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Online Appendix A. Proof of Theorem 1

- = PN oA\
To prove Theorem 1, we assume that w; (¢; «) is a function of (A,-, T;, A;, Vi, L,-) foreachi =1,...,nand (,B’, a%, ac )

as well as S(O)(t £, a), S(l)(t b, a), S(O)(t [)’ a), S(l)(t'ﬁ a) and w;(t; a) are functions of the random variables
(A,, T;, Ai, Vi, L; ) . We will denote with Y;(t) = 1 — C;(¢), if an individual is still under observation. We further
assume the following regulanty conditions:

(A) [y Lo(t)dt < o0
(B) There exists a neighborhood U of (ﬁ/, a’ )/ such that for each j =0, 1, 2:

SO p*, o) —sO(r; 5o

sup
te(0,00),(p*,a*)elU

/ ’ 4
(C) There exists a neighborhood U of (ﬁ/, a’)/ such that for (ﬁ* ,o* ) e U and r € (0, 00):

Vs O %, 0%) = sV (t; g, a),

VesV(t; p*, a*) = sP; p*, a*),

sw)(t p*,a*), s,ﬁ})(t p*,a*), S,E))(l‘ p*, a*) are continuous functions of (ﬁ* o )’ € U, uniformly in ¢ € (0, 00),
sff), sl(ul) and s(2) are bounded on U x (0, co) and s( ) is bounded away from zero on U x (0, 00),
/ / /
(D) There exists a neighborhood U of (ﬁ ,0 ) such that for all (ﬂ* , ok ) eU:

- E(Vyouw1(B*,a*)), E (uy@ (@@ 1(@)), E(Vyouwi (B, a*)) and E (u,0 1 @)ug0 1 (@*))
exist and V_ E (Va(g)uw,l(ﬁ* a*) ) V, @ ( a(a),l(a“*)ua(a),l(aa*)/), V,oE (Va(C)MTIJ,iw*! a*)’)/ and
Voo (1,0 1 @)y 1 (@*)') are bounded.

1Y U0 @Y. AVoUyo @™, 1V, Un (B a™, a)  and 1V, U, (8", a®*, ac*y exist
/ / /
and 1V, (ViU (@), 1V,0 (Veo Uy @), 1V, (Va0 Un(B*, 0%, a*)Y)"  and
%VW) (Va0 U (B*, a®, aC*)’)/ are bounded.

(E) Differentiation with respect to «® and a(©) is exchangeable with integration as follows:

Va(a)E (uzn,i(ﬂ; a(a), a(c))/) = / Va(a) (uw lw 0! (c)) f(él’ ti, aj, vj, l )) d(6;, ti, a;, v, l )

V,0oE (uw,i(ﬁ:a(a a©y v (uw.i(B, 0 (c))lf(éi:ti,&ial)ial_i)) d(6i, ti,ai, vi, ;)

)=/ %o
Vi (0,1 @) = [ Yyt (00,1 @ O 7@t 10) @11,
)= [ Vo (s

Va«)E( Uy (@) Vo (g (@Y £, i, ai, Ui,l_i)) d(S;, ti, aj, v, l;)

Proof.

The proof is based on the proof of Ali et al. [1] of the variance formula for known IPT weights and the proof of Robins et
al. [2] of the variance of estimators resulting from IPC weighted generalized estimating equations.
We set n = (5, a@, a(")) and rewrite U (77) = (Uw s, a@, a("))’, U, (a(“))/, U, (a("))/)/. Applying the mean value
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theorem yields
0=U@=UMm+ (VyU@) G —n (A1)

with #* = (f*, a®*, a*) on the line segment between # and 7. Since VgU, (8*, a®*, a), V, U, (@**) and

Vo U,e© (a*) are symmetric matrices, it follows that

V,b’ Up(B*, 0%, a™) (Vo@ Uy B*, a%, a™)y (Va(c) Up(B*, a®, a))
AV %
(VV]U(U )/) = 0 Va(a) Ua(u) (aa )/ 0
0 0 V@ Uy (@)

Equation (A1) is then equivalent to

0= Un (B, 0@, a9) + VyUu (B, 0, aY (B = §) + (Vuw Un (B, o, a*)) @ = a®)
+ (Vo Un (B, 0™, a* /)/ @© = ¢,

0=U,w (@ @) + VU, (@) (3@ — a@) and

0="U,0 (@) + VU@ @Y (@ = a©)

which can be rewritten as

1 ¢
Up(B, 0@, a'®)

— (VaUw(B*, a™, a*))"
— (VpUu (B, 0, a*)') ™ 1( Mvww*,a“*,a”)’)/(ac(“)—a<“>>
— (VpUu(B*, 0%, a)) ™" (Vo Un(B*, a®*, a¢*)) @ — a ),
a9 -0 = — (VywUyw(@™))” Uy (@@) and
- (v

% 1
a(c) Ua(c) (ac ) )

a© = (c ))’

a© U, (a

respectively. Inserting the last two equations into the first one and multiplying by +/n leads to

-1
VB - p) = ( VU (B, 0", a /) (—%Uw(ﬁ,a(“),a(c))+

1 . e e 1 A\

~ (Va Un(B",a®, a") (;Va<a>an>(a“ )’) ﬁUa(w(a(a))'f‘ (A2)
1 « _ax _cxy)/ 1 cxy/ - 1 (c)

;(Va(f)Uw(ﬂ ,a®*, o)) ;Vav*Uam(a ) T w@ @) ).

Using the same arguments as in Lin et al. [3] and the definition of Uw(ﬂ,a(“),a(c)) in (13), we may replace
ﬁU,,)(ﬂ,a(“),a(c)) by ﬁﬁ,,,(ﬁ,a(“), a(")) +0,(1), with 0,(1) denoting a random variable converging to zero in

probability. Analogously to Andersen and Gill [4], using regularity assumptions (A)-(C), (l VpUu(B*, 0%, C*)’)
converges in probability to Hgg. By the law of large numbers and regularity assumption (D), ( V, @U@ (@ ))

converges in probability to H @)@ = E (Va(a)ul’a(a) (a (“)) ) ( Vo Uy (ac*)) converges in probability to H, ), =

E(Vy0u) 40 @), }l(Va(@Uw([)’*,a“*,ac*)/)/ converges in probability to Hgge and %(Va(c)Uw(ﬁ*,a“*,ac*))/
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converges in probability to Hpg, . Then, (A2) can be rewritten as

o _ 1 -~ X _ 1 _ 1 )
Vn(B—p) = H/;/;l ( - ﬁUzu(ﬁa a@, a9y 4 Hg,@ Ha(al)a(a)ﬁl]a(“) (@@) + Hﬁa(C)Ha(cl)a(c)ﬁUa(C) (a(c))) +op(1)

L1 (<& . _ _
- Hﬁﬁl Jn (Z it (B, a',a') + Hy,w Ha(jm(u)“a(@,i @) + Hygw Ha(g)a(c)ua("),i (a (C))) +op(1).

i=1

Due to the central limit theorem, it holds that
1 n
— —i (@) ,© =1 (a) -1 (0)
ﬁ Z Mw,z(ﬁaa , O ) + Hﬂa(u)Ha(a)a(a)ua(“),i(a ) + Hﬂa(“)Ha((-)a((')ua("),i(a )
i=1
converges in distribution to a mean zero Gaussian variable B with variance

Var(B) =E ((_ﬁw,l(ﬂ, a @D, 6y 4+ Hp,@ H;j)a(a)ua(a)’l (@@ + H/fa(@H;})a(t)uam’] (a(c)))m)
_E (ﬁw,1(ﬂ, 2D, OV (B, 0@, a("))/)
* gt H“_(J)“(”)E (u"(“)’l (@0, (@ (”))/) H(;;)a(a)H/;’a(a)
o Hpoo H 0 (001 @ity 1 @) HZ o Hy (A3)
—2F (ﬁw,l(ﬂ, a@, a(f))ua<a),l(a(“))’) al H

—2E (ﬁw,l(ﬂ, O!(a), a(C))ua(C),l(a(C))/) H(;cl)a(c) H[;m)

-1 - -1
+2Hg0 H ) WE (ua@, L@y 1 (a (o)/) HZY o Hpo

o

whereby we use the standard notation v®? = vo’. Thus, to prove the theorem, it remains to show that
=1 gq7 =1 gy
Var(B) = Fﬂ - H[)’(l(“) Fa(“) H[)’(l(“) - H/fa(c) F(X(C) H[f{x(") .

We will first show that Hpyw = E (uw,l (s, a@, a(c))ua(u)’l (a (“))’).
Following the argumentation outlined in Lawless et al. [5, chapter 7.1.3], it can be shown that E(U,(f, a)) and thus

E (uw’l s, a@ o (C))) as a function of the true parameter value is always zero. Therefore
YV, E (uw,l B, a, a@)’) —0. (A4)

Furthermore, the joint density of (Aq, 71, ALV, I:l) depends on a@ only through the conditional densities
Pr (A1) = a1 (k)|Y1(k) =1, Ay(k — 1) = ai(k — 1), Vi = o1, Li(k) =1 (k); @), k =1,..., K. Using (1) of the
main document, we may write the joint density of (A1, Y1, A1, L1) as

f(51,fl,ﬁl,vlil;ﬂ,a(a),a(c))
= Pr (A] =ailA =61, T =1,V =D],l_,1 :l_l;ﬂ,a(a),(x(c)) X f(él,tl,vl,l_l;,b’,a(c))

K
=[1rr(a®=a®m®=140k=1D=ak=-1,Vi =01, Lik) =1 *);a®)
k=1

X f(51,11,01,l_1;/>’,06(c))-
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The derivative of f (J1, t1, @i, o1, 1; f, 2@, a(©) is then calculated as
Va(ll)f(51>tlﬂgll)vlal_l;ﬁ’a(a)aa(C))

K
= (Va@ [1Pr (410 =ai®¥it) =1, Ak = 1) =aitk = 1), Vi = o1, Ly () = z‘l(k);a@))

k=1

x f (51,t1,l_1;ﬂ,a(c)) .

Applying the product rule for derivatives, we obtain
Va(mf(51,t1,511,Ul,l_l;ﬂ,a(a),a(c))

K
= (vam) log [ ] Pr (Al(k) =a1(OIY1(k) = 1, Atk — 1) = @ik — 1), Vi = o1, L1 (k) = [ (k); a(“)>)

k=1

K
x [TPr (A1) = a1t =1, Atk = 1) = aytk = 1), Vi = o1, Li(0) = I (0); )
k=1

x f (51&1,01,1_1;[3,0:(")) .

Since the first factor is by definition equal to of u,« ; (@ (@) in (4) of the main document and the two other factors simplify
o f (01,11, a1, 01,115 B, 0@, al?), we get

Voo f (51,fl,fll,vl,l_l;ﬁ,a(a),a(c)) = uaw),l(a(a))f (519t13&13Ul,l_l;ﬂ,a(a)aa(c)) (AS)
Finally, under regularity assumption (E), (A4) can be expressed using (A5) as
0=V,wE (uw,1(,3a a@, oc(”))’)
=/Va<a> (Mw,l(ﬂ,a(a),a(c))/f (51,t1,511,01,l_1)) d(dy, 1y, ar, o1, 1)
=/Va<a>uw,1(ﬁ,a(“),a(c))/f (61,11, ar, v1,11) d(6y, 11, ar, v, 1h)

+/uaw),l(a(a))uw,l(ﬁ,a(a),a(c))/f (61,11, a1,01,1) d(61, 11, a1, 01, 1)

and thus
/
Hygio = E (Vg1 (8,69, a9 ) = —E (18,6, a1 @Y) . (A6)
Analogously,
Hpior = =B (0,18, 6@, a0, (@9 (A7)
H,wz =E (Va(a)ua(a)’l(a(a))/) =-E (ua(a)’l(a(a))ua(a)’l(a(a))/) (AB)
and
- _ (o) (c)y/
Hy)q0 = —E (ua(c>,1(a iy (@ ))- (A9)
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Furthermore, since @) , (a (“)) does not depend on o,
E (ua(a)’l @)y (a@)’) —E (Va(c)uam)’l (a(“))) — E(0) = 0. (A10)
Plugging (A6), (A7), (A8), (A9) and (A10) into (A3) yields
Var(B) =E (itn,1 (8,4, ¢ )i, 1 (8,4, 6 )
4 He oF @ @y g
pa@E \Ug@ (0 ugw (@) fat@
+H E (©) ©)y/ -1 H
Ba©) Ma(cm(a )“a(c),1(a ) Ba©
(@) @y g
—2Hp,wE (Ma<a>,1(0! g 1 (@ )) Ba@
© Oy g
—2Hp,0E (M(Z(c),] (" Ny 1 (™) ) @)
This simplifies to
-1 -1
Var(B) = Fﬂ — Hﬂa(a) Fa(") Héa(") — Hﬁa(c) Fa(") H/;a(”)’

which completes the proof.
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