
The Performance API (PAPI) provides tool designers and application engineers with a
consistent interface and methodology for the use of low-level performance counter
hardware found across the entire system (i.e., CPUs, GPUs, on/off-chip memory,
interconnects, I/O system, energy/power, etc.). PAPI enables users to see, in near real
time, the relationship between software performance and hardware events across the
entire system.

Software-Defined Events in PAPI

PAPI’s New SDE API
● API for reading SDEs remains the same as the API for reading hardware events, i.e., PAPI_start(), etc.
● SDE API calls are only meant to be used inside libraries to export SDEs from within those libraries.
● All API functions will be available in C and FORTRAN.

void *papi_sde_init(char *lib_name);

Initializes internal data structures and returns an opaque handle that must be passed to all subsequent
calls to PAPI SDE functions.
 lib_name is a string containing the name of the library.

void papi_sde_register_counter(void *handle, char *event_name, int mode,
 int type, void *counter);

Must be called for every program variable/metric that the library wishes to register as an event.
handle is the opaque handle returned by papi_sde_init().
event_name is a string containing the name of the event being registered.
mode is an integer declaring whether a counter is read-only or read-write.
type is an enumeration of the type of the event.
counter is a pointer to the actual variable that serves as the counter for this event.

typedef void *(*func_ptr_t)(void *);
void papi_sde_register_fp_counter(void *handle, char *event_name, int mode,
 int type, func_ptr_t fp_counter, void *param);

Registers a function pointer to an accessor function provided by the library. Allows the user to export an
event whose value does not map to the value of a single program variable/metric of the library.

fp_counter is a pointer to the accessor function with return type void * to support user-defined event types.
param is an opaque object that the library passes to PAPI, and PAPI passes it as a parameter to the accessor function.

void papi_sde_describe_counter(void *handle, char *event_name,
 char *event_description);

CASE STUDY: Integration of PAPI SDE in NWChem
● As our application case study, we chose the NWChem (v. 6.8) iterative coupled cluster model with

single and double excitations (CCSD) → best and most reliable method for accurate
quantum-mechanical description of ground and excited states of chemical systems.

● For our first implementation, we registered four SDE counters in NWChem CCSD via our FORTRAN’08
interface for the function call papi_sde_register_counter().

Table 1 provides a sample of PAPI-NWChem performance metrics that are exposed per CCSD sub-kernel

PULSE SCOPE
PULSE builds on the latest PAPI project and
extends it with software-defined events (SDE)
that originate from the HPC software stack and
are currently treated as black boxes (i.e., com
-munication libraries, math libraries, task-based
runtime systems, applications).

The objective is to enable monitoring of both
types of performance events---hardware- and
software-related events---in a uniform way,
through one consistent PAPI interface. Therefore,
third-party tools and application developers have
to handle only a single hook to PAPI to access all
hardware performance counters in a system,
including the new software-defined events.

Performance Counter Monitoring Capabilities
SUPPORTED ARCHITECTURES

PROJECTS AND THIRD-PARTY TOOLS APPLYING PAPI

SI2-SSE:
PAPI Unifying Layer for Software-Defined Events (PULSE)

Heike Jagode
Anthony Danalis
UNIVERSITY OF TENNESSEE

PAPI-NWChem Performance Counter Counter Description
Type

int, long long,
float, double

Mode
delta,

instantaneous

sde:::NWCHEM::t28_chain_cnt Total Number of chains with sequential
DGEMMs in CCSD kernel t2_8()

64-bit integer
values delta

sde:::NWCHEM::t28_max_chain_length Maximum number of sequential DGEMMs
per chain in CCSD kernel t2_8()

64-bit integer
values instantaneous

sde:::NWCHEM::t28_dgemm_cnt Total number of DGEMMs
in CCSD kernel t2_8()

64-bit integer
values delta

sde:::NWCHEM::t28_flop_cnt Total number of floating-point operations
in CCSD kernel t2_8()

64-bit integer
values delta

Figure 1 shows the relative workload of different subroutines
(omitting those that fell under 0.1%). To calculate this load, we used
the SDE counters that record the total number of floating-point
operations for each CCSD kernel (e.g., sde:::NWCHEM::t28_flop_cnt
counter for kernel t2_8).

Figure 2 shows the distribution of chain lengths for the five
subroutines with the highest workload. For this, we used the SDE
counters that record the maximum number of sequential DGEMMs
per chain for each CCSD kernel (e.g.,
sde:::NWCHEM::t28_max_chain_length counter for kernel t2_8).

GOAL
Offer support for software-defined
events (SDE) to extend PAPI's role
as a standardizing layer for perfor
-mance counter monitoring.

VISION
Enable NSF software layers to expose
SDEs that performance analysts can
use to form a complete picture of the
entire application performance.

BENEFIT
Scientists will be better able to under
-stand the interaction of the different
applications layers, and interactions
with external libraries and runtimes.

Table 2 lists additional statistics for the 10 most computationally expensive CCSD subroutines, such as the size and shape of
individual DGEMM operations, the amount of floating-point operations per DGEMM, and the total number of such DGEMM
operations.

Cortex A8, A9, A15, ARM64 Gemini and Aries interconnect, power

Blue Gene Series, Q: 5-D Torus, I/O System,
EMON power, energy Power Series Power9 NEST event support via Performance Co-Pilot

(PCP) PAPI component

Westmore, Sandy/Ivy Bridge, Haswell, Broadwell,
Skylake(-X), Kaby Lake

KNC, KNL, Knights Mill
including power/energy RAPL (power/energy), power capping

Tesla, Kepler: CUDA support for multiple GPUs;
PC Sampling

NVML Virtual Environment Virtual Environment

PaRSEC
UTK

http://icl.utk.edu/parsec/

Caliper
LLVM

github.com/LLNL/caliper-compiler

Kokkos
SNL

https://github.com/kokkos

TAU
University of Oregon

http://tau.uoregon.edu/

HPCToolkit
Rice University

http://hpctoolkit.org
Score-P

http://score-p.org

Vampir
TU Dresden

http://www.vampir.eu/

Scalasca
FZ Juelich, TU Darmstadt

http://scalasca.org/

PerfSuite
NCSA

http://perfsuite.ncsa.uiuc.edu/

Open|Speedshop
Open|SpeedShop

https://openspeedshop.org/

SvPablo
RENCI at UNC

www.renci.org/research/pablo

ompP
LMU Munich

http://www.ompp-tool.com/

