
A Appendix [for online publication]

A.1 Dynamic Demand (extension)

A.1.1 Foster et al. (2016)

Let Zit be the demand "stock" of the firm which depends on the previous firm sales. The

stock evolves as Zit = (1− δ)Zi,t−1 + pitqit. We consider the nonparametric case here

where pit = p(qit, Zi,t−1, ε
d
it) with Zit as specified above. Foster et al. (2016) also consider

age as a state variable. For convenience let us abstract from age, as this adds nothing

substantial to the analysis and we would need to keep track of one extra state variable.

By the end of the period the firm chooses the level of materials that maximizes

the following objective function

V (εdit, ωit, Zi,t−1) = max
Mit

p(qit, Zi,t−1, ε
d
it)qit − pMit Mit

+ρEεdi,t+1,ωi,t+1V (εdi,t+1, ωi,t+1, Zit|εdit, ωit, Zi,t−1)

s.t. qit = q(Kit, Li,t,Mit, ωi,t)

Zit = (1− δ)Zi,t−1 + pitqit

where ρ < 1 is the discount factor and we now have an extra term that includes the

continuation value. Notice that if we let yit = p(qit, Zi,t−1, ε
d
it)qit, and since Zit =

(1− δ)Zi,t−1 + yit, the sum of static returns and continuation value can be written as

yit + ρEεdi,t+1,ωi,t+1V (...|εdit, ωit, Zi,t−1, yit). This is a fundamental property and greatly sim-

plifies the analysis since we can use the chain rule to first differentiate with respect to yit

(by construction the derivative of Zit with respect to yit is 1) and then we differentiate

with respect to M . The first-order condition is

[σp,q + 1] p(qit, Zit, ε
d
it)qm (1 + ρEV ′Z) = pMit (A.1)

where EV ′Z = Eεdi,t+1,ωi,t+1V
′
Zit

(εdi,t+1, ωi,t+1, Zit|εdit, ωit, Zi,t−1) is the effect sales today on the

demand stock tomorrow. The main difference from before is the continuation term EV ′Z .

So, the marginal returns of increasing Mit (LHS) consists of the increase in short-term
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revenues and future revenues due to the increase in the demand stock Z. Put in another

way, firms are willing to produce more and receive a lower price because every unit they

sell also increases future sales. We can rewrite the reduced form optimal solution as

M∗
it = m(ωit, Lit, Kit, Zi,t−1, ε

d
it)

In the beginning of the period the firm chooses the level of employment that

maximizes the expected returns

max
Li,t

Eεdit

 p(qit, Zit, ε
d
it)qit − pMit Mit+

ρEεdi,t+1,ωi,t+1V (εdi,t+1, ωi,t+1, Zit|εdit, ωit, Zi,t−1)|Ωit

− pLitLit
s.t. qit = q(Kit, Lit,Mit, ωit)

Zit = (1− δ)Zi,t−1 + pitqit

which gives8

Eεdit

[
∂p(qit, Zit, ε

d
it)qit

∂qit

∂qit
∂Lit
|Ωit

]
= Eεdit

[
[σp,q + 1] p(qit, Zit, ε

d
it) (1 + ρEV ′Z) ql|Ωit

]
= pLit

(A.2)

Again the same dynamic element is at work. Increasing revenues also brings in future

additional sales. Using the previous two we obtain the input ratio

pMit Mit

pLi,tLi,t
=

1

εm.l︸︷︷︸
Supply (ETS)

[
σp,q(qit, Zi,t, ε

d
it) + 1

]
p(qit, Zi,t, ε

d
it) (1 + ρEV ′Z) ql

Eεdit

[[
σp,q(qit, Zi,t, εdit) + 1

]
p(qit, Zi,t, εdit) (1 + ρEV ′Z) ql|Ωit

]︸ ︷︷ ︸
Demand

and again
pMit Mit

pLitLit
=

Mit

Eεd [εm.lMit|Ωit]

A.1.2 Gourio and Rudanko, 2014

We now consider the extension to the dynamic demand model formulated by Gourio

and Rudanko (2014) and show how the analysis is similar in a model with endogenous

8From equation (A.1), ∂p(qit,Zit,ε
d
it)qit

∂qit

∂qit
∂Mit

(1 + ρEV ′Z) = pMit .

The total derivative is Eεd

[
∂p(qit,Zit,ε

d
it)qit(1+ρEV

′
Z)−pMitM

∗
it

∂Lit

]
− pLit =

Eεd
[
∂p(.)qit
∂qit

∂qit
∂Lit

(1 + ρEV ′Z) +
(
∂p(.)qit
∂qit

∂qit
∂Mit

(1 + ρEV ′Z)− pMit
)
∂Mit

∂Lit

]
− pLit (by the envelope theo-

rem). Replacing the above we obtain equation (A.2).
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dynamic demand considerations. Contrary to Foster et al. (2016), this model avoids

dynamic pricing decisions. Instead, dynamic demand considerations are addressed with

sales force effort decisions. Since sales force is an expense and does not build up, this

allows us to split the dynamic considerations about future demand (stock building) from

the optimal input allocations (labor and materials). Consider the previous model but let

us assume that prices are given, as in Gourio and Rudanko (2014). Let us also ignore

capital decisions to simplify the analysis, as everything holds if we add the extra state

variable, capital. In this case the production function is

qit = q0L
β
itM

γ
itωit

where comparing to the previous model, q0 = Kα
it, so we are assuming that capital is

fixed. We adapt the specification in Gourio and Rudanko (2014) so that the number of

units sold is given by

qit = nit + sitη(
bit
sit

)

where nit is the number of consumers carried from the last period, bit is the number of

buyers in the market (given), and s is the number of sellers (sales force). The function

η
(
b
s

)
= ξ

(
b
s

)φ
is the (Mortensen-Pissarides) matching function with φ ∈ (0, 1). In this

sense, sη(.) is the number of new customers attracted when there are b buyers and s

sellers. Also, assume that employing these sellers generates a cost that is increasing in

the number of sellers. In particular let the cost be quadratic κ(s) = s2/2. Notice that

given this structure, the number of units sold is determined by the number of customers

(customer base), the number of buyers, and the number of sellers. In this way, the firms’

input decision is how to best choose the intermediate inputs to minimize the cost (dual).

We can show this by maximizing the firms’ profit (value) function. We first need to

introduce two more elements: the customer base and the potential buyers. The customer

base n decays at rate δn. This means that in every period a fraction δn of the customers

leave the company. That means that the customer base available for next period is

ni,t+1 = (1− δn) qit. On the other hand, let the number of potential buyers in the market
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follow a first-order Markov process, bit = h(bit−1)eεit for some smooth function h (.). This

introduces a shock to demand εit which is absent in the original model of Gourio and

Rudanko (2014). Again, this shock is observed after Lit has been determined.

In the last period after the demand shock (εit) is revealed, the company wants to

maximize its long-term value (note that choosing sit is equivalent to choosing Mit since

Mit =
(

qit
eωitLβit

)1/γ

=
(
nit+sitη(bit/sit)

eωitLβit

)1/γ

and we have to account for the fact that increasing

sit will make the company sell more and also incur larger costs as it needs to purchase

more intermediate inputs, Mit)

max
sit

pqit − pMit Mit − κ(sit) + βEνi,t+1,εi,t+1 [V (ni,t+1, ωi,t+1, bi,t+1)|bit, nit, ωit]

s.t. qit = LβitM
γ
ite

ωit

qit = nit + sitη(bit/sit)

bit = h(bit−1)eεit

ni,t+1 = (1− δn) qit

ωi,t+1 = g(ωit)e
νit+1

where E [V (ni,t+1, ωi,t+1, bi,t+1)|bit, nit, ωit] is the expected continuation value from a com-

pany with customer base nit, productivity ωit and a stock of potential buyers of bit. Or

equivalently

max
sit

 p
(
nit + ξs1−φ

it bφit

)
− pMit

(
nit+ξs

1−φ
it bφit

eωitLβit

)1/γ

− s2
it/2

+βEνi,t+1,εi,t+1 [V (ni,t+1, ωi,t+1, bi,t+1)|bit, nit, ωit]


s.t. bit = h(bit−1)eεit

ni,t+1 = (1− δn) qit

ωi,t+1 = g(ωit)e
νit+1

The first-order condition is
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p (1− φ) ξ

(
bit
sit

)φ
+ β (1− δn) (1− φ) ξ

(
bit
sit

)φ
E [Vn(ni,t+1, ωi,t+1, bi,t+1)|bit, nit, ωit]

= pMit
1

γ

(
eωitLβit

)−1/γ (
nit + ξs1−φ

it bφit

)(1−γ)/γ

(1− φ) ξ

(
bit
sit

)φ
+ sit (A.3)

where E [Vn (.)] = E
[
∂V (.)
∂n′

]
. The first term, p (1− φ) ξ

(
bit
sit

)φ
, is the marginal short-

term benefit from increasing the sales force while the second two terms are the mar-

ginal cost of doing so. First the cost in terms of increasing intermediate input pur-

chases, pMit
1
γ

(
eωitLβit

)−1/γ (
nit + ξs1−φ

it bφit

)(1−γ)/γ

(1− φ) ξ
(
bit
sit

)φ
and the second is simply

the marginal cost of more sellers, sit. The final component is the marginal net benefit for

the future increase in the customer base, β (1− δn) (1− φ) ξ
(
bit
sit

)φ
E [Vn(ni,t+1, ωi,t+1, εi,t+1)].

In the beginning of the period the firms sets its labor before knowing the shock to

demand,εit and maximizes the expected future value

max
Lit

Eεit

 pqit − pMit Mit − κ(sit))− pLitLit

+βEνi,t+1,εi,t+1 [V (ni,t+1, ωi,t+1, bi,t+1)|bit, nit, ωit]


s.t. qit = LβitM

γ
ite

ωit

qit = nit + sitη(bit/sit)

bit = bit−1e
εit

ni,t+1 = (1− δn) qit

ωi,t+1 = g(ωit)e
νit+1

Or equivalently

max
Lit

Eεit

 p
(
nit + ξs1−φ

it bφit

)
− pMit

(
nit+ξs

1−φ
it bφit

eωitLβit

)1/γ

−s2
it/2− pLitLit + βE [V (ni,t+1, ωi,t+1, εi,t+1)]


s.t. bit = h(bit−1)eεit

ni,t+1 = (1− δn) qit

ωi,t+1 = g(ωit)e
νit+1
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By the envelope theorem, the first-order condition becomes

Eεit

(
−pMit

∂Mit

∂Lit
− pLit

)
= 0

since for the Cobb Douglas production function ∂M
∂L

= −β
γ
M
L
, the solution becomes

pMit Mit

pLitL
=
γ

β

Mit

Eεit (Mit)

which is exactly the same solution we had before in Equation (4). The difference is that

now, Mit

Eεit (Mit)
is a more complicated expression. In particular,

Mit

Eεit (Mit)
=

(
nit+ξs

1−φ
it bφit

eωitLβit

)1/γ

Eεit

[(
nit+ξs

1−φ
it bφit

eωitLβit

)1/γ
]

=

(
nit + ξs1−φ

it bφit−1e
φεit

)1/γ

Eεit

[(
nit + ξs1−φ

it bφit−1e
φεit

)1/γ
]

and we see that, as before, the input ratio is a function of the demand shock (and not

a function of the productivity shock) but is now also a function of the demand state

variables, namely the customer base, the number of potential buyers, and the (endoge-

nous) number of sellers. To address the endogeneity of sit (since sit is correlated with

εit), we can use Lit (or Kit in the model extended with capital) as a valid instrument as

demonstrated in the first-order condition in Equation (A.3). The previous equation can

be estimated by non-linear or nonparametric IV depending on whether we can obtain a

solution to Eεit

[(
nit + ξs1−φ

it bφit−1e
φεit

)1/γ
]
.

Call ven(bit, nit, ωit) = E [Vn(ni,t+1, ωi,t+1, bi,t+1)|bit, nit, ωit]. Note that the first-order

condition for sit is

sit =

(1− φ) ξbφit

p+ β (1− δn) ven(bit, nit, ωit)−
1

γ

pMit(
eωitLβit

)1/γ

(
nit + ξ

(
bit
sit

)φ) (1−γ)
γ




1
1+φ

which illustrates both the endogeneity of sit with respect to εit (via bit) and the validity
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of Lit as an instrument.

A.2 Non-Fixed Labor/temporary work (extension)

In this section we extend the previous results to the case with two types of employ-

ment: permanent and temporary. The cost of hiring an extra temporary worker equals

the cost of hiring a regular worker with a "fiscal" advantage ((1− τ) pL
P

it ) plus an ex-

tra cost that increases with the number of temporary workers and their regular cost,

pL
P

it η
LTit
LPit
. The cost of a temporary worker is less than the cost of a regular worker for

small amounts but increases with the amount of temporary workers. The total cost is

thus pL
T

it L
T
it = (1− τ) pL

P

it L
T
it + pL

P

it

(
η

(LTit)
2

LPit

)
. The "fiscal" advantage is related with the

money a company can save when it hires a temporary workers on social security, taxes

and other expenses (e.g. medical insurance, etc). In our case, this rationalizes the use of

temporary workers in small amounts.

Companies first maximize for permanent employment and later optimize for temporary

employment and materials.

By the end of the period the firm chooses the level of materials that maximizes

the following objective function

max
LTit,Mit

p(qit, Zit, ε
d
it)qit − pMit Mit − pL

T

it L
T
it

s.t. qit = q(Kit, Li,t,Mit, ωi,t)

Lit = LTit + LPit

pL
T

it = pL
P

it

(
1− τ + η

LTit
LPit

)
where pMit is the price of materials. Assume an interior solution for temporary employment,

LTit > 0. When this constraint binds we are in the original solution where temporary

employment is not possible. From the first-order conditions

[σp,q + 1] p(qit, Zit, ε
d
it)qm = pMit (A.4)
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[σp,q + 1] p(qit, Zit, ε
d
it)ql = pL

P

it

(
1− τ + 2η

LTit
LPit

)
(A.5)

where σp,q < 0 is the elasticity of demand, qm = ∂q(.)
∂M

and ql = ∂q(.)
∂L
. We can rewrite the

reduced form optimal solutions as

M∗
it = m(ωit, L

P
it , Kit, Zit, ε

d
it)

(
LTit
)∗

= lT (ωit, L
P
it , Kit, Zit, ε

d
it).

Putting the two equations together

pMit Mit

pL
P

it Lit
=

1

εm.l

pL
T

it

pL
P

it

=
1

εm.l

(
1− τ + 2η

LTit
LPit

)
. (A.6)

The input ratio is now also a function of the wedge created by the labor market friction,

together with the ETS.

In the beginning of the period the firm chooses the level of employment that

maximizes the expected returns

max
LPi,t

Eεd
[
p(qit, Zit, ε

d
it)qit − pMit Mit − pL

T

it L
T
it|Ωit

]
− pLPit LPit

s.t. qit = q(Kit, Lit,Mit, ωit)

Lit = LTit + LPit

which gives

Eεd

[
∂p(qit, Zit, ε

d
it)qit

∂qit

∂qit
∂LPit
|Ωit

]
= Eεd

[
[σp,q + 1] p(qit, Zit, ε

d
it)ql|Ωit

]
= pL

P

it . (A.7)

Combining the FOCs for LTit and L
P
it , we obtain the following restriction
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Eεd

[
pL

P

it

(
1− τ + 2η

LTit
LPit

)
|Ωit

]
= pL

P

it .

This is because the benefit the company derives from one unit of temporary labor is

identical to the benefit it derives from one unit of permanent labor, the only difference is

the cost that it wants to equate. Replacing the cost of temporary workers we obtain

Eεd

[
LTit
LPit
|Ωit

]
=

τ

2η

or we can write this as Eεd
[
LTit|Ωit

]
= τ

2η
LPit , so the company would like to keep the ratio

of temporary to permanent work as a constant

LTit
LPit

=
τ

2η

LTit
Eεd [LTit|Ωit]

. (A.8)

The two ratios of materials to labor and temporary employment to labor are a function

of LTit
E
εd [LTit|Ωit]

pMit Mit

pL
P

it Lit
=

1

εm.l

(
1− τ + τ

LTit
Eεd [LTit|Ωit]

)

pL
P

it L
T
it

pL
P

it L
P
it

=
τ

2η

LTit
Eεd [LTit|Ωit]

.

Given that Lit = LTit+L
P
it , even the parametric case does not deliver an elegant analytic

solution. However, we can see that the case with temporary employment delivers similar

results to the case without it. The materials to wages ratio is a function the the ETS and

the temporary employment to the expected temporary employment. The ratio LTit
E
εd [LTit|Ωit]

is a function of the demand shock. We can also use the ratio of temporary to permanent

employment, L
T
it

LPit
.

A.3 Higher order process (extension)

The input ratio is
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pMit Mit

pLi,tLi,t
=
γ

β

(
εdit
) 1
1−γ(σ+1)

E
[(
εdit
) 1
1−γ(σ+1) |Ωit

] .
The input ratio is a sole function of the ETS and the demand component. For simpli-

fication, let the demand shock be a separable s order process,

εdit = g(ζdi,t−1, ...ζ
d
i,t−s, ν

d
it) = g(ζdi,t−1, ...ζ

d
i,t−s)ν

d
it (A.9)

where ζdi,t = (εdit, zit) and z is an n-dimensional vector of information known to the firm

at period t. Again, write ν̃dit = 1
1−γ(σ+1)

νdit and normalize Eνdit
[
ν̃dit
]

= 0,

ln

[
pMit Mit

pLi,tLi,t

]
= ln (γ/β) + ν̃dit.

As we can see from above, the restriction to a first-order Markovian process is imma-

terial.

A.4 Nonparametric Identification

In this section I discuss how the assumptions and observed data allow us to nonpara-

metrically identify the distribution of demand shocks. This is instructive, to explain that

identification of demand shocks does not depend on the parametrization presented in

Section 2.4. Instead, identification is obtained from meaningful variation together with

the economic restrictions. There is a total of four equations: the two first-order condi-

tions, the demand function and the production function. This is the case when prices and

quantities are observed. However, since prices (and quantities) are not observed we need

to combine the production and demand functions into a revenue function. This delivers

three equations9.

9In this section, to reduce the number of variables in the notation, input prices (PMit , P
L
it ) are included

in Zit.
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yit = p(qit, Zit, ε
d
it)q(Kit, Lit,Mit, ωit)

Mit = m(ωit, Lit, Kit, Zit, ε
d
it)

Lit = l(ωit, Kit, Zit,Ωit)

Unfortunately, this is not suffi cient to identify the demand shock nor is this suffi cient

to identify productivity. The reason is that we have two unobservables (ωit, εdit) and the

vector of information known to firm i when it chooses labor, Ωit. This is potentially

correlated with all the observables due to serial correlation (note Ωit includes ωi,t−1, εdi,t−1

and the other state variables) and three equations.10 If we attempt to estimate any of the

three equations individually, we would face endogeneity of potentially all the explanatory

variables since (yit,Mit, Lit, Kit, Zit) are correlated with (ωit, ε
d
it, and Ωit). Note that if we

allow both inputs to be fully flexible, the equation for labor (l(.)) becomes a function of

εdi,t instead of Ωit, and both components (ωit and εdi,t) enter all three equations. This is

the reason why demand and supply shocks cannot be separately identified. Furthermore,

when prices and quantities are observed, the two equations allow us to separately identify

the demand from the supply conditions p(qit, Zit, εdit) and q(Kit, Lit,Mit, ωit) . This is the

approach followed in Santos, Costa, and Brito (2016).

In order to make progress, let the demand shock be separable in νdit,

εdit = g(Ωit)e
νdit = gite

νdit

where νdit is the "news" to demand or the unexpected changes to demand conditions.

One simple case is when the demand follows a separable first-order Markov process, εdit =

g(εdi,t−1)eν
d
it . The news term is, by assumption, serially independent. Out of all the

information contained in the information set, g(Ωit) is now a suffi cient statistic for εdit .

This single index restriction is important because it links εdit with Ωit. When the firm

chooses Lit, it must forecast εdit. However, given the separability assumption on the

demand shock, git = g(Ωit) is now a suffi cient statistic. In the general case, there is now

10Notice that if we allow adjustment costs to labor, lagged employment would enter the input demand
function for labor, which would become, l(ωit,Kit, Zit, Li,t−1,Ωit).
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a system with four equations

yit = y(Kit, Lit,Mit, ωit, Zit, ε
d
it)

Mit = m(ωit, Lit, Kit, Zit, ε
d
it)

Lit = l(ωit, Kit, Zit, git)

εdit = g(Ωit)e
νdit = gite

νdit

where y(Kit, Lit,Mit, ωit, Zit, ε
d
it) = p(q(Kit, Lit,Mit, ωit), Zit, ε

d
it)q(Kit, Lit,Mit, ωit). In

Section 2.4 we used the ratio of the amount spent on the two inputs. This was be-

cause taking the ratio eliminates ωit and git from the ratio equation. The ratio is then a

function of the state variables and the demand shock νdit. The demand shock is indepen-

dent from all the state variables, which guarantees identification of both the equation of

interest and the shock distribution. In the general case, taking the ratio does not elimi-

nate ωit and git. Instead, we can characterize the reduced form solutions obtained from

the first-order conditions. First we can eliminate εdit by replacing with g(Ωit)e
νdit which

leaves three equations

yit = y(Kit, Lit,Mit, ωit, Zit, gite
νdit)

Mit = m(ωit, Lit, Kit, Zit, gite
νdit)

Lit = l(ωit, Kit, Zit, git).

From the last two equations we can solve for ωit and git as functions of the remaining

variables (Mit, Lit, Kit, Zit). We study the technical conditions for invertibility in the next

subsection. Plugging these solutions into the first equation

yit = y(Kit, Lit,Mit, Zit, ωit, g(Ωit)e
νdit)

= y(Kit, Lit,Mit, Zit, ω (Mit, Lit, Kit, Zit) , g (Mit, Lit, Kit, Zit) e
νdit). (A.10)

From equation (A.10) the distribution of "news" to demand term, νdit is identified up

to standard normalization and location restrictions on the nonparametric functions (see
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Matzkin, 2007) as long as all the variables (Mit, Lit, Kit, Zit) are independent from νdit.

That is coherent with the model for the state variables (Lit, Kit, Zit). However, from the

the model’s assumptions, we know that Mit is not independent from νdit. As long as there

is serial correlation in ωit, lagged values of Mi,t−1 and (Li,t−1, Ki,t−1, Zi,t−1) become valid

instruments simply by inverting the equation ωi,t−1 = m̃−1 (.). Equation (A.10) can be

estimated by nonparametric instrumental variables when the demand shock is separable

(Newey and Powell, 2003). When the demand shock is nonseparable, we need to consider

further restrictions to implement the nonparametric IV estimator (see for example, Chen

et al., 2014 and Blundell and Matzkin, 2013).

Note that in some cases the equation for intermediate inputs can be written as Mit =

m̃(Lit, Kit, Zit, ν
d
it). This is the parametric case presented in Section 2.4. In this case we

do not require invertibility conditions that guarantee that we can write ωit and g(Ωit)

as functions of the remaining variables (Mit, Lit, Kit, Zit). In such case, we can use the

equation m̃ (.) directly to identify the distribution of the demand shocks νdit (again up to

standard normalization and location restrictions.

A.4.1 Invertibility

We can express the previous problem of obtaining a solution for git = g(Ωit) and ωit as

an invertibility problem. Inverting the labor demand function (git = l−1(ωit, Kit, Zit, Lit),

see Levinshon and Petrin (2003) for invertibility conditions), and substituting it in the

materials input function, we obtain

Mit = m(ωit, Lit, Kit, Zit, l
−1(ωit, Kit, Zit, Lit)e

νdit) (A.11)

= m̃(ωit, Lit, Kit, Zit, ν
d
it).

The next step is inverting the m̃ function with respect to ωit to obtain

ωit = m̃−1(Mit, Lit, Kit, Zit, ν
d
it).

Replacing ωit back in git = l−1(ωit, Kit, Zit, Lit) we obtain the expression for git. We

13



can thus solve for git and ωit as functions of (Mit, Lit, Kit, Zit, ν
d
it) and replace git and ωit

in the revenue Equation (A.10).

We will discuss below the case where m̃ is not a function of ω. In this situation we can

obtain the distribution of νdit byMit = m̃(Lit, Kit, Zit, ν
d
it) directly. This is the parametric

case presented in Section 2.4.

A.4.2 Technical conditions for invertibility

Monotonicity of the first-order conditions is not suffi cient to obtain invertibility. Take

the system formed by the two first-order conditions in equations (1) and (2) where εdit =

g(Ωit)e
νdit . If the determinants of all principal submatrices of the Jacobian

 ∂[σp,q+1]p(qit,Zit,ε
d
it)qm−pMit

∂εdit

∂εdit
∂git

∂[σp,q+1]p(qit,Zit,ε
d
it)qm−pMit

∂ωit

E
εd [[σp,q+1]p(qit,Zit,ε

d
it)ql]−pLit

∂git

E
εd [[σp,q+1]p(qit,Zit,ε

d
it)ql]−pLit

∂ωit


are non-vanishing, it follows by Theorem 7 in Gale and Nikaido (1965) that the system

is invertible. We thus obtain a solution to this system in (git, ωit) as functions of the

remaining variables
(
Mit, Kit, Lit, Zit, ν

d
it

)
. A necessary condition to obtain a solution

is,11

∂[σp,q+1]p(qit,Zit,g(Ωit)e
νdit )qm

∂εdit

∂εdit
∂git

∂
∫ [

[σp,q+1]p(qit,Zit,g(Ωit)e
νd
it )ql

]
df(νdit)

∂git

6=
∂[σp,q+1]p(qit,Zit,g(Ωit)e

νdit )qm
∂ωit

∂
∫ [

[σp,q+1]p(qit,Zit,g(Ωit)e
νd
it )ql

]
df(νdit)

∂ωi,t

.

This condition states that we require the differential effect of the demand shock on

material vs. labor (slope) to be different from same differential effect for the supply

shock. This is because labor/intermediate input choices "control" for one of the shocks

(gi,t or ωit). In the nonparametric case, productivity shocks have an effect on the input

ratio and the input ratio varies with both demand and supply shocks (e.g. non-Hicks

neutral productivity). If the differential effects are the same for supply and demand

11Notice that when the determinat is zero and invertibility condition holds with equality (and we
cannot solve the system explicitly), the productivity term drops from the equation for Mit, i.e. Mit =
m̃(Lit,Kit, Zit, ν

d
it) and the equation is clearly no longer invertible in ωit. However, in this case the

problem is actually simplified and guarantees that the demand shock is identified since we just need to
nonparametrically regress Mit on (Lit,Kit, Zit). This is the collinearity case of ACF (2006). In this case
only the two FOCs and the separability condition (A.3) are required.
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shocks, changes to the ratio allow us to distinguish one shock from the other. When

the condition is not verified, it implies that both shocks have a symmetric effect on the

two first-order conditions such that varying one of them is in fact equivalent to varying

the other. The system is not invertible. However, this is equivalent to the parametric

case presented in Section 2.4. It is particularly useful because we suffi ce with the two

first-order conditions. That is, inverting the labor demand equation effectively "controls"

for the two shocks ω and εd and

mit = m(ωit, Lit, Kit, Zit, l
−1(ωit, Kit, Zit, Lit)e

νdit)

= m̃(Lit, Kit, Zit, ν
d
it)

and m̃ is not a function of ω. We can nonparametrically regress Mit against Lit, Kit, Zit

to identify the distribution of νdit.
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A.5 Results

A.5.1 Year-averaged estimated demand shocks and self-reported changes in

market conditions, by industry.
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Figure A.1: Year-averaged estimated demand shocks and self-reported changes in market
conditions, by industry.
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A.5.2 Production function estimates
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A.5.3 Input regression estimates (self reported shocks to demand)
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A.5.4 Demand estimates: GMM results
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A.5.5 Correlation of the demand shock estimated via demand function with

the self reported demand change and the demand shock estimated via

input ratio
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A.5.6 Input regression estimates (estimated demand residuals)
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A.6 Monte Carlo results

Figure A.2: Simulated vs. estimated shocks with varying parametrizations (φz = 0.75).
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Notes: Scatterplot and correlation between simulated and estimated demand shocks using
four different parametrizations (φz = 0.75).
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Figure A.3: Simulated vs. estimated shocks with varying parametrizations (δ = 0.66).
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Notes: Scatterplot and correlation between simulated and estimated demand shocks using
four different parametrizations (δ = 0.66).
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Figure A.4: Simulated vs. estimated shocks with varying parametrizations (β = 0.35 and
γ = 0.7).
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Notes: Scatterplot and correlation between simulated and estimated demand shocks using
four different parametrizations (β = 0.35 and γ = 0.7).
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