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Quebec city Qc, G1V 0A6 Canada
and

Greg Rothman
4INFO, 155 Bovet Road Suite 200 San Mateo, CA 94402

February 27, 2018

This document gives additional details concerning the technical derivations and the

proofs presented in section 4 of the manuscript. The following notation is used throughout

the calculations. We distinguish (i) the notation used to describe the data themselves, (ii)

important summary statistics and (iii) the robust design parameters for its analysis.

Capture-recapture data

• Subscript i denotes primary sampling period i, i = 1, . . . , I;

• Subscript j denotes a secondary capture occasion within a PSP, j = 1, ..., `i ; `i is

the number of secondary capture occasions within PSP i;
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• ω is then a
∑
`i× 1 vector containing for secondary capture occasion j in PSP i the

outcome ωij = 1 if the unit has been captured on that occasion and 0 otherwise;

• The between PSP capture information can be summed up in a I × 1 vector δ which

has entry δi = 1 if the unit has been captured at least once during PSP i, that is

if
∑

j ωij > 0, and δi = 0 otherwise; δ(ω) denotes the I × 1 between PSP capture

history derived from ω.

Statistics

• The frequency of the number of units that have capture history ω is denoted nω ;

• ui is the number of unmarked units captured during PSP i;

• mi represents the number of marked units captured during PSP i;

• ni = ui +mi is the number of units captured during PSP i;

• vi is the number of units captured for the last time at PSP i;

• wi =
∑i−1

j=1(uj−vj) is the number of units captured at least once during the first i−1

PSPs that will be seen at least once more, either in PSP i or later;

• zi represents the number of units captured before PSP i, not seen at PSP i, but

captured subsequently;

• n is the total number of units captured at least once during the whole sampling

process.
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Parameters

• The survival probability, for all units in the population, between primary periods i

and i+ 1 is denoted φi ∈ (0, 1);

• The probability of being captured at least once during PSP i is denoted p∗i = Pr(δi =

1), this depends on the closed population model describing the captures within PSP

i ;

• the probability of not being seen after PSP i, χi, satisfies the following recursive

relationship, χi = (1− φi) + φi(1− p∗i+1)χi+1; χ̄i = 1− χi is the probability of being

seen after PSP i;

• Ni, i = 1, . . . , I is the expected population at the start of the ith PSP ;

• Bi is the expected number of new units joining the population before the start of

PSP i+ 1 such that Ni+1 = Niφi +Bi.

• The expected number of unmarked units in the population just before PSP i, Ui,

satisfies Ui = Ui−1 (1− p∗i )φi−1 +Bi−1 for i = 1, ..., I − 1; U1 = N1 ;

• Mi is the expected number of marked units in the population just before PSP i such

that Mi = (Mi−1 + Ui−1p
∗
i−1)φi−1 ; M1 = 0;

• ηi = 1−Mi/Ni is the proportion of unmarked units just before PSP i ; η̄i = 1− ηi is

the proportion of marked units just before PSP i ;

• Di = 1− (1− p∗i )χiηi − η̄iχ̄i is the probability, for an unmarked unit, to be captured

at least once at PSP i or later and, for a marked unit, to be captured for the last

time at PSP i.

For the asymptotic variance derivations, Ni is assumed large for every PSP i.
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A. Evaluation of var
(
N̂i

)
for model M0

This section presents the main steps to evaluate the asymptotic variance of N̂i. The follo-

wing notation is used throughout this section.

• P2i = 1 − (1 − pi)`i − `ipi(1 − pi)`i−1 is the probability of obtaining two captures or

more at PSP i ,

• p1i = `ipi(1− pi)`i−1 is the probability of being captured once at PSP i,

and note that p∗i = P2i + p1i. In this section, we give further details to the proof of the

asymptotic variance of N̂i ,

var
(
N̂i

)
= NiDi(1− p∗i )/(p∗i χ̄iη̄i +DiP2i). (1)

In the derivations, we approximate the sufficient statistics ui, vi, and wi by their expecta-

tions,

ui ≈ Niηip
∗
i , vi ≈ Nip

∗
iχi, and wi ≈ Niη̄iχ̄i +Nip

∗
i η̄iχi, (2)

as, when Ni goes to ∞, the ratio of a statistic over its expectation converges to 1 in

probability. Throughout the derivations, we will refer to the estimating equation that

leads to the maximum likelihood estimator for Ni,

fi,N(Ni) = Ni

[
n∗i (wi − n∗i + ui)/ {n∗i (wi − vi) + uivi} − {1− Ci/(`iNi)}`i

]
, (3)

where

n∗i = Ni[1− {1− Ci/(Ni`i)}`i ]. (4)

The limit in probability of the derivative of fi,N(Ni) with respect to Ni is proven in the

next section to be

Ai = −(p∗i χ̄iη̄i +Di × P2i)/(η̄iχ̄i). (5)
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A.1. Evaluation of Ai

Using (4), the derivative of n∗i with respect to Ni, evaluated at the expectation, Nipi`i, of

Ci, is equal to P2i. Now, differentiating (3) using the chain rule and applying (2) gives

∂fi,N
∂Ni

= Ni
∂n∗i
∂Ni

∂

∂n∗i
[n∗i (wi − n∗i + ui)/ {n∗i (wi − vi) + uivi}]−Ni

∂

∂Ni

{1− Ci/(Ni`i)}`i

= −Ni
∂n∗i
∂Ni

[{
(n∗i )

2(wi − vi) + (2n∗i − wi − ui)uivi
}
/{n∗i (wi − vi) + uivi}2

]
− (Ci/Ni) {1− Ci/(Ni`i)}`i−1

≈ −P2i {(1− ηiχi + p∗i ηiχi)/(η̄iχ̄i)} − p1i = Ai,

where the last equality is obtained by setting p1i = p∗i − P2i and Ai is defined by (5).

A.2. Evaluation of Σi

The first three random variables (ui, vi, wi) are, under Poisson sampling, Poisson random

variables. Their variances are equal to their expectations given in (2) while the covariances

are the expected number of units common to two random variables. Now Ci does not

have a Poisson distribution. To find the elements of Σi for Ci, let Ñi be a Poisson random

variable equal to the actual number of units in the population during PSP i. Given Ñi,

Ci has a binomial distribution with Ñi × `i trials and probability pi. Conditioning on Ñi

yields to the following expression for the variance of Ci,

var(Ci) = E(Ñi)`ipi(1− pi) + var(Ñi)`
2
i p

2
i = Ni`ipi(`ipi + 1− pi).

The covariances with Ci are calculated in a similar way. For instance that with ui involves

Ũi, the units that are not marked before the ith PSP. Given (Ñi, Ũi) the conditional co-

variance between Ci and ui is Ũi`ipi(1 − p∗i ) while their respective expectations are Ũi`ipi
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and Ũip
∗
i . Thus

cov(Ci, ui) = E{Ũi`ipi(1− p∗i )}+ cov(Ũi`ipi, Ũip
∗
i ) = Ui`ipi = Niηi`ipi.

Similar derivations lead to the covariance matrix of the sufficient statistics ui, vi, wi, Ci,

Σi = Ni


ηip
∗
i ηip

∗
iχi 0 ηi`ipi

p∗iχi η̄ip
∗
iχi `ipiχi

η̄i(χ̄i + p∗iχi) η̄i`ipi

`ipi(1− pi + `ipi)

 . (6)

A.3. Derivation of ∇fi,N

We have,

∇fi,N =

(
∂fi,N
∂ui

,
∂fi,N
∂vi

,
∂fi,N
∂wi

,
∂fi,N
∂Ci

)
.

Now, differentiating fi,N with respect to ui and using (2) gives

∂fi,N
∂ui

= Nin
∗
iwi(ni − vi)/{n∗i (wi − vi) + uivi}2

≈ (χ̄i + p∗iχi)/(η̄iχ̄i).

All of the other derivatives are calculated in a similar way.

A.4. Evaluation of ∇f>i,NΣi∇fi,N

The denominator (η̄iχ̄i) of∇fi,N simplifies with that of Ai; only the numerator is considered

here. To evaluate it we calculate separately the quadratic form Q1 involving the covariance

matrix of (ui, vi, wi) and Q2, involving the variance and the covariances with Ci. As Di =
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−2χiηi + χi + ηi + p∗iχiηi, patient calculations lead to

Q1 = p∗i {ηi + χi − 2ηiχi − η2i χi − ηiχ2
i + 2η2i χ

2
i

+p∗i (1− ηi − χi + ηiχi + 2η2i χi + 2ηiχ
2
i − 4η2i χ

2
i )

+(p∗i )
2(ηiχi − η2i χi − ηiχ2

i + 2η2i χ
2
i )}

= p∗i {D2
i + ηi + χi − 4ηiχi − η2i − χ2

i + 3ηiχ
2
i + 3η2i χi − 2η2i χ

2
i

+p∗i (1− ηi)(1− χi) + (p∗i )
2ηiχi(1− ηi)(1− χi)}.

Since ηi + χi − 4ηiχi − η2i − χ2
i + 3η2i χi + 3ηiχ

2
i − 2η2i χ

2
i = (1− ηi)(1− χi)(ηi + χi − 2ηiχi),

we have

Q1 = p∗iD
2
i + p∗i η̄iχ̄i{χi + ηi − 2χiηi + p∗i + (p∗i )

2ηiχi}.

To evaluate Q2 note that p1i(1− pi + `ipi) = `ipi(1− P2i). Thus

Q2 = −2p1iDi{ηi(1− χi + χip
∗
i ) + χi(1− ηi)(1− p∗i ) + p∗i (1− ηi)}

+ D2
i p

2
1i(1− pi + `ipi)/(`ipi)

= −2p1iDi{p∗i (1− ηi)(1− χi) +Di}+D2
i p1i(1− P2i)

= −2p1iDip
∗
i η̄iχ̄i −D2

i p1i(1 + P2i).

Since p∗i − p1i − p1iP2i = P2i(1− p1i), the quadratic form is

Q1 +Q2 = p∗i η̄iχ̄i{χi + ηi − 2χiηi + p∗i + (p∗i )
2ηiχi − 2p1iDi}+D2

iP2i(1− p1i).

As D2
iP2i(1 − p1i − P2i) = D2

iP2i(1 − p∗i ), subtracting (5) squared, that is {p∗i (1 − ηi)(1 −

χi)}2 + 2DiP2ip
∗
i (1− ηi)(1− χi) +D2

iP
2
2i, leads to

Q3 = −{p∗i η̄iχ̄i}2 +D2
iP2i(1− p∗i ) + p∗i η̄iχ̄i ×Q4,

7



where

Q4 = ηi + χi − 2ηiχi + p∗i + (p∗i )
2ηiχi − 2(p1i + P2i)Di

= ηi + χi − 2ηiχi + p∗i + (p∗i )
2ηiχi + 2pi ∗ (2ηiχi − ηi − χi − p∗i ηiχi)

= p∗i η̄iχ̄i + (1− p∗i )Di.

Thus Q3 = (1− p∗i )Di{DiP2i + p∗i η̄iχ̄i}. It gives (1) when divided by the numerator of A2
i

and multiplied by Ni ; Ai is defined by (5).

B. Derivation of var
(
φ̂i

)
for model M0

In this section, we show the calculations that lead to the variance of φ̂i,

var(φ̂i) = φ2
i

{
(1− p∗i+1)χi+1

{
η̄i+1 + p∗i+1ηi+1

}
Ni+1p∗i+1η̄i+1χ̄i+1

+
(1− p∗i )η̄iχi

Nip∗i χ̄i(η̄i + ηip∗i )
+

1− φi

Ni+1η̄i+1

}
(7)

− φ2
i

{
(1− p∗i+1)(η̄i+1 + p∗i+1ηi+1)

2χ2
i+1P2,i+1

Ni+1η̄i+1χ̄i+1p∗i+1(η̄i+1χ̄i+1p∗i+1 +Di+1P2,i+1)
+

(1− p∗i )η̄iχ2
iP2,i

Niχ̄ip∗i (η̄iχ̄ip∗i +DiP2,i)

}
.

It is useful to define the conditional expectation of the units that are marked before session

i and available for capture at session i or later,

M̂i = n∗i − ui + n∗i (wi − n∗i + ui)/(n
∗
i − vi). (8)

There are two intermediate steps, the evaluation of the variance of n̂i and of M̂i,

var
(
M̂i

)
= Ni(1− p∗i )η̄iχi(η̄i + p∗i ηi)(p

∗
i η̄i + P2iηi)/ {p∗i (p∗i χ̄iη̄i +Di × P2i)} . (9)

B.1. Derivation of var (n̂i)

Since n̂i = N̂i

{
1−

(
1− Ci/(`iN̂i)

)`i}
, a standard linearization argument leads to the

following approximation, n̂i ≈ Nip
∗
i +P2i(N̂i−Ni)+(1−pi)`i−1(Ci−Ni`ipi). The covariance
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between Ci and N̂i is evaluated as Ni times the fourth entry of the vector −Σi∇fi,N/Ai. It

is found to be equal to Ni`ipi . Thus the linearization approximation to the variance of n̂i

is

var (n̂i) = P 2
2i{var(N̂i) +Ni}+ 2P2i(1− pi)`i−1Ni`ipi

+(1− pi)2`i−2Ni`ipi(1− pi + `ipi)

= P 2
2ivar(N̂i) +Ni{(p∗i )2 + (p∗i − P2i)(1− p∗i )}

= Ni [P2i(1− p∗i ) {P2iDi/(p
∗
i η̄iχ̄i + P2iDi)− 1}+ p∗i ]

= Nip
∗
i {1− (1− p∗i )η̄iχ̄iP2i/(p

∗
i η̄iχ̄i +Di × P2i)} .

Thus the variance of n̂i is equal to Nip
∗
i , the variance under an open population model,

minus a term representing the variance reduction under a robust design.

B.2. Derivation of var
(
M̂i

)
From equation (8),

M̂i = n̂i − ui + n̂i(wi − n̂i + ui)/(n̂i − vi).

The linearization approximation to M̂i is

M̂i = Mi +


ui −Niηip

∗
i

vi −Nip
∗
iχi

wi −Niη̄i {1− (1− p∗i )χi}

n̂i −Nip
∗
i



>

∇Mi
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and ∇Mi is limit of the vector of partial derivatives of M̂i with respect to (ui, vi, wi, n̂i).

Using (2), it is given by

∇Mi = (1/χ̄i)


χi

η̄i(1− p∗i )/p∗i
1

−χi(η̄i + ηip
∗
i )/p

∗
i

 .

Following Jolly (1965), as Mi = Niη̄i, the quadratic form for the variance is var
(
M̂i

)
=

∇M>
i Σ∗i∇Mi − Niη̄i, where Σ∗i is the covariance matrix of ui, vi, wi, n̂i. The covariance

matrix for ui, vi, wi is already discussed in sections (A.1) and (A.2). Using the linearization

for n̂i, one has

cov(n̂i, ui) = P2icov(N̂i, ui) + (1− pi)`i−1cov(Ci, ui).

The covariance between ui and N̂i is evaluated as Ni times the first entry of the vector

−Σi∇fi,N/Ai. It is equal to Niηip
∗
i . The covariance between Ci and ui is Niηi`ipi, see (6).

This gives cov(n̂i, ui) = Niηip
∗
i . In the same fashion, we derive cov(n̂i, vi) = Nip

∗
iχi and

cov(n̂i, wi) = Niη̄ip
∗
i . Thus, the covariance matrix between ui, vi, wi, n̂i is,

Σ∗i = Ni


ηip
∗
i ηip

∗
iχi 0 ηip

∗
i

p∗iχi η̄ip
∗
iχi p∗iχi

η̄i {1− (1− p∗i )χi} η̄ip
∗
i

var (n̂i)

 .

To evaluate the quadratic form ∇M>
i Σ∗i∇Mi, first observe that the contribution of the

covariance matrix of (ui, vi, wi) is

Q1 = (Ni/χ̄
2
i )
[
ηip
∗
iχ

2
i + η̄i + (1− p∗i )η̄iχi {η̄i/p∗i − ηi + 2ηiχi}

]
.
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The sum of the the three terms involving a covariance with n̂i is

Q2 = {−2Nip
∗
iχi(η̄i + ηip

∗
i )/(p

∗
i χ̄i)} [η̄i + χi(η̄i + ηip

∗
i )/(p

∗
i χ̄i)] .

The last term, involving the variance of n̂i, is given by

Q3 = Nip
∗
i {(η̄i + p∗i ηi)χi/p

∗
i χ̄i}2 {1− (1− p∗i )η̄iχ̄iP2i/(p

∗
i χ̄iη̄i +Di × P2i)}

= Nip
∗
i {(η̄i + p∗i ηi)χi/(p

∗
i χ̄i)}2︸ ︷︷ ︸

Q3,1

− Nip
∗
i {(η̄i + p∗i ηi)χi/(p

∗
i χ̄i)}2 {(1− p∗i )η̄iχ̄iP2i/(p

∗
i χ̄iη̄i +Di × P2i)}︸ ︷︷ ︸

Q3,2

.

First we calculate the variance under an open population model, corresponding to the case

Q3,2 = P2i = 0. This gives

Q1 +Q2 +Q3,1 = Niχiη̄i(1− p∗i ) {η̄i + p∗i ηi} /(p∗i χ̄i) +Niη̄i.

Now adding Q3,2 yields the expression for ∇M>
i Σ∗i∇Mi −Niη̄i given in (9) .

In the next sections, we give some details on the last calculations that lead to the

variance of φ̂i.

B.3. Derivation of ∇φ̂i

We have,

∇φ̂i =

(
∂φ̂i

∂M̂i+1

,
∂φ̂i

∂M̂i

,
∂φ̂i

∂ui

)
.

Differentiating φ̂i with respect to M̂i+1 and using (2) leads to

∂φ̂i

∂M̂i+1

= 1/(M̂i + ui)

≈ 1/ {Ni(η̄i + ηip
∗
i )} .

The derivations with respect to M̂i and ui are calculated in a similar way.
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B.4. Evaluation of Γi

The variance of M̂i+1 and M̂i have been derived in section (B.2) ; the expectation of ui is

calculated in equation (2). The covariance between M̂i+1 and M̂i is evaluated as

cov(M̂i+1, M̂i) = ∇M>
i+1Γ

∗
i∇Mi,

where Γ∗i is the 4 × 4 matrix of the covariances between the vectors (ui, vi, wi, n̂i) and

(ui+1, vi+1, wi+1, n̂i+1). The covariance between ui and ui+1 is 0. The covariance between ui

and vi+1 is Niηip
∗
iφip

∗
i+1χi+1. The other covariances involving the random variables ui, vi, wi

and ui+1, vi+1wi+1 are derived in a similar way. The covariances involving n̂i and n̂i+1 are

derived using the approach discussed in section (B.2). For example, the covariance between

n̂i and n̂i+1 gives Nip
∗
iφip

∗
i+1. Finally, the covariance matrix Γ∗i is,

Γ∗i = Ni


0 ηip

∗
iφip

∗
i+1χi+1 ηip

∗
iφi(χ̄i+1 + p∗i+1χi+1) ηip

∗
iφip

∗
i+1

0 0 0 0

0 η̄iφip
∗
i+1χi+1 η̄i(1− p∗i )φi(1− p∗i+1)χ̄i+1 η̄i(1− p∗i )φip

∗
i+1

0 p∗iφip
∗
i+1χi+1 p∗iφi(χ̄i+1 + p∗i+1χi+1) p∗iφip

∗
i+1



>

.

To evaluate the quadratic form ∇M>
i+1Γ

∗
i∇Mi, we first calculate the component featu-

ring the covariances between (ui, vi, wi) and (ui+1, vi+1, wi+1),

Q1 = {Niφi/(χ̄iχ̄i+1)}
[
ηiχi

{
η̄i+1(1− p∗i+1)χi+1 + p∗i (χ̄i+1 + p∗i+1χi+1)

}]
+ {Niφi/(χ̄iχ̄i+1)}

[
η̄i(1− p∗i+1) {η̄i+1χi+1 + (1− p∗i )χ̄i+1}

]
.

The sum of the covariances between (ui, vi, wi) and n̂i+1 is

Q2 = −Niχiχi+1φi(χ̄i+1 + ηi+1p
∗
i+1)(χ̄i + ηip

∗
i )/χ̄i.
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That involving (ui+1, vi+1, wi+1) and n̂i is,

Q3 = −Nip
∗
iφiχi(η̄i + ηip

∗
i )
{
η̄i+1(1− p∗i+1) + χ̄i+1 + p∗i+1χi+1

}
/(p∗i χ̄iχ̄i+1).

The component involving the covariance between n̂i+1 and n̂i is

Q4 = Niφiχiχi+1(η̄i + ηip
∗
i )(η̄i+1 + ηi+1p

∗
i+1)/(χ̄iχ̄i+1).

Now adding up Q1, Q2, Q2 and Q4 gives the quadratic form ∇M>
i+1Γ

∗
i∇Mi. It leads to

cov(M̂i+1, M̂i) = Niη̄iφi. In the same fashion, we derive cov(M̂i+1, ui) = Niηip
∗
iφi and

cov(M̂i, ui) = 0. The covariance matrix Γi is now completely derived.

B.5. Evaluation of the variance of φ̂i

To evaluate the quadratic form ∇φ̂>i Γi∇φ̂i, first observe that the contribution of the three

covariances between M̂i+1,M̂i, and ui is

Q1 = −2φ2
i / {Ni(η̄i + ηip

∗
i )} ,

while the contribution of the the variances of (M̂i+1, M̂i, ui) to the quadratic form is

Q2 = φ2
i

(1− p∗i+1)χi+1

{
η̄i+1 + ηi+1p

∗
i+1

}{
p∗i+1η̄i+1 + P2,i+1ηi+1

}
Ni+1p∗i+1η̄i+1

{
p∗i+1χ̄i+1η̄i+1 +Di+1 × P2,i+1

}
+ φ2

i

[
(1− p∗i )η̄iχi {p∗i η̄i + P2iηi}

Nip∗i {η̄i + ηip∗i } {p∗i χ̄iη̄i +Di × P2i}

]
+ φ2

i

[
1

Ni+1η̄i+1

+
1

Ni(η̄i + ηip∗i )

]
.

Finally, adding up Q1 and Q2 gives (7) .
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C. Derivation of var
(
N̂i

)
for model Mt

In this section, we show the calculations that lead to the variance of N̂i. The following

notation is used throughout this section.

• p∗1i =
∑`i

j=1

pij `i∏
s=1
s 6=j

(1− pis)

 the probability of being captured once at PSP i,

• P ∗2i = 1−
∏`i

j=1 (1− pij)−
∑`i

j=1

pij `i∏
s=1
s 6=j

(1− pis)

 the probability of obtaining two

captures or more at PSP i.

Furthermore, for a PSP i, let pij and nij be (resp.) the probability of being captured

and the number of captures in a secondary sampling level j , j = 1, 2, ..., `i; thus, p∗i =

1−
∏`i

j=1 (1− pij).

The estimating equation that leads to the maximum likelihood estimator for Ni is

f ∗i,N(Ni) = Ni

[
n∗i (wi − n∗i + ui)/ {n∗i (wi − vi) + uivi} −

`i∏
j=1

(1− nij/Ni)

]
, (10)

where

n∗i = Ni

{
1−

`i∏
j=1

(1− nij/Ni)

}
. (11)

This section give further details to the proof of the asymptotic variance of N̂i,

var
(
N̂i

)
= NiDi(1− p∗i )/(p∗i χ̄iη̄i +DiP

∗
2i). (12)
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C.1. Evaluation of A∗i

We have,

n∗i = Ni

{
1−

`i∏
j=1

(1− nij/Ni)

}

= Ni

[
1− exp

{
`i∑

j=1

log (1− nij/Ni)

}]
.

Then, its derivative with respect to Ni, evaluated at the expectation of nij, j = 1, 2, ..., `i,

is equal to P ∗2i, the probability of being captured more than once during PSP i. Now,

differentiating (10) using the chain rule and applying (2) gives

∂f ∗i,N
∂Ni

≈ −NiP
∗
2i [(1− p∗i )χi/(Niχ̄i) + {1− (1− p∗i )χi}/(Miχ̄i)]− p∗1i

= −{1/(χ̄iη̄i)} (p∗i χ̄iη̄i +Di × P ∗2i) = A∗i .

C.2. Evaluation of Σ∗i

The variance and the covariance of the three Poisson random variables ui, vi, wi are already

discussed in section (A.2 ). Now, for j = 1, 2, ..., `i, the variance of nij, a Poisson random

variable, is

var(nij) = Nipij.

The covariances with nij are calculated in a similar way. For instance that with ui involves

Ũi, the units that are not marked before the ith PSP. Given (Ñi, Ũi) the conditional co-

variance between nij and ui is Ũi`ipij(1− p∗i ) while their respective expectations are Ñipij

and Ũip
∗
i . Thus,

cov(nij, ui) = E{Ũipij(1− p∗i )}+ cov(Ñipij, Ũip
∗
i ) = Uipij = Niηipij.
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Finally, the covariance matrix of ui, vi, wi, ni1, ni2, ..., ni`i , Σ∗i , is

Σ∗i = Ni



ηip
∗
i ηip

∗
iχi 0 ηipi1 . . . ηipi`i

p∗iχi η̄ip
∗
iχi pi1χi . . . pi`iχi

η̄i {1− (1− p∗i )χi} η̄ipi1 . . . η̄ipi`i

pi1 . . . pi1pi`i
. . . pi`i


. (13)

C.3. Derivation of ∇f ∗i,N

We have,

∇f ∗i,N =

(
∂fi,N
∂ui

,
∂fi,N
∂vi

,
∂fi,N
∂wi

,

(
∂fi,N
∂nij

)
j=1,...,`i

)
.

The first three partial derivates are the same as calculated in section (A.3). Now, for a

fixed j (j = 1, 2, ..., `i), deriving f ∗i,N with respect to nij using (2) gives

∂fi,N
∂nij

≈
`i∏

s=1
s 6=j

(1− pis)−
`i∏

s=1
s 6=j

(1− pis) {(χ̄i + p∗iχi)/(η̄iχ̄i) + (1− p∗i )χi/(χ̄i)}

=

`i∏
s=1
s 6=j

(1− pis) {1− (χ̄i + p∗iχi)/(η̄iχ̄i)− (1− p∗i )χi/(χ̄i)}

= −Di

`i∏
s=1
s6=j

(1− pis) /(η̄iχ̄i).

The limit of the vector of partial derivatives of f ∗i,N(Ni) with respect to ui, vi, wi,

ni1,ni2,...,ni`i , is

∇f ∗i,N = {1/(χ̄iη̄i)} × (1− (1− p∗i )χi, η̄i(1− p∗i ), p∗i ,−DiΨi)
> ,
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where

Ψi =

 `i∏
s=1
s 6=1

(1− pis) ,
`i∏

s=1
s 6=2

(1− pis) , ...,
`i∏

s=1
s 6=`i

(1− pis)

 .

C.4. Evaluation of ∇f ∗>i,NΣ∗i∇f ∗i,N

From the previous evaluation of ∇f>i,NΣi∇fi,N , the only quantity that changes is the one

involving the variances and the covariances with nij. Let that be Aij. We have,

Aij =

`i∑
j=1

Di

`i∏
s=1
s 6=j

(1− pis)


2

pij +

`i∑
j=1

`i∑
j
′
=1

j
′ 6=j

D2
i

`i∏
s=1
s 6=j

(1− pis)
`i∏
t=1
t6=j

′

(1− pit) pijpij′


− 2Di

`i∑
j=1

`i∏
s=1
s 6=j

(1− pis)
{
∂f ∗i,N
∂ui

ηipij +
∂f ∗i,N
∂vi

pijχi +
∂f ∗i,N
∂wi

η̄ipij

}

= D2
i

`i∑
j=1

pij

`i∏
s=1
s 6=j

(1− pis)

 `i∏
s=1
s 6=j

(1− pis)− pij
`i∏

s=1
s 6=j

(1− pis) +

`i∑
j=1

pij

`i∏
s=1
s 6=j

(1− pis)


− 2Dip

∗
1i

{
∂f ∗i,N
∂ui

ηi +
∂f ∗i,N
∂vi

χi +
∂f ∗i,N
∂wi

η̄i

}
≈ D2

i p
∗
1i(1− p∗i + p∗1i)− 2Dip

∗
1i [ηi {1− (1− p∗i )χi}+ η̄i(1− p∗i )χi + η̄ip

∗
i ]

= −2p∗i1Dip
∗
i η̄iχ̄i −D2

i p
∗
i1(1 + P ∗2i),

which only depends on PSP i. Finally, Aij has the same form as Q2 defined in the evaluation

of∇f>i,NΣi∇fi,N . Therefore,∇f ∗>i,NΣ∗i∇f ∗i,N and∇f>i,NΣi∇fi,N have the same quadratic form

and the vaiance of N̂i is given by (12).
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D. Derivation of var
(
φ̂i

)
for model Mt

In this section, we show the calculations that lead to the variance of φ̂i,

var(φ̂i) = φ2
i

{
(1− p∗i+1)χi+1

{
η̄i+1 + p∗i+1ηi+1

}
Ni+1p∗i+1η̄i+1χ̄i+1

+
(1− p∗i )η̄iχi

Nip∗i χ̄i(η̄i + ηip∗i )
+

1− φi

Ni+1η̄i+1

}
(14)

− φ2
i

{
(1− p∗i+1)(η̄i+1 + p∗i+1ηi+1)

2χ2
i+1P

∗
2,i+1

Ni+1η̄i+1χ̄i+1p∗i+1(η̄i+1χ̄i+1p∗i+1 +Di+1P ∗2,i+1)
+

(1− p∗i )η̄iχ2
iP
∗
2,i

Niχ̄ip∗i (η̄iχ̄ip∗i +DiP ∗2,i)

}
.

Throughout the section, we give details on the evaluation of the variance of n̂i and of M̂i,

var
(
M̂i

)
= Ni(1− p∗i )η̄iχi(η̄i + p∗i ηi)(p

∗
i η̄i + P ∗2iηi)/ {p∗i (p∗i χ̄iη̄i +Di × P ∗2i)} . (15)

D.1. Derivation of var (n̂i)

The covariance between Ci and N̂i is evaluated as Ni times the fourth entry of the vector

−Σi∇f ∗i,N/A∗i . It is found to be equal to Ni

∑`i
j=1 pij . Thus the linearization approximation

to the variance of n̂i is

var (n̂i) = (P ∗2i)
2var(N̂i) +Ni{(p∗i )2 + (p∗i − P ∗2i)(1− p∗i )}

= Ni [P ∗2i(1− p∗i ) {P ∗2iDi/(p
∗
i η̄iχ̄i + P ∗2iDi)− 1}+ p∗i ]

= Nip
∗
i {1− (1− p∗i )η̄iχ̄iP

∗
2i/(p

∗
i η̄iχ̄i +Di × P ∗2i)} .
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D.2. Derivation of var
(
M̂i

)
The only term that changes in the evaluation of var

(
M̂i

)
from the previous derivations of

(B.2) is the last term, involving the variance of n̂i,

Q3 = Nip
∗
i {(η̄i + p∗i ηi)χi/p

∗
i χ̄i}2 {1− (1− p∗i )η̄iχ̄iP

∗
2i/(p

∗
i χ̄iη̄i +Di × P ∗2i)}

= Nip
∗
i {(η̄i + p∗i ηi)χi/(p

∗
i χ̄i)}2︸ ︷︷ ︸

Q3,1

− Nip
∗
i {(η̄i + p∗i ηi)χi/(p

∗
i χ̄i)}2 {(1− p∗i )η̄iχ̄iP

∗
2i/(p

∗
i χ̄iη̄i +Di × P ∗2i)}︸ ︷︷ ︸

Q3,2

.

First we calculate the variance under an open population model, corresponding to the case

Q3,2 = P ∗2i = 0. This gives

Q1 +Q2 +Q3,1 = Niχiη̄i(1− p∗i ) {η̄i + p∗i ηi} /(p∗i χ̄i) +Niη̄i.

Now adding Q3,2 gives (15). The derivations of ∇φ̂i and Γi are the exact same obtained in

(B.3) and (B.4) respectively.

D.3. Evaluation of the variance of φ̂i

The only term that changes from prior calculations in (B.5) is the contribution of the

variances of (M̂i+1, M̂i, ui) to the quadratic form,

Q2 = φ2
i

(1− p∗i+1)χi+1

{
η̄i+1 + ηi+1p

∗
i+1

}{
p∗i+1η̄i+1 + P ∗2,i+1ηi+1

}
Ni+1p∗i+1η̄i+1

{
p∗i+1χ̄i+1η̄i+1 +Di+1 × P ∗2,i+1

}
+ φ2

i

[
(1− p∗i )η̄iχi {p∗i η̄i + P ∗2iηi}

Nip∗i {η̄i + ηip∗i } {p∗i χ̄iη̄i +Di × P ∗2i}

]
+ φ2

i

[
1

Ni+1η̄i+1

+
1

Ni(η̄i + ηip∗i )

]
.

Finally, adding up Q1 obtained in (B.5) and Q2 gives (14) .
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E. Simulation study

This section is a complement to Section 5.2 presenting the Monte Carlo validation of

the bootstrap variance estimation method. The within PSP capture probabilites were

generated using Darroch model,

pik =

(
7

k

)
exp

{
βk + τk2/2

}
/

7∑
j=0

(
7

j

)
exp

{
β + τj2/2

}
, k = 0, . . . , 7 (16)

with parameters (β, τ) = (−3.3, 0.6) , (−2.85, 0.6) corresponding to p∗ = 0.3, 0.5. The

daily capture probability for a unit was simulated using the method proposed in Section

2.2 of Rivest and Baillargeon (2007). We set the survival probabilities at φ = 0.6, 0.8.

We ran 1000 replications for the Monte Carlo study; for each replication there was

a burn-in period of 20 PSPs. We calculated the relative bias of N̂5 as RB
(
N̂5

)
=(∑

i N̂5i/1000−N5

)
/N5. The mean squared error, MSE

(
N̂5

)
=

{∑
i

(
N̂5i −N5

)2
/1000

}
,

the relative root mean squared error, RRMSE
(
N̂5

)
= MSE

(
N̂5

)1/2
/N5. For each repli-

cation i of the Monte Carlo simulation, we ran L = 100 replications of the bootstrap descri-

bed in Section 5.2 to calculate the bootstrap variance for N̂5, v
(
N̂5

)
. The relative bias for

E
{
v
(
N̂5

)}
is calculated asRB

[
E
{
v
(
N̂5

)}]
=
[
E
{
v
(
N̂5

)}
−MSE

(
N̂5

)]
/MSE

(
N̂5

)
;

the 95% confidence interval for N̂5 is exp
[
log
(
N̂5

)
± 1.96s.e

{
log
(
N̂5

)}]
; the expected

relative length of the confidence interval is calculated as RLCI
(
N̂5

)
= (UB − LB)/N5,

where UB and LB are respectively the expected upper and lower bounds of the confidence

interval for N5. In Table 1, the Monte Carlo standard errors, RRMSE
(
N̂5

)
/10001/2, of

RB
(
N̂5

)
are also provided in parenthesis. They show that N̂5 has a negative bias which

is important in scenario ED2.
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Table 1: Simulation results for the estimation of N5 under the robust design model for M t
Dh

with p∗ = 0.3, 0.5, φ = 0.6, 0.8 and three scenarios for the entry process. All the results

are presented in percentages

φ p∗ Scenario RB(N̂5) RB(E(v(N̂5))) RRMSE 95% Cov. RLCI(N̂5)

0.8

0.5

RD -0.02 (0.14) 12.79 4.54 93.3 18.34

0.3

ED1 -0.94 (0.15) 14.92 4.73 95.9 19.58

ED2 -6.68 (0.26) -63.23 8.12 74.2 18.99

RD -2.2 (0.25) 5.8 7.8 95.5 30.7

ED1 -3.28 (0.24) 11.41 7.54 95 30.54

ED2 -9.17 (0.35) -53.08 11.19 78.9 29.44

0.6

0.5

RD 0.72 (0.29) -0.76 9.31 93.9 35.3

0.3

ED1 -0.2 (0.30) -2.45 9.6 93.4 36.12

ED2 -11.36 (0.48) -63.83 15.10 72.4 34.56

RD -4.34 (0.46) 8.35 14.61 93.3 58.12

ED1 -5.3 (0.50) -5.16 15.7 93.7 58.14

ED2 -17.98 (0.73) -60.07 23.17 73.8 55.59

Additional simulations, using 1000 replications, were carried out for scenario ED2 to

investigate whether the relative change in population size, defined as inc = (N35−N5)/N5,

could be estimated accurately even if absolute population estimators were biased. The

set-up of this second simulation is presented in Figure 1: after a burn-in period of 21 PSPs

data are collected in weeks 1 to 9; this is used to estimate N5. Starting on week 10 daily

births are multiplied by 1 + inc and the process runs for 29 more weeks. Data are collected
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in weeks 31 to 39 to estimate N35.

1 22 30 52 60 weeks

B̃

Burn-in

9 PSPs

Increase

B̃ × (1 + inc)

9 PSPs

1

N̂5

39

N̂35

Figure 1: Data simulation process

For each replication i, the relative increase ˆinci =
(
N̂35,i − N̂5,i

)
/N̂5,i is calculated. A

bootstrap variance for ˆinc, calculated using 100 bootstrap samples, was computed using

the formula v
(

ˆinc
)

=
(
N̂35/N̂5

)2
×
[
v
{

log
(
N̂5

)}
+ v

{
log
(
N̂35

)}]
, where v

{
log
(
N̂5

)}
and v

{
log
(
N̂35

)}
are the bootsrap variances for log

(
N̂5

)
and log

(
N̂35

)
respectively; the

95% confidence interval for înc is

[
ˆinc± 1.96

√
v
(

ˆinc
)]

. The bias of ˆinc, with its Monte

Carlo standard error, its root mean squared error and the coverage of its 95% confidence

interval are reported in Table 2. In general, the population increase is well estimated and

the bootstrap confidence level is equal to the target value. In most cases, there is a small

positive bias, which is always less than 10% of the true value of inc. Relatively large RMSEs

are found when both p∗ and φ are small.
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Table 2: The bias, with its Monte Carlo standard error in parenthesis, the root mean

squared error and the 95% coverage of the estimator of inc. The results are expressed in

percentages.

φ p∗ inc B( ˆinc) RMSE( ˆinc) 95%Cov.

0.8

0.5

20 0.45 (0.2) 8 98

0.3

50 0.08 (0.3) 9 96

80 0.26 (0.3) 10 98

20 0.71 (0.4) 12 97

50 0.8 (0.5) 14 97

80 0.59 (0.7) 24 97

0.6

0.5

20 0.74 (0.5) 16 96

0.3

50 1.75 (0.7) 21 94

80 -1.40 (0.7) 22 94

20 2.32 (1.0) 32 95

50 1.82 (1.1) 35 94

80 5.30 (1.3) 42 95

F. Robustness investigations

The robustness of the estimates obtained was investigated by fitting the same model to

capture-recapture data from a different metropolitan area. The two sets of estimates for

{p∗i } are provided in Figure 2. They are very similar supporting the statement that the

capture mechanism is the same in the two metropolitan areas.
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Figure 2: Evolution of the detection probability for 76 weeks and for Metropolitan Area

(MA) 1 and 2.
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Alternative data sets were created by removing the first few days of data. In Figure 3,

the Sunday data set is the original data set. The Monday one is obtained by dropping the

first day: a PSP starts one day later than in the original data. In the Tuesday data set, it

starts two days later. The population size estimates appear to be invariant with respect to

a redefinition of the starting day of a PSP.

G. Demographic parameter and capture probability estimates for

the app data

In this section, estimates of the demographic parameters and the capture probabilities are

presented along with their coefficients of variation. The results are presented for the first

20 weeks of the experiment ; results for the 76 PSPs can be obtained in .xlsx file named

Estimations provided as a supplementary material.

Figure 4 present boxplots of the relative efficiencies computed with respect to the robust

design estimators for the 76 PSPs; for the Jolly Seber estimators this efficiency is defined

by {CV (N̂JS
i )/CV (N̂RD

i )}2. The results show that the robust design provides estimates

of Ni that are much more efficient that those of the closed population and the Jolly-Seber

models. Furthermore, the gain in precision is more important for the closed population

estimates.
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Figure 3: Evolution of the population size for 76 weeks and for three starting days (Sunday,

Monday, Tuesday) for the PSPs.
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Figure 4: Efficiency comparison (Squared Coefficient of variation) between the robust de-

sign estimate of Ni and those obtained under models Mh closed population and Jolly-Seber.

The relative efficiencies are calculated with 1000 bootstrap samples and their values from

the 76 PSP plotted.
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Table 3: Clientele size estimates and their coefficients of variation for the first 20 weeks of

the experiment, under models Mh for a closed population, Jolly-Seber and M t
Dh.

Parameter Closed Pop. Robust Design Mh Open Pop.

N̂1 387 (27) 387 (27) -

N̂2 672 (22) 438 (17) 315 (26)

N̂3 461 (21) 327 (14) 275 (18)

N̂4 708 (26) 487 (16) 411 (21)

N̂5 291 (26) 345 (14) 365 (16)

N̂6 446 (24) 416 (13) 405 (17)

N̂7 290 (27) 312 (13) 317 (15)

N̂8 375 (27) 457 (15) 492 (18)

N̂9 300 (27) 383 (14) 416 (17)

N̂10 311 (24) 370 (13) 392 (15)

N̂11 332 (25) 349 (12) 354 (15)

N̂12 280 (23) 316 (12) 327 (13)

N̂13 355 (24) 367 (12) 370 (14)

N̂14 368 (28) 428 (13) 446 (16)

N̂15 465 (25) 497 (13) 509 (16)

N̂16 248 (22) 379 (12) 464 (15)

N̂17 686 (48) 587 (21) 565 (28)

N̂18 292 (37) 601 (21) 793 (28)

N̂19 560 (49) 751 (22) 818 (29)

N̂20 212 (41) 440 (20) 533 (26)
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Table 4: Survival probability estimates and their coefficients of variation for the first 20

weeks of the experiment, under Jolly-Seber and M t
Dh models.

Parameter Closed Pop. Robust Design Mh Open Pop.

φ̂1 - 0.964 (6) 0.810 (3)

φ̂2 - 0.554 (12) 0.543 (15)

φ̂3 - 0.768 (11) 0.742 (12)

φ̂4 - 0.632 (12) 0.689 (14)

φ̂5 - 0.835 (9) 0.804 (9)

φ̂6 - 0.642 (12) 0.656 (14)

φ̂7 - 0.869 (8) 0.896 (8)

φ̂8 - 0.766 (11) 0.784 (12)

φ̂9 - 0.704 (12) 0.699 (14)

φ̂10 - 0.705 (11) 0.694 (13)

φ̂11 - 0.699 (10) 0.707 (11)

φ̂12 - 0.842 (9) 0.835 (9)

φ̂13 - 0.894 (7) 0.912 (7)

φ̂14 - 0.829 (9) 0.826 (9)

φ̂15 - 0.755 (10) 0.873 (10)

φ̂16 - 0.872 (7) 0.749 (9)

φ̂17 - 0.648 (20) 0.749 (23)

φ̂18 - 0.988 (8) 0.932 (10)

φ̂19 - 0.715 (17) 0.776 (20)

φ̂20 - 0.758 (14) 0.691 (17)
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Table 5: Capture probability estimates and their coefficients of variation for the first 20

weeks of the experiment, under models Mh for a closed population, Jolly-Seber and M t
Dh.

Parameter Closed Pop. Robust Design Mh Open Pop.

p̂∗1 0.256 (25) 0.256 (22) -

p̂∗2 0.222 (20) 0.324 (16) 0.474 (27)

p̂∗3 0.310 (18) 0.418 (13) 0.520 (19)

p̂∗4 0.191 (23) 0.266 (16) 0.328 (22)

p̂∗5 0.347 (23) 0.299 (15) 0.276 (18)

p̂∗6 0.287 (22) 0.305 (14) 0.316 (19)

p̂∗7 0.352 (24) 0.330 (14) 0.321 (16)

p̂∗8 0.304 (25) 0.255 (16) 0.232 (20)

p̂∗9 0.334 (24) 0.269 (15) 0.240 (19)

p̂∗10 0.354 (22) 0.303 (13) 0.281 (17)

p̂∗11 0.310 (23) 0.297 (13) 0.291 (16)

p̂∗12 0.368 (20) 0.331 (12) 0.315 (14)

p̂∗13 0.310 (21) 0.301 (13) 0.297 (16)

p̂∗14 0.290 (26) 0.254 (15) 0.240 (18)

p̂∗15 0.267 (23) 0.251 (14) 0.244 (17)

p̂∗16 0.455 (20) 0.317 (13) 0.243 (17)

p̂∗17 0.123 (48) 0.142 (22) 0.149 (29)

p̂∗18 0.195 (34) 0.101 (22) 0.072 (30)

p̂∗19 0.138 (51) 0.104 (22) 0.094 (29)

p̂∗20 0.063 (42) 0.120 (21) 0.094 (27)
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Table 6: Estimates of new arrivals and their coefficients of variation for the first 20 weeks

of the experiment, under Jolly-Seber and M t
Dh models.

Parameter Closed Pop. Robust Design Mh Open Pop.

B̂1 - 65 (62) -

B̂2 - 84 (90) 20 (534)

B̂3 - 236 (29) 262 (38)

B̂4 - 37 (189) 60 (346)

B̂5 - 128 (43) 153 (45)

B̂6 - 45 (134) 0 (382)

B̂7 - 186 (34) 284 (38)

B̂8 - 33 (146) 0 (198)

B̂9 - 100 (59) 66 (120)

B̂10 - 88 (63) 81 (106)

B̂11 - 72 (76) 81 (118)

B̂12 - 101 (43) 139 (50)

B̂13 - 100 (49) 137 (66)

B̂14 - 142 (48) 102 (72)

B̂15 - 3 (263) 44 (190)

B̂16 - 256 (40) 160 (56)

B̂17 - 221 (86) 370 (177)

B̂18 - 157 (73) 224 (74)

B̂19 - 0 (237) 0 (315)

B̂20 - 243 (70) 178 (98)
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