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S.1 Proofs of the lemmas

Proof of Lemma 7. For any I(d;) process x!}, we can write

Vo =Bz + (2 — Bap) = ju + G-

Let U/(0) = ¢, V}(0) = i and
t

Ui(5)=> UlG-1), ViG)=> VIG-1).
s=1

s=1

Then
t t

b =Ul(d) + VI(d) =D Uld; = 1)+ _V}(d - 1). (S.1)

j=1 j=1
By induction, we have

di—1

Vi(d) = pu T (4 5)/dit = juGa, (). (52)
7=0

On the other hand, since E¢} = 0, by (i) of Condition 1 and continuous mapping theorem, it

follows that

Ul (di) /=12 25 £L (5), on D0, 1]. (S.3)
Thus, by (S.1)—(S.3),
(s — 1Ga,([ns])) /nh 1/ =L £l (s), on D[0,1]. (54)
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Since St (¢;), 1 < i < p converge to their limiting distribution jointly, (7.1) follows from (S.4) and
the continuous mapping theorem.

As for conclusion (7.2), by the joint convergence condition (see (i) of Condition 1) and (7.1),
-z = ,LLZ'Ld ntz [nt;]

ndi—1/2 f Z

xj[lntl}

—Exd),1<i<p-r,p-r+1<j<p

L (Fi(t), W),

on D[0,1] x D[0,1]. (ii) of Condition 1 implies that E|z}|2 < co. This gives

. . 1< .
max |2] — Exl|/v/n = 0p(1), and — g |z] — Exl| = Op(1). (S.5)
n n
s=1

1<s<
Thus, by Theorem 3.1 of Ling and Li (1998), we have
1 SN . .
Ay Z(J«“fﬁ — & — piLa, (1)) (¢} — Ba]) 5 0.
t=1

Since p is fixed, we have (7.2) as desired. O

Proof of Lemma 8. For any 1 < i <, we define X(s;) = 1 31| x4(s;). When p; = 0, Lemma 7

gives

B;(x¢(si) — X(si)) (Xt(Si)_i(Si))é>Fi(t)7 on ﬁD[O,l]. (S.6)

nai—1/2 - nei—1/2

j=1
When p; # 0, by @i, = 1, we have Bix;(s;) = (Pixs(s;)),n " 2Gq,(t) + n~ 12 @i, (s:))'.
Note that

a;—1

. 1 .y V4 . 1 . . tai
Jim E(Gai([nt]) + X[y (s0)) = Tim i Go;([nt]) = lim i ]__[0 ([nt] +J) = o] (5.7)
]:
Thus, by Piu; = 0, Lemma 7 and continuous mapping theorem, we have
B;(x¢(si) —x(si)) o
( T(Laim (1)) =L ((PLF;(t)), H%( HDO 1]. (S.8)

Combining (S.6), (S.8) and the joint convergence condition ((i) of Condition 1) yields

<<Bi(xt(8i) - X(Sz‘))>/,1 <i< l) L (MU(£),1<i<1)=M(t) on ﬁD[O, 1. (8.9)
j=1

nai—1/2

Let B = diag(B1,B2, -+ ,B;) = (b;;). By (S.9) and continuous mapping theorem, we have

[ 1v ] _ _ 1= _ _ _
D, B (n D e — %) (%1 — Xl)') BD, = (n Y (D5 B(xa — %1))(Dy B — X1))'>
t=1 t=1
1
/ M(t)M'(t) dt (S.10)
0
and complete the proof of Lemma 8. O



Proof of Lemma 9. First, we show (7.3). To this end, it is enough to show

bt (; 3 (e — ) st — m)') D} - /0 R(F () at|, = op(1). (S.11)

Let & = (&},€2,--- ,&€77") be an integrated process with components & satisfying
leé’,? = Uiﬂ}g = gf:

For any given 1 <4, j <p—r,

d+d Z x _xj) (ﬁ—gl)(fg—gj)]
- Z @~ E)(ed — )+ o S (€ — el — & — (& - )
t=1
=: Tij—i-TZ-j.

By induction, it is easy to show that under condition (3.2),
t

sup  sup E[(}— €)/n% V22 < sup  swp ~E(Si— 3 &P =0@m¥),  (812)

1<i<p—r 1<t<n 1<i<p—r 1<t<n T =1

sup E(&/n% Y22 =0(1) and sup sup E(zi/n%1/%)% =0(1). (S.13)

sup
1<i<n 1<t<n

1<i<p—r 1<t<n
Thus, by equations (S.12), (S.13) and the independence of the components,

p—r
Y [E(r)? + E(r)? = 0(p*n® 1),

i.j=1
which implies

HDfnl [(111 D (xin = %) (xin — X1 ) (:LZ )/>] D,|
t=1

t=1

= Op(pn™'7?),

;

where & = (£1,£2,--- ,£€P7"). Thus, for the proof of (S.11), it suffices to show
1 Fir(ed i Yo j T—
swp | Z(gt e -8) - [ FOr @], = o, (S1)
1<4,j<p—r 0 2
Note that

n; (ndil/Z) (ndj1/2> - ;/(t—l)/nf (a)fﬂ(a) da

- iz<-§-§m—fi<t/n>>< ._1/2) Zfl (t/n) < fj(t/n)>
t/n
_Z/ l/n

= Jnl('lvj) + Jng(l,j) + Jn3<z7j)

= f1t/m)f (a) + f'(t/n)(f(a) — 7 (t/n)) da



From the definition of I(d) process, it is easy to deduce that if & ~ I(d) satisfying VI¢; = &,
then & = ', &5 when d = 1 and when d > 2,

t d—1
&=> [H(t—s+i)/(d—1)! £s (S.15)
s=1 Li=1
and fi(t) can be rewritten as
t
Filt) = / (t— )41 aWi(s)/(ds — 1) (S.16)
0
By (S.16) and the continuity of W(s), it is easy to get that
sup sup (@) = fi(t/m)] 1 (@)] = Os.(n”/*log? ).
1<i,j<p—r (t-1)/n<a<t/n
Thus,
sup g (i, )| = Oa.s.(n1/?log? n). (8.17)
1<i,j<p—r

Set [I0_,(t — s + h)/0! = 1. Using expressions (S.15) and (S.16), we have

di—1 di—1
| ' Tt —s+h)—(t—s)% .
/Y2~ fi(t/n) = Z[ T l

s=1

N U (tn — syt
" (Z nd=172(d; = 1) - Ta-nr <3>>

=1 Hy(t) + Hy(t).
It is easy to get that
sup  sup |H;(t)] = Oqs.(n?logn). (S.18)
1<i<p—r 1<t<n

On the other hand, we have for any 1 <t < n,

L) = (dil),g ((fl - ;j)di_l o (/ :/n <; - > “ dw%a))
_d (dil)'é/(:/n [(2 _ Z>di_1 . <Z . a) di_l] dW'(a). (S.19)

This gives

sup  sup |Hly(t)] = nOqs(n"3%logn) = O (n”?logn). (S.20)
1<i<p—r 1<t<n

Since the normal sequences {1/} are independent with respect to 4, it follows that

sup  sup || = Ogs. (n% 2 1ogn). (S.21)
1<j<p—r1<t<n



Thus, by (S.18), (S.20) and (S.21), we have
sup | Jp1(i,§)| = Oa.s.(n"?10g? n). (S.22)
1<i,j<p-r

Similarly, we have

sup | Jn2(i, §)| = Oa.s.(n "% 1log? n). (S.23)

1<i,j<p—r
Using the same argument, we can show

1 1
sup |(€/ndV/2)(@ n1/2) / Fict) dt / fi(t)dt\:oa.s.m-l/?log?n). (5.24)
0 0

1<i,j<p—r

Combining equations (S.17), (S.22)—(S.24), we have (S.14) and conclude (7.3). The positive
definiteness of fol F(t)F'(t) dt can be shown similarly to that of Lemma 3.1.1 in Chan and Wei
(1988). 0

Proof of Lemma 10. We first consider the case with fixed p. To this end, we split the matrix
into three parts: the nonstationary block, the cross block with elements being the product of
stationary component with nonstationary component and the stationary block.

(I) As for the nonstationary block, we have for 1 <i,h <p—r,

> @iy -2 (ap -2 =D (2] — 3 (e — 2"
t=1 t=1
J ' 4 n—j A
= = (@ -3 -2 = (ahy; —T)(afy — 2
t=1 t=1
= = (@ -3 — pwLa,() (@ — 2" = ppLa, (1) = Y (@} — T — piLa, (1) (a1, — )
t=1 t=1
J
—pin Z La, (t)(x} — &' = piLa,(£)) — i Y L, (8) (2 — 2" — i, La, (1))
t=1

—[hifth Z La, (t)La;(t) — pa Z Lo, (t)(afy; — 2f)
t=1

6
=: Z Onm (4,1, h).

m=1
From (S.4), it follows that
On1(Jg, i, h ] 3 — piLg, (t h—gh — upLg, (t
sup ‘ nl(]>Z7 )| < ]70 < sup ‘wt r Hi dl( )|> ( sup |$t L Hin dh( )|)(825)
n

0<j<jo nitdn 1<t<n ndi=1/2 1<t<n ndn=1/2

= Oy(1/n).

As for 0p2(4,1, h), we have



(i) If dj, = 1, then :):iﬁrj —ah =1 e Since Blel| < oo, it follows that

i=t+1 z
i g t+jo
|5n2(.]717 h’)| ( ’.’Bt — 17 — ,ulLd ) n h
sup — g, = (su el S.26
Ogjgjo nditdn - tgg ndi—1/2 n3/2 tzlthJrl ‘ ‘ ( )
= 0,(1/n'?).

(ii) If dj, > 2, then a:?ﬂ. —zh = ZEEH[USh(dh — 1) + VI(dy — 1)] (see Lemma 7), it follows
that

s — 2l o Uk (dp, — 1) + VIdy, - 1)|
ndn—1/2 = p1/2 -

O,(1/n?),  (S.27)

sup sup

1<t<n 1<5<jo 1<s<n ndnt

which implies

J<jo t<n t<n j<jo

6020j,, )| 7 — & — L, (1) jaf, — o
SUp — < | sup di1)2 sup sup YT (S5.28)
= 0,(1/n'?).
Let Apm(j) = (0nm (4,3, 1)) p—r)x (p—r)» M = 1,2, -+ ,6. Then by equations (S.25) — (S.28),

sup ||DpiBn™ (Ani(j) + Apa(5))B'Dyy |2

1<5<jo
< (3 S ) 0,0
i=1 =1 m=1
= (Ep:f: Ep: by + biom) > Op(1/n'?) = O, (p* /n'/?). (S.29)
i=1 =1 m=1

By the definition of B, it is easy to see that the elements of BA,3(j), BA,4(j) are zero except

in rows ZLI si, j =1,2,--- .1 and the non-zero elements have the following forms:

-WZL% P 7 L, (1),

Thus, by
J_ Lg, (t)(2} — 2" — pu;Lg,(t))
t=1 dh t IU"L d; _
12’1%0 ndntdi—1/2 = Op(D);
we have
sup [[D, !B (An(j) + Aua(i)BD, |2 = Oplpn™). (S-30)
1<5<50
j
Similarly, by sup;<;<;, %W = Op(1), we have
sup |[D,Bn " A,5(/)B'D, [ [|2 = Op(pn ). (S.31)

1<j<jo



Further, using (S.7), similar to (S.26) and (S.27), we can show
1 A
> La(t)(aty; —af) = Op(1/n'7?).
1

Sup ——5 115
1<5<jo nATIAL/2

Thus, for A,5(j) we have

sup |[D;{Bn ' Ang(7)B'D, {2 = Op(p/n'/?).
1<5<jo

Combining equations (S.29), (S.30), (S.31) and (S.32) gives

n

(S.32)

—J

Z X441 — X1) (X0 — X1)' — Z(Xﬂ —x1)(xn — x1)’

=1 t=1

= Op(pz/nl/z)

B'D, (S.33)
2

(IT) As for the cross block, we first show
nt Z(th — ig)(xﬂ — il)/B/Dgll
t=1

(S.34)
2

+
2

D;lanil Z(th — il)(XtQ — )_CQ)I
t=1

= op(1).
Note that for 1 <i:<p—randp—r <h <p,

D=3t~ = Y (2~ — pila, (D) (af — 3" +uzZLd - "),

t=1 t=1
=t Wi, + Wi (S.35)

Let Q1 = (w},)p—r)xr and Qo = (w3)(p—r)xr- Then the elements of B, = (e;p,) have the

following expression:

ejn = Zbﬂ Z —z - wiLa, (1)) :L' —zh Z bﬂwzh.

By Lemma 7, we have

(S.36)

p—r
€jh 1 1
‘nd¢+1/2‘ < ndit1/2 Z [bjiwin| = 0p(1).
i—1

On the other hand, by the definition of B, the elements of BQy = (d;},) can be represented as

1 « o ‘
d;p, = WZLai(t)(xf} —ZMNI(j=si),i=1,2,---,1.
t=1

It is easy to get that

djnl /a2 = 0,(1). (3.37)



Consequently, by (S.36) and (S.37), it follows that

n

HD;}Bn‘l D (xin — %) (12 — %)’ D, i Bn ' ||, + ||D, i Bn '], (S.38)
t=1 2
= op(1).
Similarly,
nh (xip — Ro)(xi1 — %1)B'D, || = 0,(1). (S.39)
t=1 2

(S.34) follows from (S.38) and (S.39).

Next, we show

_ n—j n
Sup ( (X1 — X1) (X2 — X2) = Y (%1 — %1) (%42 — 5(2)/> =0, (1)  (S.40)
J<jo =1 t=1 2
and
1 ([ g B
sup ||— (xe2 — Ra)(Xepj1 —X1) — > (%2 —Ro)(xn —%1) | B'D, || (S.41)
i<io || \i1= t=1 2
= o0p(1).
As for (S.40), note that forany 1 <i<p—r,p—r+1<h <p,
1 ng . nooo
s (Z<xz+j O DR e I xh>>
t=1 t=1
_ ln 3 <xt+9 z) (:U?—Ex?)— (i‘thxi‘) e (fo_j—a:%)
di—1/2 di—1/2
n / n —~\ n /
1 - PR _
T Atz Z (xt—x)(@“?—l"h)
t=n—j+1
By (S.27) and %2?21 E|zl| = O(1), it follows that when d; > 2,
sup | Lin(j, i, h)| = Op(1/n'/?). (5.43)

0<5<jo

4 . .
When d; = 1, by z}, ; — xp = Zsﬂt+1 el, we have

t+jo
E sup |L ,i,h)] < max —— Es — EzM)| = 0(1/n'/?).
S (L0, < max 3 Bll(el —Eab) = 0 /n')

Thus, (S.43) also holds for d; = 1. Similar to L1,(j,, h), we have

1nfj i i

Tevg — T _ 1/2
w2 i | = O/

sup
1<j<jo




This combining with Condition 1 show

1 n—j R
sup [ Lan(j, i, h) = n~ /2 (22" — Baf]) |- 3“2t = 0,(1/m). (S.44)
For L3, (j,4,h), by Lemma 7 and (S.7), we have
sup |z; —2'|/n = Oy(1),
1<t<n
thus by >0, . 4y E|z}|/n'/? = O(1/n'/?), we have
sup | Ly (7,4, h)| = Op(1/n'/?). (S.45)
J<jo
Therefore, by (S.42)—(S.45),
n—j n
sup —- +1/2 > (hy - —ah) =Y (a3 (@ —2")| = 0p(1/n'?), (S.46)
J<jo T t=1 t=1
which shows (S.40).
For (S.41), note that forany 1 <i<p—r,p—r+1<h<p,
n— j n '
ndz+1/2 ( Yty —a") =) (x) — 7)(af — xh)>
t=1 t=1
] .
ndzﬂ 7 Z s — 2 (@) — ") + Lsn(j. i, h) =t Lan(j,i, h) + Lan (5,1, h).

Let L(j) = (Lan(J, 1, h))’(p_r)xr and decompose Ly, (7,1, h) into two terms as in (S.35). Using the
same arguments as in (S.36) and (S.37), we can show
sup I~ L()B'D; [l2 = 0p(1), (S.47)
thus, by (S.45), we have (S.41). Combining equations (S.34) with (S.40) and (S.41) shows that
the cross blocks tend to 0 in probability.
(III) As for the stationary block, let X7 and ?j be the matrixes obtained by replacing the
stationary block %Z?:_f (Xt4j,2 — X2)(Xs2 — X2)' in 37 and f]j with Cov(xi4j2, X 5). By (ii) of

Condition 1, we have
37 — X7[l2 = 0p(1) and [|Z; — L []2 = 0p(1). (S.48)
Thus, by (S.33) and the fact that the cross blocks tend to 0 in probability (see (II)), we have

ID;10,(S5 ~T5)0, DYz < |ID;'©, (35 — X5)©;, D, |2 +[|D; ' ©,(Y5 — I§)©;,D; |2

= o0p(1)



and

D' ©,(8; ~THO.D. M2 < [ID;'©u(S] — ¥;)©,D, " || + D' ©,(Y; ~T)©, D ||
= op(1).
Hence, Lemma 10 holds for finite p.
Next, consider the case: p = o(n'/2~7). We still split the matrix into three parts as above.

THE NONSTATIONARY BLOCK.) Since by < lim,_,~, Var = 02 < by for all i, it
s=1 s 43

follows that as n — oo,

t
max Var(Zzi/\/ﬁ) <by and max Var( i ndi 1/2> < bo. (S.49)

1<t<n
s=1

Let dp1(J,, h),0n2(4,7,h) be defined as above with u; = pp = 0. Note that the components of

{z:} are independent, by (S.49) and some elementary computation, we can show
SN
IRWERD) .
E Z sup nd,.iﬂl = O(](Q)PQ/nz)
i,h=1 J<Jjo n- h
and
S (o 100201
28/, .
E Z Sup . d.+d = O(jgp2/n)'
i,h=1 J7<Jo nw "

Combining the above two equations yields

n—j n
D;llnil (Xt+j,1 — X1 th — X1 Z Xt 1— X1 th — }_(1)1 D;ll (850)
t=1 t=1 2
1
= Op(pn™2)

(THE CROSS BLOCK.) Let wj, be defined as in (S.35) with p; = 0. Since z; and x4 are

independent, it follows from (S.49) that

p—r p p—r p
E[Z Z wizh} = Z E(wi,)
i=1 h=p—r+1 i=1 h=p—r+1
_ — v PR (zf — 2) (x}, — &) h —h\i[(h _ =h
- Z n E di—1/2 di—1/2 E[(xt Z )H(‘rt’ €z )}
i=1 h=p—r+1 t,t'=1 " "
p—r p n
= 0> > ) [Ela) 2"z —2")] | = 0@ /')
i=1 h=p—r+1 tt'=1

by (iii) of Condition 2, which implies

n

HDmln_l Z(th — X1) (%2 — X2)'
t=1

= HDn1 n_191||2 pn_1/2+T). (S.51)
2
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Similarly,

n

ntY (ki — R2)(xi1 — %1)' D}
t=1

= O, (pn~1/247). (S.52)
2

Further, by some elementary computation, it is easy to show

[Z > > (Lwlsish)) } = O(pr/n'~*"),

which gives

_1 n—j n
sup ( (Xt+j1 — X1) (Xej2 — X2)' — Z(th —X1)(xe2 — X2)/) (S.53)
J<jo =1 t=1 2
= Op(pn=2*7).
Note that Lan(j,4, h) = Y1, 4 (2f — T)ap — I (il — 2y =S f(mtﬂ zy)al, ;, it is easy
to show that E{ i1 21 (Lan (4,4, h))ﬂ = O(pr/n'~?7) too, thus
1 n—j n
sup || — Z(xt+j72 — )_CQ)(Xt_i_jJ — X1 Z XtQ — Xg th — )_{1)/ Dr_Lll (8.54)
i<io || \imq t=1 2
= Op(pn2*).

Consequently, by equations (S.51)—(S.54), we get that the norms of the cross blocks are O, (pn_%'”).
(THE STATIONARY BLOCK.) By (ii) of Condition 2, we also have (S.48). Thus, by (S.50) and

the bound of the cross blocks (see above), we have if p = o(n'/2-7),

D Y2 -THD, Y2 < D, N(ZF = YH)D, 2 + [|ID, (X — TF)D, |2
= op(1) + Op(pn_l/z) = 0p(1)

and
_ T _ _ T x4 _ _ T _
IDH(E; — 5D |2 < [[DLH(E) = X;)Dy e + [IDL (XY —T5)Dy |2 = 0p(1).
Hence, Lemma 10 follows. And the proof of Lemma 10 is complete. O
Proof of Lemma 13. We only give the proof for p; =0, j = 1,--- ,p in details, other case can be

proved similarly. By Lemma 12 and the continuous mapping theorem, it follows that (i) holds for

4 = 0. Thus, it suffices to show for any 1 <1, h < p,

11



Observe that

n

—J
Z $t+g - jh) - Z(ffi - i‘z)(mg - jh)
t=1

n

= (xiﬂ' —ap(af -2 = Y (w - @) (@) — 2) = an (i, h) + ana(hi, ).
t=n—j+1

By Lemma 11, it follows that for any 1 <i,h < p,

o~
Il

3
o,

o~
Il
—

(( ) b2 —Eh)/ndh_1/2) o (Uit), U (s)) on D0, 1] (S.56)
This gives
S |ama (4, i, h)| /0t = Oy (1/n). (S.57)

Further, for any € > 0, then

lim P{ sup sup \xt+J — 2l /n%12 s ey =0, (S.58)
n—00 1<j<jo 1<t<n—j
Thus,
sup a1 (j, i, h)| /n%H I = oy(1). (5.59)

0<5<jo
Combining (S.57) and (S.59) gives (S.55) as desired.
By (i) of Condition 3, it follows that

- D (xerjn = %n) (%1, — X1,) == Cov(Xeyjn%en,)-
t=1

Thus, by (i) of Lemma 12, we have (7.28).
As for (7.27), it is enough to show for any ¢ € If and h € I,

.. .. n

i i h _ =h _ anl(]’lvh) an2(]vl’h) 1 i _q h _h

Wz($t+j —ot)(z —2) = ndit1z T itz +1/2 Z =) (2 — 2%)
=1

LIS (S.60)
holds for all 0 < j < jo. Similar to Lemma 7, we can show
n
i ;(xg — &)l — ") 250, (5.61)
y (S.56) and n~1 D tnio Elzl — 2" = O(jon™!), we have
sgp (g, i, h) /n%tY2 = O, (1/n). (S.62)
i<jo

y (S.58) and 2 3% | Elz! — 2| = O(1), we have

sup a1 (4,4, h)/né 2 = 0,(1). (S5.63)
3<do
(S.60) follows by equations (S.61)—(S.63). O

12



S.2 Proofs of Remarks 5 and 6

Proof of Remark 5. (i) By the martingale version of the Skorokhod representation theorem (S-
trassen 1967, Hall and Heyde 1980, and Wu 2007), we have for all 4, on a richer probability space,
there exists a standard Brownian motion {W ()} and a non-negative stopping times {TJZ} such

that for t > 1,

t

St=W( ) and E[r][F1(i)] = E[(e})*|Fe1(0)], (S.64)

j=1

where (i) is the o-algebra generated by {e, s < ¢}. This implies that

E|S} — W (out)|* = E| ZT oit]

t t t
Z |’Ft 1 Z |]:t 1 Z — o0t .

Since both {7} — E(7}|F;-1(i))} and {(e ) E((e ) |Fi—1(i))} are martingale difference and
Elei|? < oo, it follows that

t n
sup BI> ()~ B(1Faa(0)| = O | BD_[7j ~ Bl D)]] | = Om*/).
AN j=1 j=1
Similarly, sup;<;<, E ‘2;:1[(53)2 - E((£§)2|}}_1(i))] = O(n%9"). Further, condition E| 3>7_, [(¢})?

—o7]| = O(n*/7") implies that sup;<;<, B[} [(e])* — 07]] = O(n*"). Thus, Condition 2(i)

holds for any 7 > 1/¢*. If p = o(n'/?), Condition 2(ii) holds. Since the components of &; are
independent, Condition 2(iii) follows with sup; > 37, Elelel| = O(n).

(ii) By the proof of Theorem 9.3.1 of Lin and Lu (1996), we know that there exists a martingale
difference sequence {m}} such that R; = S} — M} satisfying E|R:|? = O(1), where M} = $" =1 m
Further,

a/2
E Z:[(ml)2 —E(m)?%| < Cnlogn. (S.65)

As a result, Condition 2(i) holds for any 7 > 1/q. Similarly, Condition 2(iii) can be easily obtained
by basic inequality for mixing processes, see Lemma 1.2.2 of Lin and Lu (1996). Note that for
any given j,
n—j
EH* (Xe4j,2 — X2) (X2 — X2)" — Cov(X1452, X1,2)H
t=1

2

p n 2
< Y E(lzuxif)(xz‘fj)ch(:ci,xi)]) — O(p*/n) = 0

n
i, j=p—r+1 t=1
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as p = o(n'/?). Condition 2(ii) holds too.

(iii) By Beveridge-Nelson decomposition, €} can be represented as

. e . e . ©
€ = (Z%)n@ — (e —€1), @ =) Cjnli_js Gj= Y Cn
7=0 =0 h=j+1
Let R = S — (Z;io cij> 22':1 77;- = ¢ — €p. Then
2
. e t .
sup |S; — (ZCiJ) Zn; =0(1) (S.66)
1<t<n =0 =1

Since {n;} is an i.i.d sequence with E|77Ji»\q < 00, by Theorem 4.3 of Strassen (1967), the stopping
{7/} defined as in (S.64) is an independent sequence with E7} = E(n§)2 and E|7}|%/? < co. Thus,
SUpP; <4<y, B Z;ZI[T; — E(n;-)z]\q/Q = O(n +n%*). As a result, we have for ¢y = min{q, 4},

1<t<n

t
sup B|'S lrj — Bl)?)] = 0(n'm).
j=1
Let a; = E(n;-)?, then on a richer space there exist a standard Brownian motion W (¢) such that

E() 0 — W(ait))? = O(n?®). (S.67)
j=1

Thus, by (S.66), (S.67), Condition 2(i) holds for 7 = 1/qq. It is easy to show that sup Z |E(5§5§)|

P—r<JsP i1
= O(n). Thus, Condition 2(iii) follows by the independence of the components. Condition 2(ii)

can be shown similarly to Remark 5(ii). O

Proof of Remark 6. 1t is easy to get \* = O.(1) when p — r is fixed. We only show the case
when m = p—r — 00 as n — o0. Let d = dpin, & be I(1) process defined as in Lemma 9,
& = (€,---,€) and e = (1,---,1) be two n dimensional vectors. Let E, and II, be n x n

matrices given by

1 00 0--- 0
1, -1 10 0 S (|
E,=1,— —ee and II, = ,
n oo : :
0 00 -1 1
then for any 1 <i,5 < m,
¢ = (fia"' ,5;2)' = aiiﬂgd(vi,vé,--- ,U;)' =: aiiH;dVi, and

& —€Y(E -8&) = ouoy (VY (IL,Y)E,E,IT, V7.

14



Let 4 < --- <, and 71 > --- > 7, be the eigenvalues of IL,IT/, and (H;d)'EnE’nH;d respec-
tively. Since A\;(E,E]) =+ = X\,_1(E,E]) = 1, by Theorem 9 of Merikoski and Kumar (2004),
it follows that

6% = X1 (YT YN, 1 (BRE) < i < N((TL, )T )M (B, E),) = 6% (S.68)

i
Further, 6 =2 — 2cos(2kn/(2n+ 1)), k =1,2,--- ,n (see Yueh (2005)), which implies
O ~ 4(km/(2n +1))2, as k/n — 0. (S.69)
Let U be an orthogonal matrix with row vectors uj,--- ,u, such that (IT,%)E,E,II ¢ =

Udiag(y1, -+ ,7)U" and let @ = (V! ... V™). For x € R™ with x’x = 1, define UQx =
(bix, -+ ,bux) = bx € R™. By (S.68), we have

1 ¢ . o
Ammin (WZ@ —-&)(& - ¢ ))
t=1
= )\min (71203(51 - éla e 7Em - gm)/(gl _Elv T asm - £m)>

1
> {min(oy)}? min —7 X' (UQ)'diag(71, -+, 1) (UQ)x
1 X n

(b;cbx) béc(Vla e 77Tb)bx
n2d bl b

= {min(o;)}* min
(2 X

v

k n
{min(os) }?n 2\ nin (/2 /1) min (Z 5k_—i,c-l1b12x/z b%x>
7 X —1

=1
k
> fmin(o) 1/ n) Do (€2'2/2) (22 m)] 5 mim 5 02,
=1
= O Auin ([ (- )] [(h - w2, (.70)

where Anin, Amax denote the smallest and largest eigenvalues of a matrix respectively, the last
equation follows by (S.69) and the fact that there exist two positive constants C7,Cy such that
C1 < Amin (/1) < Amax (2'Q/n) < Cy in probability when p/n'/? — 0. Since U is orthogonal

and the elements of 2 are independent standard normal variables, it follows that the elements

of (uf,---,u})'Q are independent and standard normal variables, thus by Theorem 2 of Bai and
Yin (1993), we have if m/k € (0,1),
Amin{ [ (uy, -, w))[(uy, -, w)'Q} = (1= /m/k)?, as. (S.71)

Taking k = 2m, then by (S.70) and (S.71), we have
1 & . . _
Auin <nd (€ - E)E - e’)) > O, (5.72)
t=1

Since Hﬁ S (& - ) - &) - fol F(t)F'(t) dt||]2 = 0p(1) (see Lemma 9), Remark 4 follows
from (S.72). O
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S.3 Numerical studies for j, and m

To evaluate the impact of the choice of jo and m, we report some of our simulation results in this
subsection.

We first present a numerical result for the choice jo. We let x42 in model (2.1) consist of r
stationary AR(1) processes with coefficients generated independently from U(—0.8,0.8), x;; be
p —r ARIMA(1,1,1) processes with coefficients generated from U(0,0.8) and U(—0.8,0.8). Let
the elements of A be generated independently from U(—3,3). We estimate the cointegration rank
r by the ACF unit-root test defined in (2.5). For each setting, we replicate the exercise 500 times
with sample size n = 300, 500, 1000 and jy ranging from 5 to 90. The relative frequencies for the
occurrence of events {7 = r} and the average distance between the true cointegrating space and
its true space are reported in Table S.1. It is shown from Table S.1 that the performance is stable

with respect to the choice of jg, especially for small p and large n.

Table S.1: Relative frequencies (RF) of the occurrence of event {7 = r} and average distance D; with jo
ranging over (5,90) and 500 replications.

(p,r) n j=51 10 20 30 40 50 60 70 80 85 90
RF | .950 | .928 | .938 | .960 | .940 | .924 | .928 | .948 | .934 | .926 | .926
300 | D1 | .062 | .069 | .057 | .047 | .065 | .065 | .070 | .0563 | .064 | .068 | .068
RF | 982 | 982 | .986 | .978 | .984 | .974 | .978 | .980 | .978 | .976 | .988
(4,2) | 500 | D1 | .029 | .024 | .023 | .029 | .027 | .036 | .028 | .030 | .029 | .030 | .024
RF | 992 | 994 | 996 | .996 | .994 | .998 | 1.00 | 1.00 | .994 | .998 | .998
1000 | D1 | .013 | .012 | .013 | .012 | .011 | .014 | .008 | .009 | .014 | .012 | .009

RF | .822 | .794 | .834 | .810 | .802 | .826 | .828 | .794 | .834 | .816 | .812
300 | D1 | .128 | .137 | .115 | .131 | .136 | .121 | .122 | .136 | .120 | .124 | .129
RF | 934 | 948 | .946 | .938 | .960 | .962 | .964 | .970 | .952 | .960 | .958
(6,3) | 500 | D1 | .061 | .053 | .053 | .062 | .052 | .049 | .047 | .045 | .050 | .045 | .050
RF | 988 | .990 | .994 | .994 | .976 | .984 | .992 | .994 | .988 | .994 | .994
1000 | D1 | .024 | .018 | .018 | .018 | .026 | .022 | .017 | .017 | .021 | .020 | .020

RF | .562 | .564 | .578 | .628 | .612 | .648 | .620 | .646 | .592 | .598 | .610
300 | D1 | .230 | .224 | .223 | .204 | .211 | .198 | .209 | .194 | .217 | .213 | .213
RF | .874 | .886 | .858 | .908 | .884 | .920 | .910 | .934 | .900 | .898 | .914
(8,4) | 500 | D1 | .093 | .078 | .101 | .078 | .085 | .077 | .077 | .067 | .081 | .081 | .078
RF | .966 | .978 | .986 | .980 | .984 | .986 | .986 | .986 | .988 | .988 | .990
1000 | D1 | .046 | .031 | .028 | .032 | .030 | .030 | .027 | .029 | .031 | .028 | .028

Next table is reported for the choice of m. In this simulation, x¢; and x5 are generated from
model (2.1) as the previous example. We also replicate the exercise 500 times in each setting
with sample size n = 300, 500 and 1000 and the lags number m is taken from 5 to 90. The
corresponding relative frequencies for the occurrence of events {7 = r} and the average distance
between the true cointegrating space and its true space are reported in Table S.2. It is shown
from Table S.2 that a relatively small m always works well for the estimation of the cointegrating

space. On the contrary, if m is selected too large, the performance is relatively poor, especially
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when the sample size n is relatively small. This is reasonable, because from Remark 1, we know
that only when n/m — oo, > ;- p(k)/m — 1 — 0, otherwise, it is difficult to distinguish the
integrated process from the stationary process, which means that m could not be selected too
large, especially when n is relatively small. This simulation also confirms that m = 20 is usually
good enough for the procedure.

In our simulation, we also use a data driven procedure in selecting m, which is given by

m = argmin,, {f(m) v f~(m)}

where T'(m) = {m Py (1= ﬁl(k:))} and f(m) =T(m)/T(m+1). It also work reason-
ably, for example, when (p,r) = (6, 3), the corresponding relative correct frequencies and average

distance is (0.776,0.119) for n = 300, (0.888,0.062) for n = 500 and (0.970,0.0229) for n = 1000.

Table S.2: Relative frequencies (RF) of the occurrence of event {7 = r} and average distance D; with m
ranging over (5,90) and 500 replications.

(p,r) n j=b 10 20 30 40 50 60 70 80 85 90
RF | .872 | 976 | .980 | .968 | .936 | .882 | .816 | .744 | .644 | .602 | .586
300 | D1 | .016 | .021 | .025 | .031 | .048 | .078 | .115 | .156 | .211 | .235 | .243
RF | .864 | .980 | .998 | .998 | .996 | .986 | .968 | .942 | .914 | .896 | .866
(3,2) | 500 | D1 | .008 | .009 | .010 | .010 | .011 | .017 | .026 | .041 | .056 | .067 | .084
RF | .874 | 980 | .996 | .996 | .996 | .994 | .994 | .992 | .992 | .992 | .992
1000 | D1 | .006 | .005 | .006 | .006 | .006 | .007 | .007 | .008 | .008 | .008 | .008

RF | .850 | .942 | 916 | .818 | .702 | .560 | .398 | .250 | .140 | .102 | .070
300 | D1 | .043 | .050 | .064 | .101 | .149 | .211 | .283 | .349 | .403 | .422 | .441
RF | .848 | .966 | .972 | .958 | .916 | .8564 | .762 | .660 | .568 | .518 | .462
(6,4) | 500 | DI | 0.024 | .026 | .029 | .034 | .051 | .076 | .115 | .160 | .200 | .223 | .248
RF | .842 | 974 | 996 | .996 | .992 | .984 | .976 | .968 | .942 | .928 | .906
1000 | D1 | .011 | .012 | .013 | .013 | .014 | .017 | .020 | .023 | .034 | .039 | .049

RF | 802 | .848 | .732 | .510 | .290 | .118 | .040 | .004 0 0 0

300 | D1 | .083 | .095 | .128 | .203 | .286 | .363 | .414 | 452 | .476 | 483 | .494
RF | .800 | .944 | .930 | .896 | .792 | .638 | .438 | .294 | .186 | .132 | .104
(9,6) | 500 | D1 | .039 | .045 | .052 | .063 | .098 | .154 | .227 | .286 | .334 | .359 | .375
RF | .856 | .984 | .990 | .980 | .980 | .964 | .946 | .914 | .862 | .834 | .786
1000 | D1 | .018 | .019 | .019 | .021 | .021 | .026 | .032 | .044 | .062 | .072 | .089
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