
RADICAL-Cybertools: Building Blocks
for Workflow System Middleware

Motivation: Sophisticated and scalable workflows have become essential
for advances in computational science. In spite of the many successes of
workflow systems, there is an absence of a reasoning framework for
end-users to determine which systems to use, when and why. Workflows
are increasingly a manifestation of the algorithmic and methodological
advances; workflow users and workflow system developers are often the
same. Workflow systems must be easily extensible so as to support
diverse functionality and the proverbial “last mile customization”.

We advance the science of workflows and prevent workflow system
“vendor lockin” by formulating a building blocks approach to middleware
for workflow systems grounded on four design principles of
self-sufficiency, interoperability, composability, and extensibility. A
building block has: (i) one or more modules implementing functionalities
to operate on a set of explicitly defined entities; and (ii) two well-defined
and stable interfaces, one for input and one for output.

Properties of building blocks
● Self-sufficiency: design does not depend on the specificity of other

building blocks
● Interoperability: can be used in diverse system architectures without

semantic modifications
● Composability: its interfaces enable communication and coordination

with other building blocks
● Extensibility: its functionalities and entities can be extended to

support new requirements or capabilities

Overview

RADICAL-Cybertools are designed and implemented in accordance with
the building block approach, spanning four functional levels:

(L4) Workflow and Application Description: Requirements and
 semantics of applications and workflows.

(L3) Workload Management System (WLMS): Applications devoid of
semantic context are expressed as workloads.

(L2) Task Runtime System (TRS):
Execution of the tasks of
a workload.

(L1) Resource:
Capabilities, availability and
interfaces required by the
tasks to be executed.

RADICAL-Cybertools are used at each level to support scalable, efficient
and effective use of high-performance and distributed computing.

RADICAL-Cybertools: An implementation of the
Building Block Approach to Middleware

RADICAL-SAGA (Simple API for Grid Applications): Provides an
interoperability layer that lowers the complexity of using distributed
infrastructure whilst enhancing sustainability of distribut- ed
applications, services, and tools in the form of a Python API. By
abstracting away the heterogeneity of the underlying systems,
RADICAL-SAGA simplifies access to many distributed cyberinfrastruc-
tures such as XSEDE and OSG.

(L2-L1) Interface to Resource
ExTASY: Enables sampling of complex macromolecules with molecular
dynam- ics. It supports high-performance and high-throughout
execution of molecular dynamic calculations, and analysis tools that
provide runtime control over a simulation.

HTBAC: Enables the scalable, adaptive and automated calculation of
the binding free energy on high-performance computing resources.

RepEx: Enables performing Replica Exchange simulations at a scale
which is not attainable by stand-alone molecular dynamics
applications. It uses RADICAL-Pilot for workload execution.

ICEBERG: Enables scalable image analysis on high-performance
distributed computing for geoscience research. It provides a library
based on extensible building-blocks that allows the integration of
frameworks and algorithms seamlessly.

(L4) Applications and Scientific Workflows

Ensemble Toolkit: Provides the ability to execute flexible combinations
of ensemble- based applications on high-performance distributed
computing resources. Ensemble Toolkit takes charge of where and how
the workload is distributed: users only have to worry about what to run
and when.

(L3) Workload Management

SeisFlows
● Supports seismic inversion workflows on HPC machines, at scale
● We integrated SeisFlow

○ with RADICAL-SAGA (L1) to execute compute jobs
○ with RADICAL-EnTK (L3) to orchestrate tasks and data staging

Atlas (Panda and Harvester)
● PanDA is a WMS designed to support the distributed execution of

workflows via pilots.
● Harvester is a service which provides pilot and workload

management to Panda
● We integrated Panda and RADICAL-Pilot to improve its scaling on

large HPC resources, and integrated Harvester and RADICAL-Pilot to
provide scalable task execution on HPC machines

Swift
● Swift is a language and a runtime system to execute workflows.
● We integrated Swift with RADICAL-WLMS (L3) to execute workloads

concurrently on HPC and HTC resources.

Fireworks
● Fireworks is a system that enables material science workflows
● We integrate Fireworks and RADICAL-Pilot (L2) to improve its scaling

on HPC resources

Integration with existing systems

RADICAL-Pilot: Scalable pilot system for the simple and versatile
execution of concurrent and distributed many-task applications on
clusters, grids, and clouds. RADICAL-Pilot offers users a lightweight
Python API to handle a variety of workloads—including MPI,
multiprocess, multithreaded, CPU, and GPU tasks—and scheduling
O(10k) tasks while marshalling O(10k) distributed cores.

(L2) Task Runtime Management

