
Supplementary sections to

Constructing Two-Level Designs by Concatenation of
Strength-3 Orthogonal Arrays

Alan R. Vazquez1, Peter Goos1, 2, and Eric D. Schoen1, 3

1University of Antwerp, Belgium
2University of Leuven, Belgium

3TNO, Zeist, Netherlands

April 30, 2018

This document includes the following sections.

A Objective functions and fast update methods

B Algorithm performance evaluation

C Parent designs

D Concatenated designs

E 128-run designs of strength 4

A Objective functions and fast update methods

The CC/VNS algorithm either optimizes the B4 value or the F4 vector of the concatenated

design. The objective functions of the algorithm are derived from the B4 value and the

F4 vector, but, for computational reasons, they are not the same. The objective function

values must be evaluated after each change in the lower parent design. This section provides

a detailed discussion of the way in which we evaluate the objective function at a low

computational cost.

1



A.1 B4 optimization

The direct calculation of B4 in a k-factor design D with N runs and coded levels −1

and 1 requires the evaluation of all k!/ [4!(k − 4)!] four-factor interaction contrast vectors.

A computationally cheaper alternative was proposed by Butler (2003). He expressed the

similarity of the runs in D with the matrix T = DDT , and he showed that, for any

orthogonal array, M4 = 24B4 + k(3k − 2), where M4 = N−2
∑N

i=1

∑N
j=1 T

4
ij is the fourth

moment of T . Clearly, minimizing M4 is equivalent to minimizing B4.

Let Du and Dl be two two-level orthogonal arrays with n runs, m factors, and coded

levels −1 and 1. Consider the concatenated design D of dimension N ×m, where N = 2n.

We define the n × n matrices A = DuD
T
u , B = Dl D

T
l , and C = DuD

T
l . The similarity

matrix T of the concatenated design D can then be partitioned as

T =

 A C

CT B

 .
Therefore, we can compute the fourth moment M4 of design D as

M4 = N−2

(
n∑

i=1

n∑
j=1

A4
ij +

n∑
i=1

n∑
j=1

B4
ij + 2

n∑
i=1

n∑
j=1

C4
ij

)
. (1)

It is easy to show that the sum of all the elements A4
ij and B4

ij is invariant to sign-

reversals of columns, column permutations, and row permutations in Du and Dl. As a

result, minimizing the M4 value of the concatenated design D is equivalent to minimizing

the sum of the elements C4
ij in (1). For this reason, the CC/VNS algorithm minimizes the

following objective function to improve the B4 value of the concatenated design:

b(D) =
n∑

i=1

n∑
j=1

C4
ij.

We further reduce the computations required as follows. We first note that the calcula-

tion of b(D) implies a matrix multiplication of an n×m matrix Du and an m× n matrix

DT
l . The number of computations required by this operation is [2m− 1]n2. So, every time

the algorithm sign switches a column or swaps two columns in Dl, recalculating the matrix

2



DuD
T
l from scratch requires [2m− 1]n2 calculations to get the resulting objective value.

A computationally cheaper approach is to change only the elements in C that correspond

to the columns of Dl involved in a sign switch or swap.

Denote the columns of Du and Dl as ui and vi, respectively, i = 1, . . . ,m. The matrix

C can be expressed as a sum of matrices,

C = u1 v
T
1 + · · · + umv

T
m,

where ui v
T
i is a matrix of dimension n × n. The matrix ui v

T
i is the contribution of the

column ui in Du and the column vi in Dl to C. This contribution is independent of the

other columns in the parent designs. Thus, each time we sign switch or swap two columns

in Dl, we just need to change their contributions and update the matrix C. The update

formulas for C are as follows:

• Sign switch the column vi: Update matrix C to C ′ = C − 2 ui v
T
i , where C ′ is the

updated matrix. That is, subtract the contribution of the current column vi and add

the contribution of the new column −vi. Note that the contribution of −vi is −ui vTi .

This procedure requires 2n2 +n calculations: n multiplications to compute −2 ui , n2

multiplications to compute −2 ui v
T
i , and n2 summations to add the result to matrix

C.

• Swap columns vi and vj: Update matrix C as C ′ = C−(ui v
T
i +uj v

T
j )+(ui v

T
j +uj v

T
i ).

That is, remove the contribution of columns ui and vj in their current positions from

C and add their new contribution due to their new positions in the lower design. Note

that this procedure requires 8n2+2n calculations: 2n multiplications to compute −ui
and −uj , 4n2 multiplications to compute −ui vTi ,−uj vTj , ui vTj and uj v

T
i , and 4n2

summations to add the results to matrix C.

The number of calculations required by the updating formulas for matrix C is clearly

smaller than the matrix multiplication DuD
T
l when m > 5. More importantly, the number

of calculations required by the updating formulas does not depend on the numbers of

factors in the concatenated design. As a specific example, for two parent designs with 32

runs and 10 factors, the number of calculations required for a complete update of C when

3



making a change in Dl is 19,456; the number of calculations required by the quick updating

procedure is 2,080 for a sign switch of a column, and 8,256 for a swap between two columns.

The difference between the number of calculations increases with the number of factors.

Although the number of calculations saved by either updating formula suggests that both

should be included in the implementation of our CC algorithm, the Matlab implementation

only includes the updating formula for a sign switch. A computing time study (not shown)

revealed that the updating formula for a swap of two columns requires the same or slightly

more time than just changing the positions of the two columns and calculating matrix C

from scratch. This is probably due to computer memory allocation.

A.2 F 4 optimization

Let the F4 vector of a strength-3 design be F4 = (e0, e1, . . . , er), where ek denotes the

frequency of the J4-characteristics that equal N − 16k > 0 (Deng and Tang, 1999). Also,

note that the run sizes of concatenated strength-3 designs are multiples of 16, so that

r = N/16 − 1. We define the objective function, f(D), as a linear combination of the

elements of F4, that is

f(D) = M0e0 + · · · +Mrer.

To mimic the G-aberration criterion, we ensure that M0 >> · · · >> Mr. More specifi-

cally, we use Mi = 105(r−i), where i = 0, 1, . . . , r.

In Matlab, the F4 vector can be efficiently generated by using the two-factor interaction

contrast matrix to calculate the J4-characteristics. Let X and Y be the two-factor inter-

action contrast matrices for designs Du and Dl, respectively. Without losing generality, let

the columns of the matrix X (Y ) be formed as the element-wise products ci � cj, where ci

is the i-th column of Du (Dl), i = 1, . . . ,m− 1 and j = i+ 1, . . . ,m. Then, the two-factor

interaction contrast matrix of the concatenated design can be constructed as

Z =
[
XT , Y T

]T
.

4



Now, consider the matrix

W = ZTZ = XTX + Y TY. (2)

It is easy to show that each of the J4-characteristics of the concatenated design D occurs

in W six times. In Matlab, this procedure is far more efficient than computing the J4-

characteristics one by one using loop-based operations. Note that the CC/VNS algorithm

performs changes to the lower design only. Therefore, we just need to compute matrix

Y TY and add it to the constant matrix XTX. We can further improve the computing time

by changing only the J4-characteristics of columns involved in a change. We explain this

below for a sign switch in a column of Dl.

Consider a column of D, dr =
[
uTr , v

T
r

]T
, where ur and vr are the rth columns of Du

and Dl, respectively. Let E and G be two submatrices of Z such that the columns of E

include all interactions involving dr and G contains the rest of the interactions. Then, the

matrix U = ETG contains only the J4-characteristics that involve column dr and each of

them appears three times. Note that we can express matrices E and G as

E =
[
ET

u , E
T
l

]T
and G =

[
GT

u , G
T
l

]T
,

where Eu and Gu are submatrices of X and El and Gl are submatrices of Y . Then, we can

write matrix U as

U = ET
uGu + ET

l Gl. (3)

From this expression, it is easy to see that the J4-characteristics of the modified column

d′r =
[
uTi ,−vTi

]T
can be obtained by multiplying matrix ET

l Gl in (3) by −1. For this

reason, to compute the change in the F4 vector of the concatenated design due to a sign

switch of column vr in Dl, we only need to remove the J4-characteristics corresponding to

column dr, and add the J4-characteristics corresponding to d′r.

If the columns vi and vj of Dl are to be swapped, we update Y by computing the

element-wise product of column vi � vj with each of the columns in matrix Y that involve

vi or vj.

5



B Algorithm performance evaluation

We implemented the CC/VNS algorithm in Matlab. In this section, we evaluate its per-

formance for improving concatenated designs. We evaluate the impact of the two main

components of our algorithm, the column change algorithm and the neighborhood struc-

tures of the VNS, on the B4 value and the F4 vector of the concatenated designs. We test

our algorithm using five design cases involving three different run sizes and numbers of fac-

tors. Reported computing times relate to a standard CPU (Intel(R) Core(TM i7 processor,

2.8 GHz, 8 GB)).

B.1 Design cases

Table 1 shows the five design cases we used to evaluate the CC/VNS algorithm. The

concatenated designs differ in run size, number of factors, and parent designs. All parent

designs minimize the G2-aberration criterion. The first instance, OA64One, requires the

construction of a 64-run design with 16 factors by concatenating two different 16-factor

32-run parent designs that do not minimize the G-aberration criterion. The second in-

stance, OA64Two, requires the construction of a 64-run design with 16 factors from two

different 16-factor 32-run parent designs that both minimize the G-aberration criterion.

The third instance, OA80, requires the construction of an 80-run concatenated design with

20 factors from different parent designs that both have minimum G-aberration. For the

fourth instance, OA96One, we consider a 96-run concatenated design with 24 factors that is

constructed by concatenating two 48-run OAs with different F4 vectors. The last instance,

OA96Two, is based on two identical minimum G-aberration 48-run OAs.

Table 2 shows the computing times required for 10 optimizations performed by the

CC/VNS algorithm. For each of the cases in Table 1, Table 2 gives the averages and

standard deviations of the computing times for the two objective functions minimized.

Each optimization started with a random permutation of the lower design’s columns and

a random sign switch in these columns.

Clearly, it takes much more computing time to minimize the F4 objective function than

to minimize B4. For the 96-run design cases with m = 24 factors, on average, more than

one hour is needed for a single optimization. To construct designs that optimize the F4

6



Table 1: Design cases used to evaluate the performance of the CC/VNS algorithm. The
upper (Du) and lower (Dl) parent designs have N/2 runs, m factors, a generalized resolution
R and an F4 vector as indicated. A dash as an element of the F4 vector means that the
corresponding J4-characteristic does not exist. The concatenated designs have N runs and
m factors. Labels of the parent designs come from the enumeration of Schoen et al. (2010).

Du Dl

Case N m Label R F4(48, 32, 24, 16, 8) B4 Label R F4(48, 32, 24, 16, 8) B4

OA64One 64 16 2 4 (−, 76, 0, 256, 0) 140 3 4 (−, 44, 0, 384, 0) 140
OA64Two 64 16 4 4 (−, 28, 0, 448, 0) 140 5 4 (−, 28, 0, 448, 0) 140

OA80 80 20 2 4.4 (−, 0, 285, 0, 4560) 285 3 4.4 (−, 0, 285, 0, 4560) 285
OA96One 96 24 2 4 (66, 0, 0, 3960, 0) 506 60 4.67 (0, 0, 0, 4554, 0) 506
OA96Two 96 24 60 4.67 (0, 0, 0, 4554, 0) 506 60 4.67 (0, 0, 0, 4554, 0) 506

Table 2: Computing times for 10 optimizations performed by the CC/VNS algorithm.
Average time ± standard deviation in seconds.

Instance B4 F4

OA64One 4 ± 1.18 93.1 ± 17.2
OA64Two 3.6 ± 0.86 89.4 ± 23.4

OA80 19.1 ± 5.38 816.8 ± 268.8
OA96One 80.1 ± 14.98 4275 ± 1582.3
OA96Two 78.11 ± 11.95 3733 ± 1186.8

vector with run sizes N > 96 and m > 24, we have to restrict the size of the neighborhood

N4 to be 24!/ [3!(24 − 3)!] = 2024, the size of N4 when m = 24, to keep the computing

times for one iteration within 4 hours.

B.2 CC algorithm

The column change part of the CC/VNS algorithm is an algorithm in its own right. In this

section, we demonstrate the effectiveness of the CC algorithm to minimize the B4 value or

the F4 vector of the concatenated design. For each of the design cases listed in Table 1, we

generate 1,000 random starting plans of the lower parent design and optimize the B4 value

or the F4 vector of the concatenated designs with the CC algorithm only. We compare the

results with 1,000 concatenated designs obtained from a random search. Each design is the

overall best of 10,000 randomly generated, concatenated designs.

7



Figure 1 presents box plots for the B4 values of the concatenated designs found by either

strategy. There are separate panels in the figure for each of the design cases. We display the

medians as dots in all box plots in this document. Figure 1a is concerned with OA64One.

Here, the medians of the B4 values for the random search and the CC algorithm both equal

65.5. For the CC algorithm, the median coincides with the upper quartile so that few of

the B4 values produced by that algorithm exceed the median. For the random search, the

median coincides with the lower quartile, so that most of the B4 values produced by the

random search will be larger than the median. This shows that we are better off by using

the CC algorithm than by conducting a random search.

The case of OA64Two is illustrated in Figure 1b. Here, the median B4 value provided

by the CC algorithm is smaller than the median B4 value of the random search. Finally,

for the larger cases, Figures 1c−1e clearly show that the majority of the B4 values obtained

by the CC algorithm are smaller than those obtained by the random search. We conclude

that the CC algorithm outperforms a random search, and that the improvement over the

random search increases with the size of the design.

To evaluate the F4 optimization, we check the generalized resolution as well as the f(D)

values of the concatenated designs. Figure 2 shows the distribution of the generalized

resolutions of the concatenated designs from the random search and the CC algorithm.

Figure 2a shows that, for the OA64One case, the CC algorithm produces substantially

more designs with a generalized resolution of 4.5 than the random search. The fact that

this resolution is reached in only 10% of the runs of the algorithm suggests that at least

10 restarts of the CC algorithm are needed for an optimal result with the stand alone

CC algorithm. Regarding the OA64two case, Figure 2b shows that the CC algorithm and

the random search resulted in the same number of concatenated designs with generalized

resolution 4.25 and with generalized resolution 4.5. For the 80-run case, Figure 2c shows

that the CC algorithm only produced concatenated designs with a generalized resolution of

4.6, while the random search generated 85 designs with a generalized resolution of 4.4. For

the OA96One case, the CC algorithm created 105 concatenated designs with a generalized

resolution of 4.5, whereas the random search produced only designs with a generalized

resolution of 4.33; see Figure 2d. Finally, all concatenated designs for the OA96Two case

8



had a resolution of 4.67, regardless of whether the CC algorithm or the random search was

used. For this reason, Figure 2 does not include a separate panel for the OA96Two case.

We now turn to the f(D) value of the designs that optimize the F4 vector. Recall

from Section A.2 that f(D) is a linear combination of the elements of the F4 vector, in

which the frequencies of large J4-characteristics receive a larger weight than those of small

J4-characteristics. Low values for the f(D) objective function thus imply that the design

has a high generalized resolution and that the frequency of the largest J4-characteristic

is small. So the f(D) value is able to distinguish designs that have the same generalized

resolution.

Figure 3 shows the f(D) values for the concatenated designs from the random search

and the CC algorithm. Figure 3b and Figure 3c include only designs with a general-

ized resolution of 4.5 and 4.6, respectively, because, otherwise, the weights for the large

J4-characteristics would distort the figure. Figure 3a shows that the medians of the con-

catenated designs from both approaches are the same. For the CC algorithm, the median

coincides with the upper quartile, so that few of the f(D) values exceed the median. For

the random search, the median coincides with the lower quartile, so most of the f(D)

values are larger than the median. So, we are better off by using the CC algorithm than

by conducting a random search. Figures 3b–3e for the other design cases show that the

CC algorithm generally generated concatenated designs with smaller f(D) values and thus

better F4 vectors than the random search.

B.3 Neighborhood structures

In this section, we investigate how important each added neighborhood is for the perfor-

mance of the CC/VNS algorithm. We generated concatenated designs with versions of the

CC/VNS algorithm including only neighborhood N1, including neighborhood N1 and N2,

and so on. For the 64-run cases, the 80-run case, and the 96-run cases, we generated 500

concatenated designs. For the 96-run cases in which the F4 vector was optimized, we only

generated 100 concatenated designs.

Figure 4 shows box plots of the B4 values of the concatenated designs when adding

one neighborhood at a time. For the OA64One case, Figure 4a shows a decrease in the

9



61.0

62.8

64.7

66.5

Random Search Column Change

B
4

(a) OA64One

64.5

65.2

66.0

66.8

Random Search Column Change

B
4

(b) OA64Two

134.6

135.6

136.6

137.6

Random Search Column Change

B
4

(c) OA80

242.3

243.8

245.4

246.9

Random Search Column Change

B
4

(d) OA96One

242.3

243.9

245.4

247.0

Random Search Column Change

B
4

(e) OA96Two

Figure 1: Performance of the column change algorithm and a random search strategy in
terms of minimizing the B4 value. Each boxplot involves 1,000 optimized designs.

median and the variance of the B4 values when neighborhoods two and three are introduced

successively. Using neighborhoods N1−N3, almost all concatenated designs have a B4 value

10



0

25

50

75

100

4.25 4.5

%
 o

f 
d

e
s
ig

n
s

(a) OA64One

0

25

50

75

100

4.25 4.5

%
 o

f 
d

e
s
ig

n
s

(b) OA64Two

0

25

50

75

100

4.4 4.6

%
 o

f 
d

e
s
ig

n
s

(c) OA80

0

25

50

75

100

4.33 4.5

%
 o

f 
d

e
s
ig

n
s

(d) OA96One

Figure 2: Generalized resolution for concatenated designs resulting from random search
(black) and the column change algorithm (gray) for four of the design cases in Table 1.
100% corresponds to 1,000 optimized designs.

of 61. When we also include the fourth neighborhood, half of the resulting concatenated

designs for this case have a B4 value smaller than 61. For the OA64Two case, Figure 4b

shows that introducing the second neighborhood does not lead to smaller B4 values in the

concatenated design. However, successively including neighborhoods three and four leads

to large numbers of concatenated designs with B4 values lower than 65. Figure 4c shows a

decrease in the B4 values of the concatenated designs for case OA80 when the second and

the fourth neighborhood are added; there seems to be no effect of the third neighborhood

in this case. Figures 4d and 4e clearly show a shift in the median and the distribution of

the B4 values produced by each additional neighborhood for the 96-run cases.

The effect of the successive inclusion of the four neighborhoods on the f(D) value is

11



1.2 × 10
+7

1.6 × 10
+10

3.3 × 10
+10

5.0 × 10
+10

Random Search Column Change

f(
D

)

(a) OA64One

8.6 × 10
+6

9.7 × 10
+6

1.1 × 10
+7

1.2 × 10
+7

Random Search Column Change

f(
D

)

(b) OA64Two

2.3 × 10
+7

2.5 × 10
+7

2.8 × 10
+7

3.0 × 10
+7

Random Search Column Change

f(
D

)

(c) OA80

5.0 × 10
+11

1.7 × 10
+15

3.3 × 10
+15

5.0 × 10
+15

Random Search Column Change

f(
D

)

(d) OA96One

8.1 × 10
+7

8.4 × 10
+7

8.7 × 10
+7

9.0 × 10
+7

Random Search Column Change

f(
D

)

(e) OA96Two

Figure 3: Performance of the column change algorithm and a random search strategy in
terms of the f(D) value. Figures (a), (d) and (e) show f(D) values for all designs resulting
from 1,000 starts. In Figures (b) and (c), designs with a generalized resolution of 4.25
(OA64Two) or 4.4 (OA80) are disregarded.

12



shown in Figure 5. For clarity of presentation, we removed the OA64One and OA96One

designs with generalized resolutions of 4.25 and 4.5, respectively. So, all concatenated

designs involving 64, 80, and 96 runs shown in the figure have generalized resolutions

of 4.5, 4.6 and 4.67, respectively. The figure shows that a successive inclusion of the

neighborhoods N1−N4 generally improves the objective function value. The improvement

due to the third neighborhood, however, is substantial only in the OA96One case. For

that case, the median f(D) value over 500 designs decreases from 5 × 1011 to 4.8 × 1011.

As neighborhood N3 is beneficial in at least one case, we retain this neighborhood in the

CC/VNS algorithm.

B.4 Performance for 128-run designs

We further test the potential of the CC/VNS algorithm by constructing 128-run designs

with 10, 15, 20, 25 and 30 factors from 64-run parents with the same number of factors.

We tested B4 optimization as well as F4 optimization.

We obtained suitable parent designs from three different sources. The first one is the

complete collection of regular 64-run designs of strength 3 (Chen et al., 1993). We used the

minimum aberration (MA) designs as parent designs and we label these designs 64.m.MA,

where m is the number of factors. Because all the non-zero J4-characteristics equal 64 in

these designs, we use them for B4 optimization only, as they are less likely to result in

128-run designs with minimal F4 vectors.

The second source of parent designs is the collection of nonregular designs based on

quaternary linear codes (QLC) found by Xu and Wong (2007). That collection includes

one or two 64-run designs for each number of factors up to 56. Whenever two designs are

given, one design has the best B4 value and the other has the best F4 vector of the two. The

parent designs are labeled 64.m.QLC when there is a single QLC design, or 64.m.QLC/B4

and 64.m.QLC/F4 in case there are two different designs.

Finally, we used projections of the 64-run strength-3 OA with 32 factors constructed by

folding-over the Paley Hadamard matrix of order 32 (Sloane, 1999). To find designs with

25 and 30 factors, we evaluated all projections, while for 10, 15 and 20 factors, we evaluated

50,000 random projections. The projections with the best F4 vectors were used as parent

13



60.0

61.7

63.3

65.0

N1 N1 − N2 N1 − N3 N1 − N4

B
4

(a) OA64One

64.0

64.5

65.0

65.5

N1 N1 − N2 N1 − N3 N1 − N4

B
4

(b) OA64Two

133.3

134.1

135.0

135.8

N1 N1 − N2 N1 − N3 N1 − N4

B
4

(c) OA80

241.1

241.9

242.7

243.4

N1 N1 − N2 N1 − N3 N1 − N4

B
4

(d) OA96One

240.8

241.7

242.6

243.4

N1 N1 − N2 N1 − N3 N1 − N4

B
4

(e) OA96Two

Figure 4: B4 values for 500 concatenated designs produced by the CC/VNS algorithm using
neighborhoods N1, N1 −N2, N1 −N3, or N1 −N4.

designs. Details are shown in Section C. These parent designs are labeled 64.m.P. We use

these designs for F4 optimization only as they have larger B4 values than the other parent

14



1.2 × 10
+7

1.3 × 10
+7

1.4 × 10
+7

1.4 × 10
+7

N1 N1 − N2 N1 − N3 N1 − N4

f(
D

)

(a) OA64One

8.6 × 10
+6

9.0 × 10
+6

9.4 × 10
+6

9.8 × 10
+6

N1 N1 − N2 N1 − N3 N1 − N4

f(
D

)

(b) OA64Two

2.1 × 10
+7

2.2 × 10
+7

2.3 × 10
+7

2.4 × 10
+7

N1 N1 − N2 N1 − N3 N1 − N4

f(
D

)

(c) OA80

4.8 × 10
+11

5.0 × 10
+11

5.3 × 10
+11

5.6 × 10
+11

N1 N1 − N2 N1 − N3 N1 − N4

f(
D

)

(d) OA96One

7.1 × 10
+7

7.5 × 10
+7

7.9 × 10
+7

8.3 × 10
+7

N1 N1 − N2 N1 − N3 N1 − N4

f(
D

)

(e) OA96Two

Figure 5: f(D) values for concatenated designs produced by the CC/VNS algorithm using
neighborhoods N1, N1 − N2, N1 − N3, or N1 − N4. The box plots in values (a), (b), (c),
(d) and (e) show results for 470, 500, 500, 93 and 100 designs, respectively.

15



designs.

Table 3: Performance of the CC/VNS algorithm for constructing 128-run designs that
optimize the B4 value.

Parent B4 Percentage of Percentage of
design parent concatenation iterations all plans

64.10.MA 2 0 100 0.089
64.10.QLC 2 0–0.5 88 0.082
64.15.MA 30 12 100 0.000
64.15.QLC 33 12 –13.375 65 0.000
64.20.MA 125 52 100 0.000
64.20.QLC/B4 125 52 100 0.000
64.25.MA 435 198–205 45 0.000
64.25.QLC/B4 435 198–205.5 6 0.000
64.30.MA 945 447–450.5 59 0.000
64.30.QLC 945 447–455.4 13 0.000

Table 3 shows the results for 100 iterations of the CC/VNS procedure when the objective

is to optimize the B4 value. The second column shows the B4 values of parent designs.

The third column shows the range of the B4 values obtained over the 100 iterations. The

fourth column shows the percentage of the iterations in which the design with the smallest

B4 value was found. For the cases with up to 20 factors, 10 iterations should suffice to find

the best design at least once. The cases with 25 and 30 factors are clearly more demanding.

However, the range of B4 values is quite narrow. It seems therefore reasonable to use 10

iterations for these cases as well. The last column shows that only a very small proportion

of all possible plans is visited by the CC/VNS algorithm to find the final concatenated

design.

Table 4 shows the results for 100 iterations of the CC/VNS procedure when the objective

is to optimize the F4 vector. The second and third columns show the generalized resolution

(GR) of the parent and concatenated designs, respectively. The 10-factor parent designs

have resolutions of 4.75 and 4.5. For both cases, the best concatenated 10-factor designs

have GRs of 5. In addition, QLC parent designs with 15, 20, 25 and 30 factors have a

GR of 4, while the corresponding concatenated designs have an improved GR of 4.5. For

all but one case, the parent designs obtained from projections of the folded-over 32-run

16



Table 4: Performance of the CC/VNS algorithm for constructing 128-run designs under F4

optimization.

Parent GR Fmax
4 Percentage of Percentage of

design parent concatenation parent concatenation iterations all plans

64.10.P 4.75 5 96 0 53 0.173
64.10.QLC 4.5 5 8 0 90 0.077
64.15.P 4.75 4.75 726 131-139 1 0.000
64.15.QLC 4 4.5 21 32-34 25 0.000
64.20.P 4.75 4.75 2640 575-602 1 0.000
64.20.QLC/F4 4 4.5 94 160-170 1 0.000
64.25.P 4.75 4.75 6974 1682-1710 1 0.000
64.25.QLC/F4 4 4.5 247 460-483 4 0.000
64.30.P 4.75 4.75 15120 1099-1153 1 0.000
64.30.QLC 4 4.5 561 3800-3835 3 0.000

Paley matrix have the same GR as the corresponding concatenated designs. The next two

columns in Table 4 show the frequency of the largest J4-characteristic of the parent design

and the concatenated design, respectively. The 100 concatenated designs for each case with

15 or more factors show a range of frequencies for the maximum J4-characteristic. The best

value typically occurs only a few times. However, the range of the frequencies is rather

narrow, so that any concatenated designs produced by the CC/VNS algorithm is actually

a good design. The last column of Table 4 shows again that only a very small proportion

of all possible plans is visited when constructing the concatenated design.

C Parent designs

We obtained the 32-run parent designs for the 64-run concatenated designs from the com-

plete catalogs available in Schoen et al. (2010). The parent designs we considered for the

64-run designs that optimize the B4 value were the 32-run OAs that have a minimum B4

value. The parent designs for 64-run designs that optimize the F4 vector were chosen from

the top three 32-run OAs in terms of the F4 vector. That is, we sorted the F4 vectors of all

32-run OAs and then selected the first three designs. For 12 and 13 factors, there are two

OAs that can have the last position in the top three. We selected one of these two designs

17



at random.

The 64-run designs used to construct 128-run designs that optimize the B4 value in-

clude the 64-run regular minimum aberration designs (Chen et al., 1993), the 64-run designs

constructed from quaternary linear codes (Xu and Wong, 2007), and our best 64-run con-

catenated designs in terms of the B4 value. We label these designs ‘ma.l ’, ‘xw.l ’, and ‘coa.l ’,

respectively, where l is the label used by the aforementioned authors.

For 128-run designs that optimize the F4 vector, we used our own 64-run concatenated

designs and projections of the 64-run strength-3 OA with 32 factors constructed by folding-

over the Paley Hadamard matrix of order 32 (Sloane, 1999). For m < 10 and m > 22, we

evaluated all projections, while for 10 ≤ m ≤ 22, we evaluated 50,000 random projections.

The projections with the best F4 vectors were used as parent designs. Table 5 shows the best

F4 vectors for 9 ≤ m ≤ 32 and the m columns from the folded-over Paley matrix required

to obtain these vectors. The number of degrees of freedom for two-factor interaction equals

30 for m = 11 and 31 for all other designs. For 9−11 factors, some of our best 64-run

concatenated designs outperform the designs constructed from projections of the folded-

over Paley Hadamard matrix of order 32 in terms of the G-aberration criterion. For this

reason, for 9 and 10 factors, we considered our best 64-run designs in terms of the B4 value

and, for 11 factors, our best 64-run design in terms of the F4 vector, as parent designs.

D Tables of concatenated designs

We present concatenated designs with 64 and 128 runs in Tables 6, 7 and 8, respectively.

The designs are labeled as k.b or k.f, where k = m + 1 is the number of factors in the

concatenated design, b corresponds to designs that minimize the B4 value and f to designs

that sequentially minimize the F4 vector. All concatenated designs shown include the

indicator factor z =
[
1N/2,−1N/2

]T
, where 1N/2 is a N/2 × 1 column vector of ones and

N is the run size of the concatenated design. This factor increases the number of degrees

of freedom for two-factor interactions by m − 1; all interactions involving this factor are

clear. There are separate tables for 128-run designs that optimize the B4 value and for

designs that optimize the F4 vector. The tables report the generalized resolution (R), the

F4 vector, the B4 value, the degrees of freedom for two-factor interactions (df), and the

18



Table 5: Projections from the folded-over Paley Hadamard matrix of order 32 used to
construct F4-optimized 128-run designs. F4(64, 48, 32) = (0, 0, 0) for all designs.

m Label F4(16) Columns

9 P9 58 1 2 3 4 5 11 12 19 30
10 P10 96 3 9 11 13 19 21 23 28 29 31
11 P11 160 2 3 6 8 10 11 14 16 24 25 30
12 P12 252 7 8 9 10 14 15 17 20 21 24 26 28
13 P13 370 4 5 6 9 10 13 21 24 25 28 29 30 31
14 P14 526 1 4 6 7 8 12 17 20 22 24 25 28 29 30
15 P15 726 1 2 5 7 11 13 14 15 16 21 23 24 25 28 30
16 P16 978 2 3 4 7 9 11 13 15 19 21 22 24 27 28 29 30
17 P17 1286 5 7 8 9 13 15 16 17 19 20 21 22 23 24 26 27 29
18 P18 1666 2 5 7 8 10 11 14 15 16 17 18 19 20 21 22 24 28 31
19 P19 2112 1 4 6 7 8 10 11 13 14 15 17 18 20 23 24 27 29 30 31
20 P20 2640 1 2 3 4 7 8 9 11 12 13 15 17 23 24 25 26 27 28 30 31
21 P21 3280 1 2 3 4 5 8 10 11 12 14 15 17 19 20 22 23 24 25 28 29 30
22 P22 4018 1 4 5 7 9 10 12 15 16 17 18 19 20 21 22 23 24 25 26 27 30 31
23 P23 4874 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 18 19 20 22 24 29 30
24 P24 5854 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 23 25 30
25 P25 6974 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 27
26 P26 8244 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 24 25 29 30
27 P27 9680 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 27 28 30
28 P28 11296 1 − 28
29 P29 13104 1 − 29
30 P30 15120 1 − 30
31 P31 17360 1 − 31
32 P32 19840 1 − 32

upper (Du) and lower parents (Dl) of the concatenated designs. The columns γ and δ in

the tables denote the columns in Dl of which the signs have to be switched, and the column

permutation required to obtain the final design after the sign switch, respectively.

The indicator factor can be used as a blocking factor, in which case the number of

degrees of freedom for interactions should be decreased by m − 1. If the concatenated

design is made up from different parent designs, we recommend to run first the parent

design with the smallest B4 value or the best F4 vector, or the one with the largest number

of degrees of freedom for interactions, depending on the interest of the experimenter. There

are four cases in which our 64-run designs are made from different parent designs and five

cases in which our 128-run designs are constructed from different parents.

For 64 runs, the concatenated designs based on different parent designs are 9.b, 10.b,

19



12.f and 16.b. Table 6 highlights the parent designs with the best B4 value (a), the best

F4 vector (b), and the largest number of degrees of freedom for two-factor interactions (c).

For 9 and 10 factors, both parent designs have the same B4 value and number of degrees of

freedom for interactions but one is best in terms of the G-aberration criterion. For 12 and

16 factors, the parent designs have the same number of degrees of freedom for interactions

and the same B4 value, but parent 20 (11 factors) and 3 (15 factors) have a better F4 vector

than parents 21 and 2, respectively.

For 128 runs, the concatenated designs based on different parent designs are 25.b, 27.b,

28.b, 30.b, and 32.b. Each of these designs consists of a QLC design and a MA design.

In each, both parent designs have the same B4 value and the same number of degrees of

freedom for two-factor interactions, but the QLC designs have a smaller G-aberration. If

the indicator factor is used as a blocking factor, we therefore recommend starting with the

QLC design.

The steps required to construct the concatenated designs from Tables 6 and 8 are:

1. Obtain the upper (Du) and lower (Dl) parent designs in m factors.

2. Switch the signs of the columns γ in Dl. Denote the resulting design by Ds.

3. Arrange the columns of Ds in the order indicated by δ. Denote the resulting design

by Dsp.

4. Concatenate Du and Dsp to create design D.

5. Append the indicator factor column z to D to obtain the final design involving k =

m+ 1 factors.

Example. To construct the 64-run design for 10 factors that optimizes the B4 value, we

take OA(32, 29, 3) with ID 34 from Schoen et al. (2010) as the lower parent design. Next,

we generate design Ds by reversing the signs of columns 3, 5, 6, 7, and 8 in that design.

Subsequently, we generate designDsp by arranging the columns of design Ds in the following

order: 6, 3, 4, 5, 2, 8, 9, 1, 7. That is, column 6 of Ds is the first column of design Dsp,

column 3 of Ds is the second column of Dsp, column 4 of Ds is the third column of Dsp, and

so on. Next, we concatenate the 9-factor orthogonal array ID 27 from Schoen et al. (2010)

20



with this design. Finally, we add the extra factor z = [132,−132]
T to the concatenated

design to produce the 64-run design for 10 factors that optimizes the B4 value. This design

has a generalized resolution of 4.75, F4(64, 48, 32, 16) = (0, 0, 0, 32), B4 = 2, and 45 degrees

of freedom for two-factor interactions. So, the design permits estimation of all two-factor

interactions along with the main effects.

Table 6: Concatenated designs with 64 runs. a: parent design with best B4 value; b:
parent with the best F4 vector; c: parent with the largest number of degrees of freedom for
two-factor interactions.

Design Du Dl R F4(64, 48, 32, 16) B4 df γ δ

9.b 23ac 32abc 4.75 (0, 0, 0, 16) 1 36 1, 5, 8 4, 1, 8, 3, 6, 2, 5, 7
9.f 32 32 4.75 (0, 0, 0, 16) 1 36 2, 3, 4, 5 1, 4, 2, 8, 5, 3, 7, 6
10.b 27ac 34abc 4.75 (0, 0, 0, 32) 2 45 3, 5, 6, 7, 8 6, 3, 4, 5, 2, 8, 9, 1, 7
10.f 34 34 4.75 (0, 0, 0, 32) 2 44 1, 5, 8, 9 6, 4, 8, 3, 2, 1, 7, 9, 5
11.b 20 20 4.5 (0, 0, 16, 0) 4 48 1, 2, 3, 5, 6, 8, 9, 10 6, 5, 7, 9, 4, 2, 10, 8, 1, 3
11.f 32 32 4.75 (0, 0, 0, 108) 6.75 40 1, 2, 3, 6, 7, 8, 10 1, 4, 3, 2, 7, 10, 6, 8, 5, 9
12.b 10 10 4.5 (0, 0, 21, 72) 9.75 41 1, 2, 3, 4, 5, 8, 9 3, 7, 6, 4, 2, 1, 5, 10, 11, 8, 9
12.f 20abc 21ac 4.5 (0, 0, 5, 154) 10.88 41 1, 2, 3, 5, 6, 9, 11 10, 1, 7, 2, 5, 11, 4, 9, 8, 6, 3
13.b 8 8 4.5 (0, 0, 36, 96) 15 42 2, 4, 7, 8, 9, 10, 11 7, 6, 4, 8, 3, 5, 1, 2, 11, 12, 10, 9
13.f 21 21 4.5 (0, 0, 10, 216) 16 42 1, 4, 5, 6 12, 7, 10, 2, 1, 9, 3, 4, 11, 8, 5, 6
14.b 2 2 4.5 (0, 0, 88, 0) 22 43 1, 2, 4, 5, 9, 11, 12, 13 7, 5, 6, 8, 11, 12, 9, 10, 2, 3, 1, 4, 13
14.f 12 12 4.5 (0, 0, 24, 292) 24.25 43 1, 6, 10, 12, 13 13, 4, 3, 1, 8, 5, 6, 10, 7, 12, 11, 9, 2
15.b 2 2 4.25 (0, 8, 68, 184) 33 44 1, 2, 3, 4, 5, 6, 9, 12, 13 14, 10, 13, 11, 3, 8, 4, 5, 6, 7, 1, 2, 9, 12
15.f 8 8 4.5 (0, 0, 38, 406) 34.88 44 3, 7, 10, 12, 13, 14 11, 9, 6, 14, 2, 5, 13, 7, 1, 10, 3, 4, 12, 8
16.b 2ac 3abc 4 (9, 0, 72, 288) 45 45 1, 3, 5, 8, 9, 10, 11, 12, 13, 14 8, 7, 1, 2, 12, 11, 10, 9, 4, 3, 5, 6, 13, 14, 15
16.f 5 5 4.5 (0, 0, 57, 552) 48.75 45 1, 3, 4, 8, 11, 12, 13 5, 2, 12, 14, 9, 8, 11, 13, 10, 7, 1, 6, 4, 3, 15
17.b 3 3 4 (12, 0, 96, 384) 60 46 1, 2, 3, 4, 7, 8, 10, 11, 14, 16 15, 16, 14, 13, 9, 10, 12, 11, 4, 3, 6, 5, 7, 8, 1, 2
17.f 4 4 4.5 (0, 0, 83, 708) 65 46 1, 8, 9, 10, 11 11, 13, 12, 1, 8, 7, 9, 16, 10, 14, 5, 15, 3, 2, 4, 6

E 128-run designs of strength 4

It is known that strength-4 128-run designs exist with up to 15 factors; see Hedayat et al.

(1999) for the construction of the 15-factor design. These designs necessarily consist of two

concatenated strength-3 64-run designs to which an extra factor is appended. Therefore,

provided the right 64-run parent designs are used as input, the CC/VNS algorithm should

be able to construct strength-4 128-run designs. The parent designs we used for concate-

nating 128-run designs that optimize the B4 value are the regular minimum aberration

designs (Chen et al., 1993), the designs constructed from quaternary linear codes (Xu and

Wong, 2007), and our own 64-run designs that minimize the B4 value. For the 128-run

designs that optimize the F4 vector, we used the best projections of the folded-over 32-run

21



T
ab

le
7:

12
8-

ru
n

co
n
ca

te
n
at

ed
d
es

ig
n
s

th
at

op
ti

m
iz

e
th

e
F
4

ve
ct

or
.
F
4
(1

28
,1

12
,9

6,
80
,6

4,
48

)
=

(0
,0
,0
,0
,0

)
fo

r
al

l
d
es

ig
n
s.

D
es

ig
n

D
u

D
l

R
F
5
(9

6,
64
,3

2)
B

5
d

f
γ

δ

10
.f

co
a.

9.
b

co
a.

9.
b

5.
25

(1
,

4,
23

)
3

45
6,

9
1,

9,
8,

4,
5,

2,
3,

7,
6

11
.f

co
a.

10
.b

co
a.

10
.b

5.
25

(2
,

8,
46

)
6

55
1,

4,
9

1,
7,

8,
9,

6,
5,

2,
3,

4,
10

D
es

ig
n

D
u

D
l

R
F
4
(3

2,
16

)
B

4
d

f
γ

δ

12
.f

co
a.

11
.f

co
a.

11
.f

4.
75

(1
,

15
0)

2.
41

66
1,

2,
7,

9,
10

10
,1

1,
6,

8,
9,

4,
7,

3,
2,

1,
5

13
.f

P
12

P
12

4.
75

(3
2,

28
6)

6.
47

74
1,

3,
5

10
,1

1,
7,

3,
8,

2,
4,

9,
12
,5
,1
,6

14
.f

P
13

P
13

4.
75

(5
2,

40
8)

9.
63

75
2,

8,
9,

12
,1

3
11
,8
,6
,1
,9
,4
,7
,2
,5
,1

2,
3,

10
,1

3
15

.f
P

14
P

14
4.

75
(8

8,
55

0)
14

.0
9

76
1,

3,
5,

8,
11
,1

2,
13

6,
13
,8
,3
,5
,2
,1

0,
4,

14
,7
,1
,1

1,
9,

12
16

.f
P

15
P

15
4.

75
(1

31
,

75
2)

19
.9

4
77

2,
3,

4,
7,

8,
10
,1

1,
12
,1

3,
14

2,
5,

13
,8
,1

4,
10
,4
,6
,1

2,
9,

1,
7,

15
,3
,1

1
17

.f
P

16
P

16
4.

75
(1

89
,

10
18

)
27

.7
2

78
2,

3,
6,

7,
8,

11
,1

2,
13
,1

4
10
,3
,1

1,
8,

5,
7,

13
,1

6,
1,

6,
2,

9,
14
,1

5,
12
,4

18
.f

P
17

P
17

4.
75

(2
63

,
12

84
)

36
.5

79
3,

6,
8,

9,
10
,1

1,
13
,1

5,
16
,1

7
5,

11
,3
,1

4,
7,

9,
1,

12
,2
,1

7,
13
,8
,6
,1

0,
15
,1

6,
4

19
.f

P
18

P
18

4.
75

(3
55

,
16

72
)

48
.3

1
80

1,
7,

8,
10
,1

1,
12
,1

8
15
,1

4,
4,

11
,1
,7
,1

7,
13
,5
,6
,1

2,
18
,9
,2
,1

6,
8,

3,
10

20
.f

P
19

P
19

4.
75

(4
57

,
21

06
)

61
.4

7
81

1,
2,

6,
7,

10
,1

1,
13
,1

4,
16
,1

7,
18
,1

9
17
,1

2,
16
,1

9,
4,

3,
9,

13
,1

4,
11
,1
,7
,1

5,
5,

10
,8
,2
,1

8,
6

21
.f

P
20

P
20

4.
75

(5
84

,
26

56
)

78
82

1,
2,

4,
6,

7,
8,

10
,1

2,
16
,1

7
5,

7,
18
,1

0,
2,

11
,3
,1

9,
12
,1

6,
9,

6,
4,

20
,1

7,
14
,1
,1

5,
8,

13
22

.f
P

21
P

21
4.

75
(7

53
,

31
88

)
96

.8
8

83
2,

3,
4,

7,
8,

9,
10
,1

3,
15
,1

6,
19
,2

1
1,

4,
15
,2

1,
16
,8
,1

7,
7,

20
,1

0,
11
,6
,1

4,
2,

5,
18
,9
,3
,1

9,
13
,1

2
23

.f
P

22
P

22
4.

75
(9

42
,

38
68

)
11

9.
31

84
2,

5,
6,

7,
8,

11
,1

2,
14
,1

7,
18
,2

0,
21
,2

2
5,

18
,2

2,
14
,1

3,
9,

15
,4
,8
,2

0,
19
,7
,2
,3
,1

2,
6,

11
,1

6,
10
,1
,1

7,
21

24
.f

P
23

P
23

4.
75

(1
15

0,
47

08
)

14
5.

44
85

3,
6,

7,
10
,1

1,
15
,1

7,
20

11
,1

6,
9,

8,
10
,1

8,
6,

5,
7,

14
,1

2,
19
,3
,1

3,
15
,2

3,
1,

17
,2

0,
22
,2

1,
4,

2
25

.f
P

24
P

24
4.

75
(1

40
5,

55
92

)
17

5.
19

86
1,

2,
3,

5,
8,

11
,1

2,
16
,1

7,
19
,2

1,
22
,2

3,
24

15
,2

0,
5,

21
,8
,2

2,
19
,1

2,
7,

18
,2

3,
10
,1

4,
9,

24
,1
,6
,1

6,
3,

11
,4
,1

7,
13
,2

26
.f

P
25

P
25

4.
75

(1
69

5,
66

20
)

20
9.

38
87

2,
3,

7,
9,

10
,1

3,
14
,1

6,
17
,1

9,
20
,2

1,
23
,2

5
7,

18
,2

4,
25
,1

5,
8,

2,
20
,2

2,
19
,1

4,
13
,1
,6
,1

1,
17
,1

2,
21
,1

6,
9,

3,
5,

23
,4
,1

0
27

.f
P

26
P

26
4.

75
(2

01
8,

78
02

)
24

8.
03

88
2,

3,
8,

9,
10
,1

1,
13
,1

5,
21
,2

2,
26

24
,2
,1

0,
25
,1

4,
18
,1

9,
9,

4,
8,

20
,1

6,
11
,1

5,
17
,3
,1
,7
,2

1,
23
,2

2,
5,

13
,2

6,
6,

12
28

.f
P

27
P

27
4.

75
(2

38
6,

92
28

)
29

3.
31

89
6,

7,
8,

10
,1

1,
12
,1

4,
15
,1

9,
20
,2

1,
22
,2

4,
26

26
,3
,2

7,
5,

6,
17
,1
,2

1,
18
,2

4,
13
,4
,1

4,
23
,2

5,
20
,1

2,
19
,1

1,
10
,2
,2

2,
16
,1

5,
9,

8,
7

29
.f

P
28

P
28

4.
75

(2
80

0,
10

74
4)

34
2.

88
90

2,
3,

6,
8,

10
,1

3,
15
,1

6,
17
,1

9,
20
,2

1,
22
,2

3,
25
,2

6,
28

3,
6,

28
,2

2,
18
,1

9,
1,

25
,2
,1

2,
10
,1

7,
7,

16
,1

3,
20
,2

6,
24
,2

7,
21
,1

4,
15
,9
,2

3,
4,

11
,8
,5

30
.f

P
29

P
29

4.
75

(3
28

0,
12

23
6)

39
6.

19
91

1,
2,

3,
5,

6,
7,

8,
9,

13
,1

4,
15
,1

7,
18
,2

2,
29

25
,2

4,
18
,4
,2

2,
8,

7,
15
,1

2,
26
,3
,2

3,
11
,2

7,
21
,5
,2

8,
10
,1
,9
,2

0,
13
,1

9,
17
,1

4,
6,

2,
16
,2

9
31

.f
P

30
P

30
4.

75
(3

79
6,

14
12

8)
45

8
92

2,
3,

5,
6,

7,
8,

9,
12
,1

3,
15
,1

6,
17
,1

9,
21
,2

2,
23
,2

4,
27
,2

8,
30

4,
9,

14
,7
,2

7,
1,

19
,1

3,
23
,2

4,
3,

5,
11
,2

2,
29
,3

0,
25
,6
,2

1,
10
,1

7,
15
,1

8,
20
,2

8,
12
,2
,8
,2

6,
16

32
.f

P
31

P
31

4.
75

(4
37

2,
16

32
0)

52
8.

25
93

1,
4,

6,
9,

11
,1

3,
16
,1

7,
20
,2

1,
24
,2

6,
29

9,
8,

23
,7
,2
,1

4,
22
,1
,1

9,
15
,2

4,
31
,1

7,
5,

3,
25
,3

0,
10
,2

6,
11
,1

3,
28
,1

2,
6,

27
,4
,2

1,
18
,2

0,
29
,1

6
33

.f
P

31
P

31
4.

75
(5

04
4,

18
59

6)
60

5.
81

94
2,

5,
6,

8,
9,

11
,1

5,
17
,1

8,
20
,2

3,
26
,2

8,
30
,3

1,
32

27
,7
,8
,2
,3
,9
,6
,1

9,
13
,2

8,
24
,2

1,
15
,3

2,
11
,1
,2

6,
14
,1

2,
4,

29
,2

3,
31
,1

0,
22
,2

0,
5,

25
,1

6,
17
,3

0,
18

22



T
ab

le
8:

12
8-

ru
n

co
n
ca

te
n
at

ed
d
es

ig
n
s

th
at

op
ti

m
iz

e
th

e
B

4
va

lu
e.

F
4
(1

28
,1

12
)

=
(0
,0

)
fo

r
d
es

ig
n
s

w
it

h
10

–1
5

fa
ct

or
s.

a
:

p
ar

en
t

d
es

ig
n

w
it

h
b

es
t
B

4
va

lu
e;

b
:

p
ar

en
t

w
it

h
th

e
b

es
t
F
4

ve
ct

or
;
c
:

p
ar

en
t

w
it

h
th

e
la

rg
es

t
n
u
m

b
er

of
d
eg

re
es

of
fr

ee
d
om

fo
r

tw
o-

fa
ct

or
in

te
ra

ct
io

n
s.

D
es

ig
n

D
u

D
l

R
F
5
(9

6,
64
,3

2)
B

5
d

f
γ

δ

10
.b

x
w

.9
-3

.a
c

x
w

.9
-3

.a
c

5.
5

(0
,

4,
32

)
3

45
1,

2,
3,

4,
6,

7
1,

8,
3,

4,
7,

6,
5,

2,
9

11
.b

co
a.

10
.b

co
a.

10
.b

5.
5

(0
,

2,
88

)
6

55
2,

3,
5,

6,
7,

8,
10

1,
2,

5,
4,

3,
8,

7,
6,

9,
10

12
.b

x
w

.1
1-

5.
ac

x
w

.1
1-

5.
ac

5.
5

(0
,

44
,

0)
11

66
2,

5,
6,

10
,1

1
1,

9,
8,

10
,1

1,
7,

6,
2,

3,
5,

4
13

.b
x
w

.1
2-

6.
ac

x
w

.1
2-

6.
ac

5.
5

(0
,

72
,

0)
18

78
6,

9,
10
,1

2
5,

6,
3,

4,
2,

1,
11
,1

2,
10
,9
,8
,7

14
.b

x
w

.1
3-

7.
ac

x
w

.1
3-

7.
ac

5.
5

(0
,

11
2,

0)
28

91
1,

2,
8,

12
1,

2,
3,

6,
7,

4,
5,

12
,1

3,
10
,1

1,
8,

9
15

.b
x
w

.1
4-

8.
ac

x
w

.1
4-

8.
ac

5.
5

(0
,

16
8,

0)
42

10
5

2,
3,

12
,1

3,
14

2,
1,

5,
6,

11
,1

2,
13
,1

4,
4,

3,
10
,9
,8
,7

D
es

ig
n

D
u

D
l

R
F
4
(1

28
,1

12
,9

6,
80
,6

4,
48
,3

2,
16

)
B

4
d

f
γ

δ

16
.b

m
a.

15
-9

.1
m

a.
15

-9
.1

4
(2

,
0,

0,
0,

40
,

0,
0,

0)
12

94
2,

3,
4,

5,
6,

8,
9,

10
,1

1,
12
,1

4
11
,1

0,
12
,7
,1

3,
6,

9,
14
,8
,1
,5
,1

5,
4,

2,
3

17
.b

m
a.

16
-1

0.
1

m
a.

16
-1

0.
1

4
(6

,
0,

0,
0,

44
,

0,
0,

0)
17

99
3,

4,
7,

12
,1

4,
15
,1

6
4,

9,
2,

6,
1,

11
,7
,1

3,
15
,3
,8
,5
,1

0,
14
,1

6,
12

18
.b

x
w

.1
7-

11
.a

x
w

.1
7-

11
.a

4
(1

1,
0,

0,
0,

48
,

0,
0,

0)
23

99
2,

4,
7,

8,
9,

10
,1

1,
12
,1

5,
17

11
,1

0,
14
,6
,7
,4
,1

2,
13
,1
,5
,8
,1

6,
17
,1

5,
3,

2,
9

19
.b

x
w

.1
8-

12
.a

x
w

.1
8-

12
.a

4
(1

4,
0,

0,
0,

64
,

0,
0,

0)
30

10
0

3,
4,

5,
6,

11
,1

2,
15
,1

6,
17
,1

8
12
,1

1,
13
,1

4,
17
,1

8,
3,

16
,2
,1
,1

0,
9,

7,
8,

5,
6,

4,
15

20
.b

x
w

.1
9-

13
.a

x
w

.1
9-

13
.a

4
(2

0,
0,

0,
0,

80
,

0,
0,

0)
40

10
5

2,
5,

13
,1

4,
16
,1

7,
18

19
,6
,3
,1

3,
5,

14
,1

6,
18
,1
,8
,1

1,
4,

12
,1

7,
2,

15
,7
,1

0,
9

21
.b

x
w

.2
0-

14
.a

x
w

.2
0-

14
.a

4
(2

0,
0,

0,
0,

12
8,

0,
0,

0)
52

10
6

1,
2,

3,
4,

6,
7,

8,
10
,1

1,
12
,1

3,
18
,2

0
20
,1

7,
5,

14
,1

9,
3,

15
,1

1,
2,

18
,6
,7
,1
,1

6,
10
,1

2,
9,

4,
13
,8

22
.b

m
a.

21
-1

5.
1

m
a.

21
-1

5.
1

4
(4

6,
0,

0,
0,

17
6,

0,
0,

0)
90

83
1,

2,
4,

5,
6,

8,
9,

10
,1

2,
16
,1

9,
20
,2

1
15
,1

6,
10
,7
,1

1,
2,

3,
9,

17
,6
,1

4,
21
,1

9,
5,

4,
1,

8,
12
,2

0,
13
,1

8
23

.b
m

a.
22

-1
6.

1
m

a.
22

-1
6.

1
4

(1
10

,
0,

0,
0,

0,
0,

0,
0)

11
0

83
1,

2,
3,

5,
7,

9,
10
,1

2,
14
,1

5,
16
,1

7,
20

8,
4,

9,
2,

5,
15
,1

0,
1,

3,
7,

11
,1

3,
12
,1

4,
6,

16
,1

8,
17
,2

1,
22
,1

9,
20

24
.b

x
w

.2
3-

17
.a

x
w

.2
3-

17
.a

4
(7

6,
0,

0,
0,

24
0,

0,
0,

0)
13

6
85

1,
2,

4,
6,

8,
11
,1

2,
13
,1

7,
18
,1

9,
20
,2

2,
23

1,
6,

7,
14
,1

5,
2,

3,
12
,1

3,
19
,1

8,
9,

8,
5,

4,
16
,1

7,
11
,1

0,
23
,2

2,
20
,2

1
25

.b
x
w

.2
4-

18
.a

m
a.

24
-1

8.
1

4
(5

1,
0,

72
,

0,
16

8,
0,

50
4,

0)
16

5
86

1,
2,

3,
5,

6,
7,

9,
10
,1

5,
19
,2

3
11
,6
,2

0,
15
,2

1,
22
,1

4,
19
,2
,7
,1

3,
18
,9
,8
,2

4,
23
,1

6,
5,

17
,1

2,
1,

3,
4,

10
26

.b
x
w

.2
5-

19
.a

x
w

.2
5-

19
.a

4
(1

09
,

0,
0,

0,
35

6,
0,

0,
0)

19
8

87
1,

2,
3,

8,
20
,2

1,
22
,2

3,
25

2,
1,

23
,2

2,
21
,2

0,
14
,1

5,
9,

11
,1

0,
24
,2

5,
8,

7,
18
,1

9,
16
,1

7,
6,

5,
3,

4,
13
,1

2
27

.b
x
w

.2
6-

20
.a

c
m

a.
26

-2
0.

1
4

(2
37

,
55

,
0,

10
4,

0,
30

4,
0,

76
0)

23
7

88
1,

2,
3,

4,
5,

16
,1

7,
18
,2

1,
23
,2

4,
25
,2

6
11
,2

3,
21
,2

4,
15
,2

6,
12
,9
,2
,6
,8
,2

0,
1,

3,
14
,1

6,
22
,1

0,
25
,1

3,
18
,7
,1

7,
19
,4
,5

28
.b

x
w

.2
7-

21
.a

c
m

a.
27

-2
1.

1
4

(6
9,

0,
12

0,
0,

35
2,

0,
88

8,
0)

28
0

89
2,

3,
5,

7,
10
,1

1,
12
,1

3,
15
,1

6,
17
,1

9,
20
,2

1,
25
,2

7
10
,2

3,
19
,2

2,
18
,1

4,
5,

27
,2

4,
12
,6
,4
,1

5,
1,

11
,2

5,
7,

16
,2

1,
17
,1

3,
20
,2

6,
2,

8,
9,

3
29

.b
x
w

.2
8-

22
.a

c
x
w

.2
8-

22
.a

c
4

(3
8,

0,
84

,
0,

56
8,

0,
16

44
,

0)
33

0
90

3,
4,

5,
6,

7,
8,

9,
13
,1

4,
17
,2

0,
28

2,
10
,4
,2

3,
17
,9
,1

3,
26
,2

7,
19
,2

2,
11
,1

4,
25
,7
,1

5,
6,

12
,1
,2

8,
21
,2

0,
3,

24
,1

6,
8,

18
,5

30
.b

x
w

.2
9-

23
.a

c
m

a.
29

-2
3.

1
4

(7
0,

0,
82

,
0,

76
4,

0,
12

62
,

0)
38

6
91

2,
3,

6,
7,

11
,1

2,
17
,1

9,
20
,2

1,
23
,2

4,
26

6,
13
,2

6,
9,

12
,4
,2

3,
25
,2

1,
15
,3
,1

9,
18
,1

4,
17
,2
,1

6,
20
,2

9,
24
,8
,1
,7
,2

7,
5,

11
,2

8,
22
,1

0
31

.b
x
w

.3
0-

24
.a

c
x
w

.3
0-

24
.a

c
4

(4
3,

0,
88

,
0,

76
8,

0,
26

00
,

0)
44

7
92

4,
5,

6,
8,

9,
10
,1

2,
13
,1

5,
16
,1

7,
24
,2

6,
30

2,
11
,2

0,
17
,1

5,
29
,1

0,
27
,2

4,
3,

19
,1

8,
8,

25
,2

6,
7,

9,
28
,2

2,
5,

30
,2

3,
13
,1

4,
1,

12
,4
,1

6,
21
,6

32
.b

x
w

.3
1-

25
.a

c
m

a.
31

-2
5.

1
4

(6
0,

0,
84

,
0,

12
12

,
0,

17
08

,
0)

51
7

93
1,

2,
4,

5,
6,

8,
10
,1

1,
13
,1

5,
16
,1

7,
18
,1

9,
24
,2

6,
27
,3

0
16
,3
,2

0,
15
,7
,1

8,
1,

10
,1

3,
5,

26
,2

7,
21
,6
,3

1,
14
,3

0,
28
,1

2,
2,

11
,2

3,
29
,2

4,
9,

17
,8
,4
,2

2,
25
,1

9
33

.b
x
w

.3
2-

26
.a

c
x
w

.3
2-

26
.a

c
4

(5
2,

0,
14

0,
0,

10
96

,
0,

29
96

,
0)

59
2

94
3,

4,
6,

8,
14
,1

7,
18
,2

1,
24
,2

8,
30
,3

2
23
,5
,1

6,
3,

20
,2

2,
8,

18
,3

0,
2,

27
,3

2,
6,

12
,2

4,
21
,7
,1

4,
15
,2

5,
4,

17
,1

9,
29
,2

6,
1,

11
,1

0,
13
,2

8,
9,

31

23



Paley matrix and our own 64-run concatenated designs as parent designs. A report of all

128-run designs we obtained and their parent designs is given in Sections C and D.

The generalized resolution of the designs we obtained by optimizing the F4 vector equals

5.25 for 10 and 11 factors and 4.75 for 12–15 factors. When minimizing the B4 value, all

10–15 factor designs we obtained had a generalized resolution of 5.5. More specifically, our

CC/VNS algorithm was able to produce strength-4 designs by minimizing the B4 value

using either the same copy of a 64-run design constructed from quaternary linear codes

or one of our own designs that minimize the B4 value. When minimizing the F4 vector,

our CC/VNS algorithm was able to find strength-4 designs for 10 and 11 factors. These

designs, however, have a generalized resolution of only 5.25. So, our CC/VNS algorithm

was not able to find designs with a generalized resolution of at least 5.5 when concatenating

parent designs based on the folded-over 32-run Paley matrix and sequentially minimizing

the F4 vector.

We compare our strength-4 128-run designs with 10–15 factors with the 128-run designs

from Xu and Wong (2007), the regular resolution V designs involving 10 and 11 factors

(Xu, 2009) and the minimum G-aberration designs we identified based on the complete

enumeration by Schoen et al. (2010). To the best of our knowledge, we are the first to

identify the minimum G-aberration 128-run designs. All designs under comparison allow

the independent estimation of all two-factor interactions, and have a B4 value of zero and

a zero F4 vector. For this reason, Table 9 shows the F5 vector of the designs. For 10 and 11

factors, all tabulated designs are minimum G2-aberration designs. As a matter of fact, the

B5 values of all 10-factor designs equal 3, while those of all 11-factor designs equal 6. While

they are not minimum G-aberration designs, the 10- and 11-factor designs produced by the

CC/VNS algorithm have a smaller G-aberration than the corresponding designs of Xu and

Wong (2007) and the regular designs of Chen et al. (1993). The minimum G-aberration

designs with 10 and 11 factors have a generalized resolution of 5.75, while our designs and

those of Xu and Wong (2007) have a generalized resolution of 5.5 only, and the regular

designs have a generalized resolution as low as 5. For 12–15 factors, our designs and the

designs of Xu and Wong (2007) are minimum G- and G2-aberration designs.

24



Table 9: F5(128, 96, 64, 32) vectors for strength-4 128-run designs with 10–15 factors.

k CC/B4 QLC MA Minimum G-aberration

10 (0, 0, 4, 32) (0, 0, 12, 0) (3, 0, 0, 0) (0, 0, 0, 48)
11 (0, 0, 2, 88) (0, 0, 24, 0) (6, 0, 0, 0) (0, 0, 0, 96)
12 (0, 0, 44, 0) (0, 0, 44, 0) (0, 0, 44, 0)
13 (0, 0, 72, 0) (0, 0, 72, 0) (0, 0, 72, 0)
14 (0, 0, 112, 0) (0, 0, 112, 0) (0, 0, 112, 0)
15 (0, 0, 168, 0) (0, 0, 168, 0) (0, 0, 168, 0)

25



References

Butler, N. A. (2003). Minimum aberration construction results for nonregular two-level

fractional factorial designs. Biometrika, 90:891–898.

Chen, J., Sun, D. X., and Wu, C. F. J. (1993). A catalogue of two-level and three-level

fractional factorial designs with small runs. International Statistical Review, 61:131–145.

Deng, L.-Y. and Tang, B. (1999). Generalized resolution and minimum aberration criteria

for Plackett-Burman and other nonregular factorial designs. Statistica Sinica, 9:1071–

1082.

Hedayat, A., Sloane, N., and Stufken, J. (1999). Orthogonal Arrays: Theory and Applica-

tions. Springer.

Schoen, E. D., Eendebak, P. T., and Nguyen, M. V. M. (2010). Complete enumeration of

pure-level and mixed-level orthogonal arrays. Journal of Combinatorial Designs, 18:123–

140.

Sloane, N. J. A. (1999). A library of Hadamard matrices.

Xu, H. (2009). Algorithmic construction of efficient fractional factorial designs with large

run sizes. Technometrics, 51:262–277.

Xu, H. and Wong, A. (2007). Two-level nonregular designs from quaternary linear codes.

Statistica Sinica, 17:1191–1213.

26


