gives a prediction interval between ± FRK standard error, and the light-
blue shading gives a prediction interval between ± 2 × FRK standard error. The OCO-2
data are sparse in the middle of the period plotted, and the two prediction intervals are
most easily distinguished there
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In the FRK software described in Zammit-Mangion and Cressie (2017), there is an
option to use either the lat-lon grid or the Icosahedral Snyder Equal Area (ISEA) grid
based on a hexagonal tessellation. The per-grid-cell computation time is the same for
either grid.
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tured
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(a) Earth and the ISEA Resolution 3 grid superimposed(b) Earth and the ISEA Resolution 4 grid superimposed

(c) Flattened icosahedron with model-based XCO2 val-
ues shown at Resolution 6. The insert panel shows some
repeated triangles for spatial neighborhood calculations

(d) Earth view of (c)

Figure 6: Geoid with ISEA grid featured (Credit: Timothy Stough, JPL-Caltech)17



Figure 7: Sounding locations from two remote sensing instruments that retrieve CO2 mea-
surements: The AIRS soundings are in red, and the OCO-2 soundings are in blue; footprint
sizes are not to scale (Credit: Timothy Stough, JPL-Caltech)

Haas, T. C. (1995). Local prediction of a spatio-temporal process with an application to
wet sulfate deposition. Journal of the American Statistical Association 90, 1189–1199.

Hammerling, D. M., A. M. Michalak, C. O’Dell, and S. R. Kawa (2012). Global CO2 distri-
butions over land from the Greenhouse Gases Observing Satellite (GOSAT). Geophysical
Research Letters 39.

Henderson, H. and S. Searle (1981). On deriving the inverse of a sum of matrices. SIAM
Review 23, 53–60.

Hughes, J. and M. Haran (2013). Dimension reduction and alleviation of confounding for
spatial generalized linear mixed models. Journal of the Royal Statistical Society, Series
B 75 (1), 139–159.

Kang, E. L. and N. Cressie (2011). Bayesian inference for the spatial random effects model.
Journal of the American Statistical Association 106, 972–983.

Katzfuss, M. and N. Cressie (2009). Maximum likelihood estimation of covariance param-
eters in the spatial-random-effects model. Proceedings of the Joint Statistical Meetings,
American Statistical Association, Alexandria, VA, 3378-3390.

18



Kawa, S., D. Erickson, S. Pawson, and Z. Zhu (2004). Global CO2 transport simulations us-
ing meteorological data from the NASA data assimilation system. Journal of Geophysical
Research: Atmospheres 109, D18.

Lindgren, F., H. Rue, and J. Lindström (2011). An explicit link between Gaussian fields
and Gaussian Markov random fields: the stochastic partial differential equation approach.
Journal of the Royal Statistical Society, Series B 73 (4), 423–498.

Ma, P. and E. Kang (2017). Fused Gaussian process for very large spatial data.
arXiv:1702.08797.

Matheron, G. (1963). Principles of geostatistics. Economic Geology 58, 1246–1266.

Miller, C. E., D. Crisp, P. L. DeCola, S. C. Olsen, J. T. Randerson, A. M. Michalak,
A. Alkhaled, P. Rayner, D. J. Jacob, P. Suntharalingam, D. B. A. Jones, A. S. Denning,
M. E. Nicholls, S. C. Doney, S. Pawson, H. Bösch, B. J. Connor, I. Y. Fung, D. O’Brien,
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