A  Proofs
A.1 Proof of Theorem 1

1. Consistency of .

Let us define

P, (A) = % {Z G R F(NTZ) X = Xk} ,

kes keP
PYA) =E{(ReF(A'Z;) — 1) X4}
Let U,,(A) = —||¢,,(A)]] and ¥(X) = —||1p(N)||. Hence, X € argmaxaca U, (A). We

check the conditions of Theorem 5.9 in van der Vaart (2000). First,
1 T
E(,(AN|U) = N Z [RF(A' Z,) — 1] X,

keP

which implies that E{e, (A} = (\). Since R, F(A" Z}) —1 is bounded, it follows that
{ReF (X" Z}) — 1} X} admits second-order moments. Then, V[E(¢,,(X)|)] converges

to 0. Also,
u}

By Assumption 3-(i), the right-hand side of (25) tends to 0. Then %,(A) — ¥(A) in

E[V{y, (MU} =E (25)

1 T
\Y {N %ZS d Ry F(NT Z,) X,

L?, and thus in probability.

Because Z,; has compact support and A is compact, there exists a compact interval [
including with probability one the interval [minyea X Z,, maxaca N Z k]. Moreover,
F(.) is uniformly continuous on I. Now, fix € and let § be such that for any (a,b) € I?,
la — b| < 0 implies |F(a) — F(b)| < &. Let C be such that || Z;|| < C with probability
one. Consider balls of center A, and of radius §/C for A. Then, for XA within such a

ball, we get, by the triangular and Cauchy-Schwarz inequalities,

19,(A) =, ()| < %deRk |F(ATZy) = F(A) Zi)| || Xkl
keS

€
< NkezsdkRkHXkH' (26)

29



Similarly, [|[1(AX) — ¥(N)|| < €E(||X«||). Now, by assumption, A is compact. It can
then be recovered by B balls of centers A, (b = 1...B) and of radius §/C. Then, using
[llall = [16]]] < lla = b], we get

sup [Wn(A) = (A < sup [[9,(A) = (A

1
< max |4, (A) — (X + ¢ {E(HXkH> + 5 > dkRkHXk”} :

keS

The first term on the right-hand side converges in probability to zero by pointwise
consistency of 1, (A). By Assumption 3-(i) and reasoning as above, the term within
brackets converges in probability to E{(1 + Ry)||X«|/}. Therefore, with probability
tending to one, the left-hand side is smaller than ¢[1 + 2E{(1 + Ry)|| X«|}]. Because

€ was arbitrary, we have proved
sup [¥,(A) — T(A)| - 0.
AeA
Hence, condition (i) in Theorem 5.9 of van der Vaart (2000) holds.
We now check condition (ii). First, by Assumptions 1 and 2,
E [(RiF (XN Zx) — 1) X1 Zy] = [F(Xg Z1)E (Ri|Z1) — 1] E (X 4| Z),) = 0.

Thus, ¥(Ag) = 0 and ¥(Ag) = 0. Suppose that there exists A; such that W(A;) = 0.
Then (A1) = 0 and because E(Xi|Rr = 1,Z)) = I'Zj, we obtain, by the law of

iterated expectation,
T E[Ry {F(Xg Zy) = F(A[ Zy)} Zi] = 0.
Because the rank of I is equal to dim(Z,),
E [Ry {F(A Z) — FA[ Zi)} Z,] = 0.
This, in turn, implies that
E [Ry. (F(X) Z1) — F(A] Z1)) (X Z, — A Zy)] = 0. (27)
Now, because F'(.) is strictly increasing, we have

{F(XZ1) — F(N[ Z1)} (A Zx — A| Zy) > 0 with equality iff \j Z), — X[ Z), = 0.
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Hence, (27) implies that (Ag — A;)T Z; = 0 almost surely. This and the fact that

E(Z,Z]) is nonsingular imply that X; = Ao.

Thus, ¥(A) = 0 implies that A = A¢. Second, by the same argument following (26),
we have, for any A, X" such that |A — X'|| < 4/C,

TT(A) = TN < [[(A) — PN < <E ([ Xx]) -
Hence, W is continuous. Thus, for any & > 0,

inf g = ] \\)] — | I
AEA:HIAH—)\OHZgH (M| AeA:ﬁlgouze” (M >0 = [T (o)l

and condition (ii) in Theorem 5.9 of van der Vaart (2000) holds.
As a result, both conditions of this theorem are satisfied, and X is consistent.

Consistency of tc.
First,

~

(tc —t,) /N deRk (A Z1)Y; ZYk

kES kEP
1 ~T
+ 5 ;S dy Ry {F()\ Z,) — F(Agzk)} Y. (28)

We now show that both terms on the right-hand side of (28), denoted by A; and A
hereafter, tend to zero in probability. For A;, we use arguments similar to those used

for the pointwise consistency of 1, (\). We have

E(AU) = Z{Rk (Xg Zx) — 1} Vi

keP

Moreover, by the law of iterated expectation and (10),

E{[RiF(XNg Zx) — 1] Y3} =E{[E(Rk | Zr)F( A Zx) — 1] E[Yi| Z4]} = 0.

)}

Hence, E(A;) = 0 and V{E(A;|U)} converges to 0. Moreover,

E{V(AU)} =E {V (% Z dReF(N] Z1) Y5,
keS
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and the right-hand side converges to 0 by Assumption 3-(i). Thus, V(A;) tends to 0

and A; converges to 0 in probability.

Turning to As, note that F'(.) is uniformly continuous on the compact set. Set £ > 0
and § as above. By consistency of A, HX — Xo|| < 6/C with probability close to one.
Then, by the Cauchy-Schwarz inequality, max;, H(X —Xo)"Z,|| < 4, implying that

~T

max ‘F()\ Z)) — F(Agzk)’ <

with a probability close to one. Hence, with such a probability,

1
|AQ|<E§<jv:z:dHYH>.

keS
By Assumption 3-(i), the term into parentheses converges to E(|Yy|). Therefore, A,

converges to zero, and the result follows. [J
. Linearization of \ — Ao-

Let us define G(A) = LN ves R F' (AT Z) X . Z) . Then, by the first-order condi-

tion of (5) and the mean value theorem,

0= G%)T {Z AR FATZ0) X ), — Zxk}

kesS keP

- agy {Z Ak ReF (X Z3) X = ) Xk} +GNTGANA =), (29)
kes keP

where XA = tAg + (1 — DA for some 7 € [0, 1].

Because (X, Z}) is bounded, we have, by the same arguments as when showing

Po(X) > p(N),
G(\) = G.

Now fix e > 0. F’ is continuous, and therefore uniformly continuous on the interval
I defined above. Thus, there exists d; > 0 such that for any (a,b) € I?, |a — b| < 9
implies |F'(a) — F'(b)| < e. By Step 1, with a large probability, [ A — Ao|| < 62/C
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and | X — Ag|| < 02/C. Then, by the triangular and Cauchy-Schwarz inequality, with
a large probability,

~ o~ A €
|63 -G < = 3 drix, 2],
kes
The same holds if \ is replaced with X. Because Z. is bounded, the right-hand

side converges to 0 by Assumption 3-(i). Hence, both G(X) and G(X) converge in
probability to G. This and (29) imply that

~ G'G)'GT

~ D ARy F(A Zk) Xy, — Zxk} {14 0p(1)}.

keS keP

Asymptotic normality of t.

First, we have

te -
< == LS G RFON Z)Yi + — Z Ay { FXT Z) = F(N] Z) } Vi
kesS keS
- deRk (A Zy)Ys — { > AR Y F( ATZk)ZT}
keS keS
GTG)'GT
(GGG {Z deReF(N Z1) Xy, — Zxk} {1+ 0p(1)},
kesS keP

where A = TXg + (1 — E)X for some t € [0,1]. By the same argument as above,

— deRkYk N Z0)Z] 5 B Z)).
keS

Hence, since v = G(GTG) 'E(pYiZ)) and Wy = (ReF (N Zi) — D)(YVi — 7" X3),

we get

te—t, = {de(WkJrYk —' X)) =) W+ Vi -y X, +2Wk} {1+ o0p(1)}.
keS keP keP

(30)
To prove the result, we now check the conditions of Theorem 2 in Chen and Rao

(2007). Note first that ¢ plays the role of B, in their theorem, >, o dp(Wj + V) —

Y X ) =3 wep Wi+ Y —~ " X, corresponds to Uy, Y, p Wi, corresponds to V,, ooy =
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1/2

1/2
\Y {Zkes d(Wy + Y, — v " X}) L{} corresponds to oy, and oy =V (ZkeP Wk)

corresponds to oy,,.

Then, by Assumptions 1 and 2,
E(Wi|Zy) = []E(Rk\Zk)F()\UTZk) — 1} E (Yk — 'yTXk]Zk) =0.

Hence, E(W)) = 0 and by the central limit theorem,

oy <2Wk> L5 N (0,1).

keP

Also, >, cp Wi is U-measurable. Hence, their condition 1 holds.

Next,

E{de(wk—l-yk—’)’TXk)—ZW}C—FYk—’}/TXk U} =0
kesS keP

and Condition (1) in Chen and Rao (2007) holds by Assumption 3-(iii) and Polya’s
theorem (see the remark below Theorem 2 in Chen and Rao, 2007). Thus, their

condition 2 holds. Finally their condition 3 holds by Assumption 3-(ii).

Therefore,

Y okes (Wi + Y — v X)) — Yoker Wi+ Y5 — ~T X+ Yower Wi a

— N (0,1).
\/U%N_'_OSN

The result follows by (30) and Slutsky’s lemma. [

A.2 Proof of Theorem 2

1. By assumption, a solution to (14) exists. By the same reasoning as the one used
to show Ay = A; in the proof of Theorem 1, the solution is unique. Moreover, still

reasoning as in the first step of the proof of Theorem 1, we have p Ao O

2. We can decompose the total error of estimation of ¢ as in (13). Using Assumption
3 and the same arguments as in the second step of the proof of Theorem 1, the first

three terms of the right-hand side converge to 0 in probability. On the other hand, the
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fourth term on the right-hand side does not tend to zero in probability. By the law of

large number and Assumption 3-(i), it converges towards
E[Ry {F(ALZy) — F(N  Zi)} Vi) .
This in turn can be rewritten as:
E{R: {F(ALZ1) ~ F(AZ)} Yi} = E(fi R Yi Z) (A — X))
where f; is defined in (16). Next, we prove (15). We have

~E[fiF(A Z1) 7' X4 Z] (A — Xo)] = E { (1 - ?((1?2)) ) X’“}
= E{F(ALZ) (ReX), — B(Ri|Z4) X }

= E{F()\;Zk) Cov (X}, Ry | Zk)}u

where the second equality comes from the nonresponse model and (14), and the third
equality from the law of iterated expectation. This shows (15), which in turn implies

that

E{Ri {F(A\LZy) — F(\ Z1)} Yi}
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