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1 Setup
We conducted a simulation study in order to assess the properties of variance estimator
V̂1, given in equation (25) of the main article, in terms of relative bias. We generated a
finite population of size N = 50, 000, each consisting of a variable of interest Yk, a set of
calibration variables X(Γ1,Γ2)

k , an instrument Zk and an unobserved variable Uk. Then we

let Xk =
(

1, X
(Γ1,Γ2)
k

)>
and Zk = (1, Zk)>. The variables Zk and Uk were first generated

from a uniform distribution
(
−
√

3,
√

3
)
so that E(Zk) = E(Uk) = 0 and V(Z) = V(Uk) = 1.

Then, given Zk, Yk was generated according to two models:
(i) a linear regression model:

Y1,k = 10 + 5Zk + εy1,k, (1)

where the errors εy1,k were generated from a normal distribution with mean equal to 0 and
variance equal to 4. The resulting coefficient of determination was equal to 85%;
(ii) an exponential model:

Y2,k = exp(2.5 Zk) + εy2,k, (2)

where the errors εy2,k were generated from a normal distribution with mean equal to 0 and
variance equal to 4.
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Finally, given the values of Zk and Uk, the X
(Γ1,Γ2)
k -values were generated according to the

linear regression model

X
(Γ1,Γ2)
k = Γ1Zk + Γ2Uk + σ(Γ1,Γ2)ε

(Γ1,Γ2)
k ,

where σ2
(Γ1,Γ2) = 1−Γ2

1−Γ2
2 and the errors ε(Γ1,Γ2) were normally distributed with mean equal

to 0 and variance equal to 1. We used the following values for Γ1 and Γ2: Γ1 ∈ {0.2, 0.4, 0.6}
and Γ2 ∈ {0, 0.1, 0.3, 0.5}.

From the population, we selected K = 10 000 samples, of size n = 1, 500 according to simple
random sampling without replacement.

In each population, units were assigned a response probability pk according to

pk =
1

2 + 0.35 Zk

+ 0.1 Uk.

This led to an overall response rate of around 50%. Finally, the response indicators Rk were
generated independently from a Bernoulli distribution with parameter pk, k ∈ U.

We computed the instrumental calibration estimator t̂C(Γ1,Γ2), and its variance estimator
V̂C(Γ1,Γ2) based on linear weighting for different values of Γ1 and Γ2. The weights were
computed so that the calibration constraints∑

k∈s

dkRkF (λ̂
>
Zk)Xk =

∑
k∈U

Xk

were satisfied.

We computed the Monte Carlo percent relative bias of V̂1 given by

RBMC

(
V̂1

)
= 100×

{
EMC

(
V̂1

)
− VMC(t̂c)

}
VMC(t̂c)

.

2 Results
The results are presented in Table 1 and Table 2. The results in both tables suggest that the
proposed variance estimator performs very well in terms of relative bias in all the scenarios
with an absolute relative bias less than 4.0%.
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Γ1

Γ2 0 0.1 0.3 0.5

0.6 -0.3 -1.7 -1.1 -1.5
0.4 -3.2 0.4 -2.6 -0.2
0.2 2.2 3.9 4.0 2.6

Table 1: Monte Carlo percent relative bias of the variance estimators, V̂C(Γ1,Γ2), of the
instrumental calibration estimator for different pairs (Γ1,Γ2) corresponding to population
generated according to (1.)

Γ1

Γ2 0 0.1 0.3 0.5

0 0.1 0.3 0.5
0.6 -1.0 -1.2 -1.1 -0.6
0.4 -2.5 0.5 -1.6 -0.0
0.2 2.4 3.4 3.6 3.2

Table 2: Monte Carlo percent relative bias of the variance estimators, V̂C(Γ1,Γ2), of the
instrumental calibration estimator for different pairs (Γ1,Γ2) corresponding to population
generated according to (2).
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