A Appendix [for online publication]

A.1 Dynamic Demand (extension)
A.1.1 Foster et al. (2016)

Let Z;; be the demand "stock" of the firm which depends on the previous firm sales. The
stock evolves as Z;; = (1 —0) Z;4—1 + piqie. We consider the nonparametric case here
where py; = p(qit, Ziy—1,€%) with Z;, as specified above. Foster et al. (2016) also consider
age as a state variable. For convenience let us abstract from age, as this adds nothing

substantial to the analysis and we would need to keep track of one extra state variable.

By the end of the period the firm chooses the level of materials that maximizes

the following objective function
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where p < 1 is the discount factor and we now have an extra term that includes the
continuation value. Notice that if we let yi = p(qi, Ziy—1,%)q, and since Z; =
(1 —6) Zit—1 + yir, the sum of static returns and continuation value can be written as
Yit + pEgﬁt+l7%t+lV(...|5%, Wit, Zit—1, Yir). This is a fundamental property and greatly sim-
plifies the analysis since we can use the chain rule to first differentiate with respect to y;

(by construction the derivative of Z;; with respect to y;; is 1) and then we differentiate

with respect to M. The first-order condition is
[0pq + 1] p(it, Zit, 5%)%1 (1+pEVy) = pz]‘\t/[ (A1)

where EVy = E.a . V7, (ed 11, wins1, Zinled, wir, Ziy—1) is the effect sales today on the

demand stock tomorrow. The main difference from before is the continuation term EV .

So, the marginal returns of increasing M;; (LHS) consists of the increase in short-term



revenues and future revenues due to the increase in the demand stock Z. Put in another
way, firms are willing to produce more and receive a lower price because every unit they

sell also increases future sales. We can rewrite the reduced form optimal solution as
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In the beginning of the period the firm chooses the level of employment that

maximizes the expected returns
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Again the same dynamic element is at work. Increasing revenues also brings in future

additional sales. Using the previous two we obtain the input ratio
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A.1.2 Gourio and Rudanko, 2014

We now consider the extension to the dynamic demand model formulated by Gourio

and Rudanko (2014) and show how the analysis is similar in a model with endogenous

8From equation (A.1), (g, &;‘t‘g“)q” 04t - (1+pEVy) = pM.
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rem). Replacmg the above we obtain equation (A.2).



dynamic demand considerations. Contrary to Foster et al. (2016), this model avoids
dynamic pricing decisions. Instead, dynamic demand considerations are addressed with
sales force effort decisions. Since sales force is an expense and does not build up, this
allows us to split the dynamic considerations about future demand (stock building) from
the optimal input allocations (labor and materials). Consider the previous model but let
us assume that prices are given, as in Gourio and Rudanko (2014). Let us also ignore
capital decisions to simplify the analysis, as everything holds if we add the extra state

variable, capital. In this case the production function is

qit = QOLZM;WM

where comparing to the previous model, ¢y = K3}, so we are assuming that capital is
fixed. We adapt the specification in Gourio and Rudanko (2014) so that the number of
units sold is given by

b;
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where n; is the number of consumers carried from the last period, b;; is the number of
buyers in the market (given), and s is the number of sellers (sales force). The function
n(2) =¢ (g)d) is the (Mortensen-Pissarides) matching function with ¢ € (0,1). In this
sense, s7(.) is the number of new customers attracted when there are b buyers and s
sellers. Also, assume that employing these sellers generates a cost that is increasing in
the number of sellers. In particular let the cost be quadratic x(s) = s?/2. Notice that
given this structure, the number of units sold is determined by the number of customers
(customer base), the number of buyers, and the number of sellers. In this way, the firms’
input decision is how to best choose the intermediate inputs to minimize the cost (dual).
We can show this by maximizing the firms’ profit (value) function. We first need to
introduce two more elements: the customer base and the potential buyers. The customer
base n decays at rate ¢,,. This means that in every period a fraction d,, of the customers
leave the company. That means that the customer base available for next period is

Nit41 = (1 — 05) gir- On the other hand, let the number of potential buyers in the market



follow a first-order Markov process, b; = h(b;_1)e®* for some smooth function A (.). This
introduces a shock to demand &;; which is absent in the original model of Gourio and
Rudanko (2014). Again, this shock is observed after L; has been determined.

In the last period after the demand shock (g;) is revealed, the company wants to

maximize its long-term value (note that choosing s; is equivalent to choosing M, since
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sy will make the company sell more and also incur larger costs as it needs to purchase

more intermediate inputs, M;)
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where E [V (1 t4+1, Wit+1, bit+1)|bit, ir, wir) is the expected continuation value from a com-
pany with customer base n;;, productivity w;; and a stock of potential buyers of b;. Or

equivalently
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The first-order condition is
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where E [V, ()] = E [%V—n(,')]. The first term, p (1 —¢)¢& (%’_:)qs, is the marginal short-
term benefit from increasing the sales force while the second two terms are the mar-
ginal cost of doing so. First the cost in terms of increasing intermediate input pur-
chases, pf‘f% (e”“Lﬁ) o <nz~t + fsilt_‘bb?t) a=h (1—9)¢ <(S’—:>¢ and the second is simply
the marginal cost of more sellers, s;;. The final component is the marginal net benefit for
the future increase in the customer base, 5 (1 — d,) (1 — ¢) ¢ (2_l:>¢ E Vo (i1, Witt1, €irs1)]-

In the beginning of the period the firms sets its labor before knowing the shock to

demand,c;; and maximizes the expected future value
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By the envelope theorem, the first-order condition becomes
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since for the Cobb Douglas production function %]LV[ = —g%

, the solution becomes
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which is exactly the same solution we had before in Equation (4). The difference is that

now is a more complicated expression. In particular,
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and we see that, as before, the input ratio is a function of the demand shock (and not
a function of the productivity shock) but is now also a function of the demand state
variables, namely the customer base, the number of potential buyers, and the (endoge-
nous) number of sellers. To address the endogeneity of s;; (since s;; is correlated with
git), we can use L; (or K in the model extended with capital) as a valid instrument as
demonstrated in the first-order condition in Equation (A.3). The previous equation can
be estimated by non-linear or nonparametric IV depending on whether we can obtain a
solution to E.,, {(nzt + Espy %05 e¢5”) 1/7]‘

Call v (bit, nig,wir) = E [V (141, Wi, bigs1)|bit, nir, wie]. Note that the first-order

condition for s;; is
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which illustrates both the endogeneity of s;; with respect to ¢;; (via b;) and the validity



of L;; as an instrument.

A.2 Non-Fixed Labor/temporary work (extension)

In this section we extend the previous results to the case with two types of employ-
ment: permanent and temporary. The cost of hiring an extra temporary worker equals

the cost of hiring a regular worker with a "fiscal" advantage ((1—7)p%") plus an ex-

tra cost that increases with the number of temporary workers and their regular cost,
LP L

pii n7#. The cost of a temporary worker is less than the cost of a regular worker for
it

small amounts but increases with the amount of temporary workers. The total cost is

thus p5' LT = (1 — 1) pk" LT + pL” (n (LL%)Q) The "fiscal" advantage is related with the
money a company can save when it hires a temporary workers on social security, taxes
and other expenses (e.g. medical insurance, etc). In our case, this rationalizes the use of
temporary workers in small amounts.

Companies first maximize for permanent employment and later optimize for temporary

employment and materials.

By the end of the period the firm chooses the level of materials that maximizes

the following objective function
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where p¥ is the price of materials. Assume an interior solution for temporary employment,

LY > 0. When this constraint binds we are in the original solution where temporary

employment is not possible. From the first-order conditions

[Op,q + 1) p(qit, Zit, E?t)%n = pf\f (A4)
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where 0, , < 0 is the elasticity of demand, ¢, = %q—]\(f and ¢, = 8;—2'). We can rewrite the

reduced form optimal solutions as
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Putting the two equations together
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The input ratio is now also a function of the wedge created by the labor market friction,

together with the ETS.

In the beginning of the period the firm chooses the level of employment that

maximizes the expected returns
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Combining the FOCs for L}, and L}, we obtain the following restriction

it)
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This is because the benefit the company derives from one unit of temporary labor is
identical to the benefit it derives from one unit of permanent labor, the only difference is

the cost that it wants to equate. Replacing the cost of temporary workers we obtain

(g -5
Ly
or we can write this as E.q [LZ;let] = Lfi , so the company would like to keep the ratio
of temporary to permanent work as a constant
LY T L
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The two ratios of materials to labor and temporary employment to labor are a function

L,
E_q[L%]0u]

of

()
Piy Lit €m.l E ]

pzt sz; — T LZY; .
ph sz 277 ELa [L]| )]

Given that L;; = L+ L%, even the parametric case does not deliver an elegant analytic

solution. However, we can see that the case with temporary employment delivers similar
results to the case without it. The materials to wages ratio is a function the the ETS and
the temporary employment to the expected temporary employment. The ratio m
is a function of the demand shock. We can also use the ratio of temporary to permanent
employment

7LP'

A.3 Higher order process (extension)

The input ratio is



1
Py My v (e5) D
piLie B g [(Ei)m |Qit} '

The input ratio is a sole function of the ETS and the demand component. For simpli-

fication, let the demand shock be a separable s order process,

5% = 9<C;‘1,t—1> "'glz?l,t—s’ V?t) = Q(Cgt—p ~~C§l,t—s)VZt (A.9)

where (¢, = (¢%,24) and z is an n-dimensional vector of information known to the firm

1

at period t. Again, write 7%, = T (05D
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As we can see from above, the restriction to a first-order Markovian process is imma-

terial.

A.4 Nonparametric Identification

In this section I discuss how the assumptions and observed data allow us to nonpara-
metrically identify the distribution of demand shocks. This is instructive, to explain that
identification of demand shocks does not depend on the parametrization presented in
Section 2.4. Instead, identification is obtained from meaningful variation together with
the economic restrictions. There is a total of four equations: the two first-order condi-
tions, the demand function and the production function. This is the case when prices and
quantities are observed. However, since prices (and quantities) are not observed we need
to combine the production and demand functions into a revenue function. This delivers

three equations’.

9In this section, to reduce the number of variables in the notation, input prices (P}, P%) are included
in Zit .
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Yit = p(Qm Zit, 5;lt>Q<Kit; Ly, My, wz’t)
My = m(wibLz't;KitaZitvg;it)

Ly = l(wz’t, Km Zz‘t7 Qit)

Unfortunately, this is not sufficient to identify the demand shock nor is this sufficient
to identify productivity. The reason is that we have two unobservables (w;, €%) and the
vector of information known to firm ¢ when it chooses labor, €2;. This is potentially
correlated with all the observables due to serial correlation (note €2;; includes w1, Ezt_l
and the other state variables) and three equations.!’ If we attempt to estimate any of the
three equations individually, we would face endogeneity of potentially all the explanatory
variables since (1, My, L, Kit, Zi) are correlated with (wy, €%, and Q). Note that if we
allow both inputs to be fully flexible, the equation for labor (I(.)) becomes a function of
Egt instead of Q;, and both components (w;; and egt) enter all three equations. This is
the reason why demand and supply shocks cannot be separately identified. Furthermore,
when prices and quantities are observed, the two equations allow us to separately identify
the demand from the supply conditions p(q;s, Zi, %) and q(Kyt, Lit, My, w;t) . This is the
approach followed in Santos, Costa, and Brito (2016).

In order to make progress, let the demand shock be separable in v,

d v v
€t = g<Qit)€ it = gieit

where 1% is the "news" to demand or the unexpected changes to demand conditions.

d

One simple case is when the demand follows a separable first-order Markov process, €f, =

g(sgt_l)e”gt. The news term is, by assumption, serially independent. Out of all the

information contained in the information set, g(£;) is now a sufficient statistic for &% .
This single index restriction is important because it links ¢4 with Q;. When the firm
chooses Ly, it must forecast 4. However, given the separability assumption on the

demand shock, g;; = g(€;) is now a sufficient statistic. In the general case, there is now

10Notice that if we allow adjustment costs to labor, lagged employment would enter the input demand
function for labor, which would become, [(wii, Kit, Zit, Lit—1, Qit)-

11



a system with four equations

Yit — y<KitaLitaMitawinitag?t)
My = m(wita Li, Kit, Zit, Ezs)
Ly = l(wm K, Zy, git)

d e Ve
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where y(Ki, Lit, My, wit, Zit, 5%) = p(q(Kit, Lit, Mg, wiz), Zz‘tﬂfft)Q(Kit, Lig, My, wi). In
Section 2.4 we used the ratio of the amount spent on the two inputs. This was be-
cause taking the ratio eliminates w;; and g;; from the ratio equation. The ratio is then a
function of the state variables and the demand shock v¢%. The demand shock is indepen-
dent from all the state variables, which guarantees identification of both the equation of
interest and the shock distribution. In the general case, taking the ratio does not elimi-
nate w;; and g;. Instead, we can characterize the reduced form solutions obtained from
the first-order conditions. First we can eliminate % by replacing with g(Qit)e”gt which

leaves three equations

d

Yie = YK, Lie, My, wi, Ziy, gine”)
d
My = m(wi, Lit, Kit, Ziy, give” )
Ly = Uwit, Kit, Zit, git).
From the last two equations we can solve for w;; and g;; as functions of the remaining

variables (M, Ly, Ky, Zi). We study the technical conditions for invertibility in the next

subsection. Plugging these solutions into the first equation

d

Yie = YK, Lig, Mg, Ziy, wir, g(ig)€”it)

= y(KitaLit,MitaZit,W(MitaLitaKitaZit)79(MitaLit>Kitazit)eygt)- (A.lO)

From equation (A.10) the distribution of "news" to demand term, v¢ is identified up

to standard normalization and location restrictions on the nonparametric functions (see

12



Matzkin, 2007) as long as all the variables (M;, Li;, Ky, Z;) are independent from v%.
That is coherent with the model for the state variables (L, K, Z;;). However, from the
the model’s assumptions, we know that M is not independent from v¢%. As long as there
is serial correlation in w;, lagged values of M; ;4 and (L;¢—1, K;4—1, Z;4—1) become valid
instruments simply by inverting the equation w;, 1 = m ™! (.). Equation (A.10) can be
estimated by nonparametric instrumental variables when the demand shock is separable
(Newey and Powell, 2003). When the demand shock is nonseparable, we need to consider
further restrictions to implement the nonparametric IV estimator (see for example, Chen
et al., 2014 and Blundell and Matzkin, 2013).

Note that in some cases the equation for intermediate inputs can be written as M;, =
m(Li, Kit, Zit, v%). This is the parametric case presented in Section 2.4. In this case we
do not require invertibility conditions that guarantee that we can write w; and g(€;)
as functions of the remaining variables (M, Ly, Ki;, Z;;). In such case, we can use the
equation 7 (.) directly to identify the distribution of the demand shocks v¢ (again up to

standard normalization and location restrictions.

A.4.1 Invertibility

We can express the previous problem of obtaining a solution for g; = ¢(€;;) and w;; as

an invertibility problem. Inverting the labor demand function (g; = I~ (wss, Kit, Zit, Lit),

see Levinshon and Petrin (2003) for invertibility conditions), and substituting it in the

materials input function, we obtain

My = m(wi, Lit, Kit, Zis, U wit, Kity Zi, Lit)eygt) (A.11)

= m(meit,KihZibV?t)‘
The next step is inverting the 7 function with respect to w;; to obtain
Wit = m_l(Mita Lit7 Kit’ Zit’ Vfbit)

Replacing w;; back in g; = l_l(wit, Ky, Zit, Lit) we obtain the expression for g;;. We

13



can thus solve for g; and w;; as functions of (My, Ly, Kit, Zis, I/;it) and replace g;; and w;;
in the revenue Equation (A.10).

We will discuss below the case where m is not a function of w. In this situation we can
obtain the distribution of v4 by M;; = m(Li, K, Zi, V%) directly. This is the parametric

case presented in Section 2.4.

A.4.2 Technical conditions for invertibility

Monotonicity of the first-order conditions is not sufficient to obtain invertibility. Take
the system formed by the two first-order conditions in equations (1) and (2) where % =

g(Qit)e”?t. If the determinants of all principal submatrices of the Jacobian

Olop,q+1p(qit, Zit €& )am—pM 0ed  Olop,q+11p(qit, Zit €% ) gm—p

68% 8git Bwit
E_alop.qt1p(@ie, Ziv.ed)a|—ph  E.allop.at+1p(gi, Zied)a)] —pk
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are non-vanishing, it follows by Theorem 7 in Gale and Nikaido (1965) that the system
is invertible. We thus obtain a solution to this system in (g;,w;) as functions of the
remaining variables (Mit,Kit,Lit, Zit, Vﬁ). A necessary condition to obtain a solution

iS,H

d
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This condition states that we require the differential effect of the demand shock on
material vs. labor (slope) to be different from same differential effect for the supply
shock. This is because labor/intermediate input choices "control" for one of the shocks
(gi+ or wy). In the nonparametric case, productivity shocks have an effect on the input
ratio and the input ratio varies with both demand and supply shocks (e.g. non-Hicks

neutral productivity). If the differential effects are the same for supply and demand

'Notice that when the determinat is zero and invertibility condition holds with equality (and we
cannot solve the system explicitly), the productivity term drops from the equation for M, i.e. M; =
m(Lit, Kit, Zit,uft) and the equation is clearly no longer invertible in w;;. However, in this case the
problem is actually simplified and guarantees that the demand shock is identified since we just need to
nonparametrically regress M;; on (L, Kyt Zi¢). This is the collinearity case of ACF (2006). In this case
only the two FOCs and the separability condition (A.3) are required.
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shocks, changes to the ratio allow us to distinguish one shock from the other. When
the condition is not verified, it implies that both shocks have a symmetric effect on the
two first-order conditions such that varying one of them is in fact equivalent to varying
the other. The system is not invertible. However, this is equivalent to the parametric
case presented in Section 2.4. It is particularly useful because we suffice with the two
first-order conditions. That is, inverting the labor demand equation effectively "controls"

for the two shocks w and % and

—1 v
mie = m(wir, Lig, Kip, Zig, U (Wi, Kty Zig, Lig)€”it)

= Th(Lit, Kit7 Zit7 Vgt)

and m is not a function of w. We can nonparametrically regress M;; against L;;, K;;, Z

to identify the distribution of v/,
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A.5 Results

A.5.1 Year-averaged estimated demand shocks and self-reported changes in

market conditions, by industry.
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Figure A.1: Year-averaged estimated demand shocks and self-reported changes in market
conditions, by industry.
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A.5.2 Production function estimates
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A.5.3 Input regression estimates (self reported shocks to demand)
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A.5.4 Demand estimates: GMM results
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A.5.5 Correlation of the demand shock estimated via demand function with
the self reported demand change and the demand shock estimated via

input ratio
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A.5.6 Input regression estimates (estimated demand residuals)
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A.6 Monte Carlo results

Figure A.2: Simulated vs. estimated shocks with varying parametrizations (¢, = 0.75).

(i) Baseline case (ii) Translog production function
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Notes: Scatterplot and correlation between simulated and estimated demand shocks using
four different parametrizations (¢, = 0.75).
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Figure A.3: Simulated vs. estimated shocks with varying parametrizations (6 = 0.66).

(i) Baseline case (ii) Translog production function
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Notes: Scatterplot and correlation between simulated and estimated demand shocks using
four different parametrizations (6 = 0.66).
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Figure A.4: Simulated vs. estimated shocks with varying parametrizations (5 = 0.35 and
v =0.7).
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Notes: Scatterplot and correlation between simulated and estimated demand shocks using
four different parametrizations (8 = 0.35 and v = 0.7).
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