
A Proofs

A.1 Proof of Theorem 1

1. Consistency of λ̂.

Let us de�ne

ψn(λ) =
1

N

{∑
k∈S

dkRkF (λ>Zk)Xk −
∑
k∈P

Xk

}
,

ψ(λ) = E
{(
RkF (λ>Zk)− 1

)
Xk

}
.

Let Ψn(λ) = −||ψn(λ)|| and Ψ(λ) = −||ψ(λ)||. Hence, λ̂ ∈ arg maxλ∈Λ Ψn(λ). We

check the conditions of Theorem 5.9 in van der Vaart (2000). First,

E(ψn(λ)|U) =
1

N

∑
k∈P

[
RkF (λ>Zk)− 1

]
Xk,

which implies that E{ψn(λ} = ψ(λ). Since RkF (λ>Zk)−1 is bounded, it follows that{
RkF (λ>Zk)− 1

}
Xk admits second-order moments. Then, V[E(ψn(λ)|U)] converges

to 0. Also,

E [V{ψn(λ)|U}] = E

[
V

{
1

N

∑
k∈S

dkRkF (λ>Zk)Xk

∣∣∣∣U
}]

. (25)

By Assumption 3-(i), the right-hand side of (25) tends to 0. Then ψn(λ) → ψ(λ) in

L2, and thus in probability.

Because Zk has compact support and Λ is compact, there exists a compact interval I

including with probability one the interval [minλ∈Λ λ
>Zk,maxλ∈Λ λ

>Zk]. Moreover,

F (.) is uniformly continuous on I. Now, �x ε and let δ be such that for any (a, b) ∈ I2,

|a− b| < δ implies |F (a)− F (b)| < ε. Let C be such that ‖Zk‖ ≤ C with probability

one. Consider balls of center λb and of radius δ/C for λ. Then, for λ within such a

ball, we get, by the triangular and Cauchy-Schwarz inequalities,

‖ψn(λ)−ψn(λb)‖ ≤
1

N

∑
k∈S

dkRk

∣∣F (λ>Zk)− F (λ>b Zk)
∣∣ ‖Xk‖

≤ ε

N

∑
k∈S

dkRk‖Xk‖. (26)
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Similarly, ‖ψ(λ) − ψ(λb)‖ ≤ εE(‖Xk‖). Now, by assumption, Λ is compact. It can

then be recovered by B balls of centers λb (b = 1...B) and of radius δ/C. Then, using∣∣||a|| − ||b||∣∣ ≤ ||a− b||, we get
sup
λ∈Λ
|Ψn(λ)−Ψ(λ)| ≤ sup

λ∈Λ
||ψn(λ)−ψ(λ)||

≤ max
b=1...B

‖ψn(λb)−ψ(λb)‖+ ε

{
E(‖Xk‖) +

1

N

∑
k∈S

dkRk‖Xk‖

}
.

The �rst term on the right-hand side converges in probability to zero by pointwise

consistency of ψn(λ). By Assumption 3-(i) and reasoning as above, the term within

brackets converges in probability to E{(1 + Rk)‖Xk‖}. Therefore, with probability

tending to one, the left-hand side is smaller than ε[1 + 2E{(1 + Rk)‖Xk‖}]. Because

ε was arbitrary, we have proved

sup
λ∈Λ
|Ψn(λ)−Ψ(λ)| P−→ 0.

Hence, condition (i) in Theorem 5.9 of van der Vaart (2000) holds.

We now check condition (ii). First, by Assumptions 1 and 2,

E
[(
RkF (λ>0 Zk)− 1

)
Xk|Zk

]
=
[
F (λ>0 Zk)E (Rk|Zk)− 1

]
E (Xk|Zk) = 0.

Thus, ψ(λ0) = 0 and Ψ(λ0) = 0. Suppose that there exists λ1 such that Ψ(λ1) = 0.

Then ψ(λ1) = 0 and because E(Xk|Rk = 1,Zk) = ΓZk, we obtain, by the law of

iterated expectation,

Γ E
[
Rk

{
F (λ>0 Zk)− F (λ>1 Zk)

}
Zk

]
= 0.

Because the rank of Γ is equal to dim(Zk),

E
[
Rk

{
F (λ>0 Zk)− F (λ>1 Zk)

}
Zk

]
= 0.

This, in turn, implies that

E
[
Rk

(
F (λ>0 Zk)− F (λ>1 Zk)

) (
λ>0 Zk − λ>1 Zk

)]
= 0. (27)

Now, because F (.) is strictly increasing, we have{
F (λ>0 Zk)− F (λ>1 Zk)

} (
λ>0 Zk − λ>1 Zk

)
≥ 0 with equality i� λ>0 Zk − λ>1 Zk = 0.
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Hence, (27) implies that (λ0 − λ1)
>Zk = 0 almost surely. This and the fact that

E(ZkZ
>
k ) is nonsingular imply that λ1 = λ0.

Thus, Ψ(λ) = 0 implies that λ = λ0. Second, by the same argument following (26),

we have, for any λ,λ′ such that ‖λ− λ′‖ < δ/C,

‖Ψ(λ)−Ψ(λ′)‖ ≤ ‖ψ(λ)−ψ(λ′)‖ ≤ εE (‖Xk‖) .

Hence, Ψ is continuous. Thus, for any ε′ > 0,

inf
λ∈Λ:‖λ−λ0‖≥ε

‖Ψ(λ)‖ = min
λ∈Λ:‖λ−λ0‖≥ε

‖Ψ(λ)‖ > 0 = ‖Ψ(λ0)‖

and condition (ii) in Theorem 5.9 of van der Vaart (2000) holds.

As a result, both conditions of this theorem are satis�ed, and λ̂ is consistent.

Consistency of t̂C.

First,

(
t̂C − ty

)
/N =

1

N

∑
k∈S

dkRkF (λ>0 Zk)Yk −
1

N

∑
k∈P

Yk

+
1

N

∑
k∈S

dkRk

{
F (λ̂

>
Zk)− F (λ>0 Zk)

}
Yk. (28)

We now show that both terms on the right-hand side of (28), denoted by A1 and A2

hereafter, tend to zero in probability. For A1, we use arguments similar to those used

for the pointwise consistency of ψn(λ). We have

E(A1|U) =
1

N

∑
k∈P

{
RkF (λ>0 Zk)− 1

}
Yk.

Moreover, by the law of iterated expectation and (10),

E
{[
RkF (λ>0 Zk)− 1

]
Yk
}

= E
{[
E(Rk | Zk)F (λ>0 Zk)− 1

]
E [Yk|Zk]

}
= 0.

Hence, E(A1) = 0 and V{E(A1|U)} converges to 0. Moreover,

E {V(A1|U)} = E

{
V

(
1

N

∑
k∈S

dkRkF (λ>0 Zk)Yk

∣∣∣∣U
)}

,
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and the right-hand side converges to 0 by Assumption 3-(i). Thus, V(A1) tends to 0

and A1 converges to 0 in probability.

Turning to A2, note that F (.) is uniformly continuous on the compact set. Set ε > 0

and δ as above. By consistency of λ̂, ||λ̂ − λ0|| < δ/C with probability close to one.

Then, by the Cauchy-Schwarz inequality, maxk ||(λ̂− λ0)
>Zk|| < δ, implying that

max
k

∣∣∣F (λ̂
>
Zk)− F (λ>0 Zk)

∣∣∣ < ε,

with a probability close to one. Hence, with such a probability,

|A2| < ε

(
1

N

∑
k∈S

dk|Yk|

)
.

By Assumption 3-(i), the term into parentheses converges to E(|Yk|). Therefore, A2

converges to zero, and the result follows. �

2. Linearization of λ̂− λ0.

Let us de�ne Ĝ(λ) = 1
N

∑
k∈S dkRkF

′(λ>Zk)XkZ
>
k . Then, by the �rst-order condi-

tion of (5) and the mean value theorem,

0 =
Ĝ(λ̂)>

N

{∑
k∈S

dkRkF (λ̂>Zk)Xk −
∑
k∈P

Xk

}

=
Ĝ(λ̂)>

N

{∑
k∈S

dkRkF (λ>0 Zk)Xk −
∑
k∈P

Xk

}
+ Ĝ(λ̂)>Ĝ(λ̃)(λ̂− λ0), (29)

where λ̃ = t̃λ0 + (1− t̃)λ̂ for some t̃ ∈ [0, 1].

Because F ′(λ>0 Zk) is bounded, we have, by the same arguments as when showing

ψn(λ)
P−→ ψ(λ),

Ĝ(λ0)
P−→ G.

Now �x ε > 0. F ′ is continuous, and therefore uniformly continuous on the interval

I de�ned above. Thus, there exists δ2 > 0 such that for any (a, b) ∈ I2, |a − b| < δ2

implies |F ′(a) − F ′(b)| < ε. By Step 1, with a large probability, ‖λ̂ − λ0‖ < δ2/C
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and ‖λ̃ − λ0‖ < δ2/C. Then, by the triangular and Cauchy-Schwarz inequality, with

a large probability, ∥∥∥Ĝ(λ̂)− Ĝ(λ0)
∥∥∥ ≤ ε

N

∑
k∈S

dkRk‖XkZ
>
k ‖.

The same holds if λ̂ is replaced with λ̃. Because Zk is bounded, the right-hand

side converges to 0 by Assumption 3-(i). Hence, both Ĝ(λ̂) and Ĝ(λ̃) converge in

probability to G. This and (29) imply that

λ̂− λ0 = −(G>G)−1G>

N

{∑
k∈S

dkRkF (λ>0 Zk)Xk −
∑
k∈P

Xk

}
{1 + oP (1)}.

Asymptotic normality of t̂C .

First, we have

t̂C
N

=
1

N

∑
k∈S

dkRkF (λ>0 Zk)Yk +
1

N

∑
k∈S

dkRk

{
F (λ̂>Zk)− F (λ>0 Zk)

}
Yk

=
1

N

∑
k∈S

dkRkF (λ>0 Zk)Yk −

{
1

N

∑
k∈S

dkRkYkF
′(λ>Zk)Z

>
k

}

× (G>G)−1G>

N

{∑
k∈S

dkRkF (λ>0 Zk)Xk −
∑
k∈P

Xk

}
{1 + oP (1)},

where λ = tλ0 + (1− t)λ̂ for some t ∈ [0, 1]. By the same argument as above,

1

N

∑
k∈S

dkRkYkF
′(λ>Zk)Z

>
k

P−→ E(ρkYkZ
>
k ).

Hence, since γ = G(G>G)−1E(ρkYkZ
>
k ) and Wk = (RkF (λ>0 Zk) − 1)(Yk − γ>Xk),

we get

t̂C − ty =

{∑
k∈S

dk(Wk + Yk − γ>Xk)−
∑
k∈P

Wk + Yk − γ>Xk +
∑
k∈P

Wk

}
{1 + oP (1)}.

(30)

To prove the result, we now check the conditions of Theorem 2 in Chen and Rao

(2007). Note �rst that U plays the role of Bn in their theorem,
∑

k∈S dk(Wk + Yk −

γ>Xk)−
∑

k∈P Wk+Yk−γ>Xk corresponds to Un,
∑

k∈P Wk corresponds to Vn, σ2N ≡
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V
{∑

k∈S dk(Wk + Yk − γ>Xk)

∣∣∣∣U}1/2

corresponds to σ2n and σ1N ≡ V
(∑

k∈P Wk

)1/2
corresponds to σ1n.

Then, by Assumptions 1 and 2,

E(Wk|Zk) =
[
E(Rk|Zk)F (λ>0 Zk)− 1

]
E
(
Yk − γ>Xk|Zk

)
= 0.

Hence, E(Wk) = 0 and by the central limit theorem,

σ−11N

(∑
k∈P

Wk

)
d−→ N (0, 1) .

Also,
∑

k∈P Wk is U -measurable. Hence, their condition 1 holds.

Next,

E

{∑
k∈S

dk(Wk + Yk − γ>Xk)−
∑
k∈P

Wk + Yk − γ>Xk

∣∣∣∣U
}

= 0

and Condition (1) in Chen and Rao (2007) holds by Assumption 3-(iii) and Polya's

theorem (see the remark below Theorem 2 in Chen and Rao, 2007). Thus, their

condition 2 holds. Finally their condition 3 holds by Assumption 3-(ii).

Therefore,∑
k∈S dk(Wk + Yk − γ>Xk)−

∑
k∈P Wk + Yk − γ>Xk +

∑
k∈P Wk√

σ2
1N + σ2

2N

d−→ N (0, 1) .

The result follows by (30) and Slutsky's lemma. �

A.2 Proof of Theorem 2

1. By assumption, a solution to (14) exists. By the same reasoning as the one used

to show λ0 = λ1 in the proof of Theorem 1, the solution is unique. Moreover, still

reasoning as in the �rst step of the proof of Theorem 1, we have λ̂
P−→ λ∞. �

2. We can decompose the total error of estimation of t̂C as in (13). Using Assumption

3 and the same arguments as in the second step of the proof of Theorem 1, the �rst

three terms of the right-hand side converge to 0 in probability. On the other hand, the
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fourth term on the right-hand side does not tend to zero in probability. By the law of

large number and Assumption 3-(i), it converges towards

E
[
Rk

{
F (λ>∞Zk)− F (λ>0 Zk)

}
Yk
]
.

This in turn can be rewritten as:

E
{
Rk

{
F (λ>∞Zk)− F (λ>0 Zk)

}
Yk
}

= E
(
fk Rk Yk Z

>
k

)
(λ∞ − λ0) ,

where fk is de�ned in (16). Next, we prove (15). We have

−E
[
fkF (λ>0 Zk)

−1XkZ
>
k (λ∞ − λ0)

]
= E

{(
1− F (λ>∞Zk)

F (λ>0 Zk)

)
Xk

}
= E

{
F (λ>∞Zk) (RkXk − E(Rk|Zk)Xk)

}
= E

{
F (λ>∞Zk) Cov (Xk, Rk | Zk)

}
,

where the second equality comes from the nonresponse model and (14), and the third

equality from the law of iterated expectation. This shows (15), which in turn implies

that

E
{
Rk

{
F (λ>∞Zk)− F (λ>0 Zk)

}
Yk
}

= −
{{

E(fkRkZkX
>
k )
}−1 E(fkRkZkYk)

}>
E
{
F (λ>∞Zk) Cov (Xk, Rk | Zk)

}
. �
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