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A. ALGORITHM 1

We present the details of the Gibbs sampling algorithm mentioned in §3.1 of the main document.

Algorithm 1 Collapsed sampler for MFM-SBM
1: procedure C-MFM-SBM

2: Initialize z = (z1, . . . , zn) and Q = (Qrs).

3: for each iter = 1 to M do
4: Update Q = (Qrs) conditional on z in a closed form as

p(Qrs | A) ∼ Beta(Ā[rs] + a, nrs − Ā[rs] + b)

Where Ā[rs] =
∑

zi=r,zj=s,i 6=j Aij , nrs =
∑

i 6=j I(zi = r, zj = s), r = 1, . . . , k; s = 1, . . . , k.

Here k is the number of clusters formed by current z.

5: Update z = (z1, . . . , zn) conditional on Q = (Qrs), for each i in (1, ..., n), we can get a closed

form expression for P (zi = c | z−i, A,Q):

∝

{
[|c|+ γ][

∏
j>iQ

Aij
czj (1−Qczj)

(1−Aij)][
∏

k<iQ
Aki
zkc

(1−Qzkc)
(1−Aki)] at an existing table c

Vn(|C−i|+1)
Vn(|C−i| γm(Ai) if c is a new table

where C−i denotes the partition obtained by removing zi and

m(Ai) =

|C−i|∏
t=1

[
Beta(a, b)

]−1Beta
[ ∑
j∈Ct,j>i

Aij +
∑

j∈Ct,j<i
Aji + a, |Ct| −

∑
j∈Ct,j>i

Aij −
∑

j∈Ct,j<i
Aji + b

]
.

6: end for
7: end procedure
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B. ESTIMATION PERFORMANCE UNDER MODEL MISSPECIFICATION

As mentioned at the end of § 5.1 of the main document, we investigate the robustness of MFM-

SBM to deviations from the block model assumption. To this end, we generate data from a degree-

corrected block model

Aij ∼ Bernoulli(θij), θij = wiwjQzizj , 1 ≤ i < j ≤ n, (A.1)

with node specific weights wis. If all wis are one, this reduces to the usual block model. We ran-

domly set 30% of the wis to 0.8 and the remaining to one. We generate 100 datasets for the same

choices of (n,K, p) as in § 5.1. Performance in estimating the number of communities is summa-

rized in Figures 1 and 2, while Table 1 reports estimation accuracy of the cluster configurations.

As in § 5.1 of the main document, MFM-SBM continues to have superior performance when the

block structure is vague. These simulations indicate that MFM-SBM can handle mild deviations

from the block model assumption without degrading performance, though certainly there will be a

breakdown point if the true model is very different from an SBM.

(k, p) MFM-SBM LEM HMM MH-MCMC
k = 2, p = 0.50 0.89 (1.00) 1.00 (1.00) 0.99 (1.00) 1.00 (1.00)

k = 2, p = 0.24 0.93 (0.75) 0.21 (0.73) NA (NA) 0.54 (0.57)

k = 3, p = 0.50 0.96 (0.99) 0.75 (0.94) 1.00 (0.99) 0.87 (0.99)

k = 3, p = 0.33 0.93 (0.88) 0.78 (0.73) 0.47 (0.80) 0.38 (0.82)

Table 1: Cluster membership estimation under degree-corrected model. The value outside the

parenthesis denotes the proportion of correct estimation of the number of clusters out of 100 repli-

cates. The value inside the parenthesis denotes the average Rand index value when the estimated

number of clusters is true. NA’s indicate no correct estimation of the number of clusters out of all

replicates.

C. CONVERGENCE DIAGNOSTICS

Our first set of simulations investigate the algorithmic performance of MFM-SBM relative to other

available Bayesian methods for different choices of the number of nodes n, number of communities

K, the within-community edge probability p, and the relative community sizes.

Figures 3 – 7 show average value of RI(z, z0) for the first 300 MCMC iterations from 100

randomly chosen starting configurations for the MFM-SBM algorithm. In each figure, the block

structure gets increasingly vague as one moves from the left to the right. It can be readily seen from
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Figure 1: Balanced degree-corrected network with 100 nodes and 2 communities. Histograms

of estimated number of communities across 100 replicates. The lower panel is the case when the

community structure in the network is prominent (p = 0.5); the top panel is for a vague block

structure (p = 0.24). From left to right: our method (MFM-SBM), leading eigenvector method

(LEM), hierarchical modularity measure (HMM), non back-tracking matrix (NBM) , Bethe Hessian

matrix (BHM) & MH-MCMC.

3



Figure 2: Balanced degree-corrected network with 100 nodes and 3 communities. Histograms

of estimated number of communities across 100 replicates. The lower panel is the case when the

community structure in the network is prominent (p = 0.5); the top panel is for a vague block

structure (p = 0.33). From left to right: our method (MFM-SBM), leading eigenvector method

(LEM), hierarchical modularity measure (HMM), non back-tracking matrix (NBM) , Bethe Hessian

matrix (BHM) & Bayesian competitor (MH-MCMC).
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Figures 3 and 6 that for balanced networks with sufficient number of nodes per community, the

Rand index rapidly converges to 1 or very close to 1 within 300 MCMC iterates, indicating rapid

mixing and convergence of the chain. The convergence is somewhat slowed down if the network

Figure 3: Average Rand index (solid blue line) vs. MCMC iteration for MFM-SBM for 100 different

starting configurations in a balanced network. n = 100 nodes in K = 3 communities of sizes 33,

33 and 34. The shaded regions correspond to the variation of the Rand index obtained from MFM-

SBM due to random initializations.

Figure 4: Average Rand index (solid blue line) vs. MCMC iteration for MFM-SBM with 100

different starting configurations in an unbalanced network. n = 100 nodes in K = 3 communities

of sizes 22, 33 and 45.

is unbalanced and the block structure is vague; see for example, the right-most panel of Figures 5.

However, with a clearer block structure or more nodes available per community, the convergence

improves; see the left two panels of Figures 4 and 5 and the right most panel of Figure 7. We

additionally conclude from Figure 5 - 7 that as the number of community increases, we need more

nodes per community to get precise recovery of the community memberships.
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Figure 5: Average Rand index (soild blue line) vs. MCMC iteration for MFM-SBM with 100

different starting configurations in a balanced network. n = 100 nodes in K = 5 communities of

size 20 each.

Figure 6: Average Rand index (solid blue line) vs. MCMC iteration for MFM-SBM with 100

different starting configurations in a balanced network. n = 200 nodes in K = 5 communities of

size 40 each.
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Figure 7: Average Rand index (solid blue line) vs. MCMC iteration for MFM-SBM with 100

different starting configurations in an unbalanced network. n = 200 nodes in K = 5 communities

of sizes 20, 30, 40, 50 and 60.

We also found in the more complicated cases (e.g., right panels of Figure 3), MH-MCMC

(Figure 8) does not converge as fast as our approach.

Figure 8: Average Rand index vs. MCMC iteration for the MH-MCMC of [4] with 100 different

starting configurations in a balanced network (solid red line). n = 100 nodes in K = 3 commu-

nities of sizes 33, 33 and 34. The shaded regions correspond to the variation of the Rand index

obtained from MH-MCMC due to random initializations. The average Rand index for MFM-SBM

with 100 different starting configurations is additionally provided for comparison (dashed blue

line).

C.1 Mixing of the MCMC chain for Q

We report the results based on the simulated datasets in Figure 3 with 100 nodes, 3 communities

in equal sizes and different diagonal values p for Q. The average effective sample sizes for the 250

MCMC iterations (leaving out first 50 MCMC iterations as burn-in) across 100 randomly chosen
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starting configurations are 252 for p = 0.4; 243 for p = 0.5 and 235 for p = 0.6. The reported

effective sample size here is an average of element-wise effective sample sizes for all terms in

matrix θ. The effective sample sizes are very close to the number of MCMC iterations. We

also display the trace plots for several representative elements of the matrix θ based on simulated

datasets in Figure 3.

Figure 9: θij’s averaged across 100 different initializations vs. MCMC iteration for MFM-SBM in

a balanced network. n = 100 nodes in K = 3 communities of sizes 33, 33 and 34; p = 0.6. The

shaded regions correspond to the variation of the MCMC sample due to random initializations.

Figure 10: θij’s averaged across 100 different initializations vs. MCMC iteration for MFM-SBM

in a balanced network. n = 100 nodes in K = 3 communities of sizes 33, 33 and 34; p = 0.5.

Figures 9 to 11 depict traceplots for some representative θijs averaged over 100 initializations

for the first 300 MCMC iterations. The reference line in each subplot is the true value of the

representative element based on the true clustering configuration. It is evident that θijs rapidly

converge to the stationary distributions tightly centered around the true values.
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Figure 11: θij’s averaged across 100 different initializations vs. MCMC iteration for MFM-SBM

in a balanced network. n = 100 nodes in K = 3 communities of sizes 33, 33 and 34; p = 0.4.

Method MFM-SBM NBM BHM LEM HMM MH-MCMC
Number of clusters 5 3 3 4 4 6

Table 2: Estimated number of clusters for US Politics data

D. COMMUNITY DETECTION IN BOOKS ABOUT US POLITICS DATA

We now provide details of the second real dataset mentioned in §6 of the main document. We

consider a network of books about US politics sold by the online bookseller Amazon.com [3]. In

this network the vertices represent 105 recent books on American politics bought from Amazon,

and edges join pairs of books that are frequently purchased by the same buyer. Books were divided

according to their stated or apparent political alignment, liberal or conservative, except for a small

number of books that were explicitly bipartisan or centrist, or had no clear affiliation. This is a

undirected network data with 105 nodes.

Results from MFM-SBM is again based on 10,000 MCMC iterations leaving out a burn-in

of 4,000, initialized at a randomly generated configuration with 9 clusters. Both Beta(2, 2) and

Beta(1, 1) priors on the elements of Q are investigated here. From Table 5 and Table 6, both LEM

and HMM find two large clusters consisting of mainly liberal or conservative books respectively

(refer to cluster 3&4 in table 5 and cluster 2&4 in table 6). The remaining nodes of the two clusters

in these two clustering configurations consist of books from different categories.

Among two prior choices in MFM-SBM, Beta(2, 2) prior on the elements of Q provide a more

interpretable result. From Table 3 (MFM-SBM), we find one cluster (cluster 5) consisting of books

from different categories. The remaining four clusters form two large clusters consisting of mainly

liberal (cluster 1&3) or conservative (cluster 2&4) books respectively. It is also interesting to
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MFM-SBM Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
liberal 29 0 9 0 5

conservative 1 8 0 34 6

neutral 2 0 0 3 8

Table 3: Contingency table of cluster index and book categories using MFM-SBM with Beta(2, 2)

priors on the elements of Q

observe “core-periphery” structure [1] in those four clusters. From that heatmap of Q in Figure

13, it is evident that there are two core clusters surrounded by another cluster with sparse within

group connections. This structure reveals that the books in the core parts are popular books most

frequently purchased by the same buyer; while the books in the peripheral region are more likely

to be purchased by the same buyer more specific to his interests. Both MFM-SBM with Beta(1, 1)

prior and MH-MCMC reveals 6 clusters with similar “core-periphery” structure.

Figure 12: Estimated configuration for the US Politics books data using MFM-SBM with Beta(2, 2)

prior on the elements of Q

The modularity based approaches (LEM and HMM) in the igraph package could not find

the core-periphery structure as shown in Figure 16 and Figure 17 respectively. The heatmaps in

Figures 12, 14, 16, 17 and 18 are obtained after rearranging the nodes in order of the clusters

corresponding to conservatives, liberal and neutral.
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Figure 13: Heatmap for Q matrix for the US Politics books data using MFM-SBM with Beta(2, 2)

prior on the elements of Q

Figure 14: Estimated configuration for the US Politics books data using MFM-SBM with Beta(1, 1)

prior on the elements of Q
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Figure 15: Heatmap for Q matrix for the US Politics books data using MFM-SBM with Beta(1, 1)

prior on the elements of Q

Figure 16: Estimated configuration for the US Politics books data using LEM

12



Figure 17: Estimated configuration for the US Politics books data using HMM

Figure 18: Estimated configuration for the US Politics books data using MH-MCMC

MFM-SBM Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
liberal 0 0 0 5 29 9

conservative 32 4 9 3 1 0

neutral 3 4 0 4 2 0

Table 4: Contingency table of cluster index and book categories using MFM-SBM with Beta(1, 1)

priors on the elements of Q
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LEM Cluster 1 Cluster 2 Cluster 3 Cluster 4
liberal 0 8 0 35

conservative 11 3 35 0

neutral 4 5 2 2

Table 5: Contingency table of cluster index and book categories using LEM

HMM Cluster 1 Cluster 2 Cluster 3 Cluster 4
liberal 0 0 5 38

conservative 13 33 2 1

neutral 5 2 4 2

Table 6: Contingency table of cluster index and book categories using HMM

MH-MCMC Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6
liberal 12 0 26 0 5 0

conservative 0 9 1 22 3 14

neutral 1 0 1 1 6 4

Table 7: Contingency table of cluster index and book categories using MH-MCMC
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E. PROOF OF THEOREM 4.1

Marginal likelihood approximation and prior-ratio bound:

The posterior expected risk E[d(z, z0) | A] =
∑

r rP [d(z, z0) = r | A]. Recall that Zn,K denotes

the space of all cluster configurations of n objects into K groups, Π denotes a prior distribution on

Zn,K , and z0 denotes the true configuration. We have

P [d(z, z0) = r | A] =

∑
z:d(z,z0)=r

L(A | z)Π(z)∑
z∈Zn,K L(A | z)Π(z)

=

∑
z:d(z,z0)=r

exp{`(z)− `(z0) + Π`(z, z0)}∑
z∈Zn,K exp{`(z)− `(z0) + Π`(z, z0)}

,

where recall `(z) = logL(A | z) is the log-marginal likelihood of cluster configuration z, and

Π`(z, z0) := log{Π(z)/Π(z0)}. Since
∑

z∈Zn,K exp{`(z)− `(z0) + Π`(z, z0)} ≥ 1, we can bound

E[d(z, z0) | A] ≤
∑
r

r
∑

z:d(z,z0)=r

exp{`(z)− `(z0) + Π`(z, z0)}. (A.2)

Next, we approximate the log-marginal likelihood `(z) by a more manageable quantity, quantifying

the approximation error. Recall the expression for L(A | z) from (13) in the main document. To

handle the combinatorial term, we use the well-known approximation log
(
N
s

)
≈ −NH(s/N) (see,

e.g., Chapter 1 of [2]), where H : [0, 1] → R is the (negative) Binary entropy function given by

H(x) = x log x+ (1− x) log(1− x).

In fact, using the two-sided Stirling bound
√

2πNN+1/2e−N ≤ N ! ≤ eNN+1/2e−N , it is

straightforward to verify that∣∣∣∣log

(
N

s

)
−
(
−NH(s/N)

)∣∣∣∣ ≤ C logN,

where C is a global constant independent of s and N . Note that H(x) < 0,H′(x) = log{x/(1 −
x)} = logit(x) and H′′(x) = [x(1 − x)]−1 for all x ∈ (0, 1). In particular, the positivity of

the second derivative of H implies that H is convex over (0, 1), a fact which is crucial to our

subsequent derivations.

Using the above approximation and that n↑(z), n↓(z) ≤ n2, we can write `(z) = ˜̀(z) + `R(z),

where

˜̀(z) = n↑(z)H
{
A↑(z)

n↑(z)

}
+ n↓(z)H

{
A↓(z)

n↓(z)

}
, (A.3)

with the remainder term |`R(z)| ≤ C log n for a global constant C independent of z and n.

Putting together the various approximations, we have from (A.2) that

E[d(z, z0) | A] ≤
∑
r

r
∑

z:d(z,z0)=r

exp{˜̀(z)− ˜̀(z0) + ∆(z, z0)}, (A.4)
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where ∆(z, z0) = `R(z)− `R(z0) + Πl(z, z0). Since |Πl(z, z0)| ≤ CKd(z, z0) by assumption, we

have |∆(z, z0)| ≤ C max{Kd(z, z0), log n} for all z. We subsequently aim to bound ˜̀(z)− ˜̀(z0)
from above inside a large P-probability set. The following result is key to our derivations.

Proposition E.1. Fix ν > 1. There exists a set C with P(C) ≥ 1 − e−C(logn)ν , such that for any

A ∈ C, we have

˜̀(z0)− ˜̀(z) ≥ CD̄(p0, q0) n d(z, z0)

K
(A.5)

for all z ∈ Zn,K , where recall that

D̄(p0, q0) :=
(p0 − q0)2

(p0 ∨ q0){1− (p0 ∧ q0)}
. (A.6)

Proposition E.1 quantifies the difference between the (approximate) log-marginal likelihood of

the true configuration ˜̀(z0) and that of any other configuration ˜̀(z) in terms of d(z, z0), the sample

size n, the number of communities K, and the quantity D̄(p0, q0). The proof of Proposition E.1 is

long and hence deferred to the next subsection. Substituting the bound (A.5) from Proposition E.1

in (A.4) and using the crude bound |{z ∈ Zn,K : d(z, z0) = r}| ≤ Kr
(
n
r

)
, we obtain, inside the set

C,

E[d(z, z0) | r] ≤
∑
r

r

(
n

r

)
Kr exp

{
− CD̄(p0, q0) nr

K
+ C max{Kr, log n}

}
≤ e−

CD̄(p0,q0)n
K ,

where the second inequality uses the crude bound
(
n
r

)
. er logn and the geometric sum formula.

This establishes Theorem 4.1.

Proof of Proposition E.1

We now provide a running proof of Proposition E.1. We break the proof up into several parts which

are somewhat independent of each other for improved readability. We first introduce some useful

notation and collect some concentration inequalities. The concentration inequalities are used to

define the large P-probability set C in (A.19). The final part of the proof bounds ˜̀(z0)− ˜̀(z) inside

C. Readers primarily interested in the bound for the log-marginal likelihood difference can skip

directly to the final part after familiarizing with the new notations.

Additional Notation:
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For z, z′ ∈ Zn,K , define

n↑↑(z, z
′) =

∑
i<j

1(zi = zj, z
′
i = z′j), A↑↑(z, z

′) =
∑
i<j

aij1(zi = zj, z
′
i = z′j),

n↑↓(z, z
′) =

∑
i<j

1(zi = zj, z
′
i 6= z′j), A↑↓(z, z

′) =
∑
i<j

aij1(zi = zj, z
′
i 6= z′j),

n↓↑(z, z
′) =

∑
i<j

1(zi 6= zj, z
′
i = z′j), A↓↑(z, z

′) =
∑
i<j

aij1(zi 6= zj, z
′
i = z′j),

n↓↓(z, z
′) =

∑
i<j

1(zi 6= zj, z
′
i 6= z′j), A↓↓(z, z

′) =
∑
i<j

aij1(zi 6= zj, z
′
i 6= z′j).

To simplify notation, we shall subsequently use † and †′ as dummy variables taking values in the

set {↑, ↓}.1 With this notation, n†(z) =
∑
†,†′ n††′(z, z

′) and A†(z) =
∑
†,†′ A††′(z, z

′) for any

z, z′ ∈ Zn,K . Denoting ξ↑ = p0 and ξ↓ = q0, we have

A††′(z, z0) ∼ Binomial(n††′(z, z0), ξ†′), (A.7)

independently across †, †′. For any †, †′, additionally denote

X† =
A†(z)

n†(z)
, Y† =

A†(z0)

n†(z0)
, W††′ =

A††′(z, z0)

n††′(z, z0)
(A.8)

ω††′ =
n††′(z, z0)

n†(z)
, ω̃††′ =

n††′(z, z0)

n†′(z0)
. (A.9)

It is straightforward to verify that∑
†′
ω††′ = 1, X† =

∑
†′
ω††′W††′ ,∑

†

ω̃††′ = 1, Y†′ =
∑
†

ω̃††′W††′ .

It is evident from (A.7) that EW††′ = ξ†′ ,EY†′ = ξ†′ and EX† = ξ̄† :=
∑
†′ ω††′ξ†′ . Further, since

the random variables involved are sub-Gaussian, they concentrate around their mean with large

probability. We collect some useful concentration bounds next.

Concentration bounds: Fix z 6= z0 ∈ Zn,K with d(z, z0) = r. For a constant ν > 1, let

CX(z) =

{
|X† − ξ̄†| ≤

(log n)ν/2
√
r√

n†(z)
, ∀ †

}
(A.10)

CY (z) =

{
|Y† − ξ†| ≤

(log n)ν/2
√
r√

n†(z0)
, ∀ †

}
. (A.11)

1For example,
∑

† n†(z) is shorthand for n↑(z) + n↓(z).
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For Ti ∼ Bernoulli(pi) independently for i = 1, . . . , N , it follows from Hoeffding’s inequality that

P (|T̄ − p̄| > t) ≤ 2e−2nt
2 for any t > 0, where p̄ = N−1

∑N
i=1 pi. Combining with the union

bound, it follows that

P
[
CX(z) ∩ CY (z)

]
≥ 1− 8 e−r(logn)

ν

. (A.12)

We additionally need control on another set of random variables that appear inside Taylor expan-

sions subsequently. Define, for each †,

L† =
∑
†′
ω††′Y†′ −X† =

∑
†′
ω††′(Y†′ −W††′). (A.13)

For any †, define ‡ to be the reverse spin of †, that is, ‡ =↓ if † =↑ and vice versa. With this

notation, Y†′ −W††′ = ω̃††′W††′ + ω̃‡†′W‡†′ −W††′ = ω̃‡†′(W‡†′ −W††′), since 1 − ω̃††′ = ω̃‡†′ .

Substituting in (A.13),

L† =
∑
†′
ω††′ω̃‡†′(W‡†′ −W††′). (A.14)

Observe thatW‡†′ andW††′ are independent random variables with EW‡†′ = EW††′ = ξ†′ , implying

EL† = 0. Define

CL(z) =

{
|L†| ≤

C(log n)ν/2
√
r
√

n(z, z0)

n†(z)
, ∀ †

}
, (A.15)

where

n(z, z0) =
n↑↑(z, z0)n↓↑(z, z0)

n↑(z0)
+
n↑↓(z, z0)n↓↓(z, z0)

n↓(z0)
. (A.16)

Using a sub-Gaussian concentration inequality, we prove below that

P
[
CL(z)

]
≥ 1− 6e−r(logn)

ν

. (A.17)

The main idea to establish (A.17) is to recognize L† as a weighted sum of centered Bernoulli

variables in (A.14) and use a rotation invariance property of sub-Gaussian random variables to

bound the sub-Gaussian norm of the aforesaid random variable.

Let us recall some useful facts about sub-Gaussian random variables from §5.2.3 of [5]. A

mean zero random variable Z is called sub-Gaussian if E(etZ) ≤ eCt
2‖Z‖2ψ2 for all t ∈ R, where

‖Z‖ψ2
= sups≥1 s

−1/2(E|Z|s)1/s is the sub-Gaussian norm of Z and C is an absolute constant.

Sub-Gaussian random variables satisfy Gaussian-like tail bounds: P (|Z| > t) ≤ Ce−ct
2/‖Z‖2ψ2 ,
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with C < 3. The following rotation invariance property is useful: if Z1, . . . , ZN are independent

sub-Gaussian random variables, then Z =
∑N

i=1 aiZi is also sub-Gaussian, with

‖Z‖2ψ2
≤ C

N∑
i=1

a2i ‖Zi‖
2
ψ2
,

for some absolute constant C.

Any centered Bernoulli random variable is sub-Gaussian, with sub-Gaussian norm bounded by

1. Since L† is a weighted sum of Bernoulli random variables, L† is also sub-Gaussian. Let us

attempt to bound the sub-Gaussian norm of L†. First, in (A.14), write W‡†′−W††′ = (W‡†′−ξ†′)−
(W††′ − ξ†′) as a weighted sum of centered Bernoulli random variables. By rotation invariance,

‖W‡†′ −W††′‖2ψ2
≤ C

(
1

n‡†′
+

1

n††′

)
.

Another application of rotation invariance yields,

‖L†‖2ψ2
≤ C

∑
†′
ω2
††′ω̃

2
‡†′

(
1

n‡†′(z, z0)
+

1

n††′(z, z0)

)
=

C

n2
†(z)

∑
†′

n††′(z, z0) n‡†′(z, z0)

n†′(z0)
=
Cn(z, z0)

n2
†(z)

,

using the definitions in (A.8) and (A.9) from the first to the second line, and noting that the sum-

mation in the penultimate line equals n(z, z0) defined in (A.16).

From the general tail bound for sub-Gaussian random variables mentioned previously (see

paragraph after equation (A.17) ), we have P(|L†| > t) ≤ 3e
−Ct2/‖L†‖2

ψ2 for any t > 0. Set

t∗ = C(log n)ν/2
√
r
√

n(z, z0)/n†(z) for an appropriate C and use that e−1/x is increasing in x to

obtain P(|L†| > t∗) ≤ 3e−r(logn)
ν . The inequality (A.17) follows from an application of the union

bound over †.

Constructing large probability set:

We use the concentration bounds above to create the large probability set C in Proposition E.1

within which the log-marginal likelihood differences can be appropriately bounded. Define,

Cr = ∩z:d(z,z0)=r
[
CX(z) ∩ CY (z) ∩ CL(z)

]
, C = ∩nr=1Cr. (A.18)

We have,

P
[
Ccr
]
≤ C |z : d(z, z0) = r| e−r(logn)ν ≤ C

(
n

r

)
Kre−r(logn)

ν ≤ e−Cr(logn)
ν

.
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For the first inequality in the above display, we used the union bound to (A.12) and (A.17). The

second inequality uses the crude upper bound |z : d(z, z0) = r| ≤
(
n
r

)
Kr, whereas the last inequal-

ity uses the bound
(
n
r

)
≤ er logn and the fact that ν > 1. Another application of the union bound

yields

P
(
C
)
≥ 1− e−C(logn)ν . (A.19)

Bounding the log-marginal likelihood differences:

Fix z with d(z, z0) = r. Recall the approximation ˜̀(·) to the log-marginal likelihood from (A.3).

We now proceed to bound ˜̀(z0)− ˜̀(z) from below inside the set C. Using the notation introduced

in (A.8) and (A.9), we can write

˜̀(z) =
∑
†

n†(z)H(X†),

and

˜̀(z0) =
∑
†′
n†′(z0)H(Y†′) =

∑
†′

∑
†

n††′(z, z0)H(Y†′) =
∑
†

n†(z)

[∑
†′
ω††′H(Y†′)

]
.

Thus, ˜̀(z0)− ˜̀(z) =
∑
† n†(z)

[∑
†′ ω††′H(Y†′)−H(X†)

]
. To tackle the inner sum, we perform a

Taylor expansion of each H(Y†′) around H(X†). After some cancellations since
∑
†′ ω††′ = 1, we

obtain

˜̀(z0)− ˜̀(z) =
∑
†

n†(z)

[∑
†′
ω††′

{
(Y†′ −X†)H′(X†) +

(Y†′ −X†)2

2
H′′(U†′†)

}]
, (A.20)

where U†′† lies between Y†′ and X†.

Since H is convex, the quadratic term in (A.20) is positive. We show below that the quadratic

term is the dominant term and the linear term is of smaller order. To that end, we first bound the

magnitude of the linear term inside C. Since from (A.10), X† concentrates around ξ̄†, and ξ̄† lies

between p0 and q0, |H′(X†)| can be bounded by a constant inside C. Hence, inside C,∣∣∣∑
†

n†(z)
∑
†′
ω††′(Y†′ −X†)H′(X†)

∣∣∣ ≤ C
∑
†

n†(z) |L†| ≤ C(log n)ν/2
√
r
√

n(z, z0), (A.21)

where recall from (A.13) that L† =
∑
†′ ω††′(Y†′ −X†). From the second to third step, we used the

bound on |L†| inside C from (A.15).
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Next, we bound from below the quadratic term in (A.20). Since U†′† lies between Y†′ and X†
which in turn concentrate around their respective means inside C, we can bound H ′′(U†′†) from

below as follows:

H′′(U†′†) =
1

U†′†(1− U†′†)
≥ 1

(p0 ∨ q0){1− (p0 ∧ q0)}
,

where ∨ and ∧ respectively denote the maximum and minimum. Thus,∑
†

n†(z)
∑
†′
ω††′

(Y†′ −X†)2

2
H′′(U†′†) ≥

∑
†
∑
†′ n††′(z, z0)(Y†′ −X†)2

(p0 ∨ q0){1− (p0 ∧ q0)}
.

Write

(Y†′ −X†) = (ξ†′ − ξ̄†) + (Y†′ − ξ†′) + (X† − ξ̄†).

The bounds on |Y†′ − ξ†′| and |X† − ξ̄†| from (A.11) and (A.10) imply that (ξ†′ − ξ̄†) is the leading

term in the above display. Since we can bound (a+ b)2 ≥ a2/2 if |b| = o(|a|), we obtain, inside C,∑
†

∑
†′
n††′(z, z0)(Y†′ −X†)2 ≥

1

2

∑
†

∑
†′
n††′(z, z0)(ξ†′ − ξ̄†)2. (A.22)

We have (ξ†′ − ξ̄†) = (ξ†′ − ω††′ξ†′ − ω†‡′ξ‡′) = ω†‡′(ξ†′ − ξ‡′), since ω†‡′ = 1 − ω††′ . Also,

|ξ†′ − ξ‡′| = |p0 − q0|. Hence∑
†

∑
†′
n††′(z, z0)(ξ†′ − ξ̄†)2 (A.23)

=
∑
†

∑
†′
n††′(z, z0)ω

2
†‡′(p0 − q0)2

= (p0 − q0)2
∑
†

∑
†′
n††′(z, z0)

n2
†‡′(z, z0)

n2
†(z)

= (p0 − q0)2
∑
†

n†↑(z, z0)n†↓(z, z0)

n†(z)
, (A.24)

since∑
†′
n††′(z, z0)n

2
†‡′(z, z0) = n†↑(z, z0)n

2
†↓(z, z0) + n†↓n

2
†↑(z, z0) = n†↑(z, z0)n†↓(z, z0)n†(z).

Define

ñ(z, z0) =
∑
†

n†↑(z, z0)n†↓(z, z0)

n†(z)
=
n↑↑(z, z0)n↑↓(z, z0)

n↑(z)
+
n↓↑(z, z0)n↓↓(z, z0)

n↓(z)
(A.25)

We then have, from (A.24), (A.22), and (A.21), that inside C,

˜̀(z0)− ˜̀(z) ≥ (p0 − q0)2

2(p0 ∨ q0){1− (p0 ∧ q0)}
ñ(z, z0)− C ′(log n)ν/2

√
r
√
n(z, z0). (A.26)

We now state a Lemma to bound ñ(z, z0) and n(z, z0) in appropriate directions.
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Lemma E.1. Suppose K ≥ 2 and d(z, z0) = r. Then, ñ(z, z0) ≥ min{Crn/K,Cn2/K2} and

n(z, z0) ≤ C{nr/K + r2} for some constant C > 0, where ñ(z, z0) and n(z, z0) are defined in

(A.25) and (A.16) respectively.

The proof of Lemma E.1 is provided in the Appendix G. Substituting the inequalities in Lemma

E.1 to (A.26) delivers the bound (A.5) in Proposition E.1.

F. PROOF OF THEOREM 4.3

We first introduce a few notations. Since dH is not defined between two configurations with differ-

ent values of k, we instead work with the Rand-Index (R) in the subsequent developments. Define

nαβ = |i : zi = α, z0i = β|, α = 1, . . . , k, β = 1, 2; nα = |i : zi = α|, α = 1, . . . , k,

B = 2
k∑

α=1

nα1nα2, R =
n↑↑(z, z0) + n↓↓(z, z0)(

n
2

) .

Clearly 0 ≤ R ≤ 1 and R = 1 indicates perfect concordance between the configurations z and

z0. To find a lower bound to Π(K | A), it is enough to find an upper bound to the Bayes factor

L(A | k)/L(A | K). Observe that

L(A | k)

L(A | K)
≤
∑
z∈Zn,k

L(A | z, k)

L(A | z0, K)

Π(z | k)

Π(z0 | K)
. (A.27)

Straightforward calculations yield, for the Dirichlet-multinomial prior with Dirichlet concentration

parameter γ,

Π(z | k = 3)

Π(z0 | K = 2)
≤ c1e

nc2 ,
Π(z | k = 2)

Π(z0 | K = 3)
≤ c3e

c4n logn. (A.28)

Since the analysis leading up to (A.26) does not depend on whether or not z and z0 share the same

k, we have

L(A | z, k)

L(A | z0, K)
≤ exp{C ′tn

√
n(z, z0)− D̄(p0, q0)ñ(z, z0)} (A.29)

with probability 1 − e−Ct
2
n . Denote by C the set corresponding to the high-probability event in

(A.29). In the following, we derive a lower bound for n(z, z0) respectively for the following two

cases. In both the cases, the upper bound for n(z, z0) follows trivially.

1. Overfitted case (K = 2 and the model is fitted with k = 3): Since the true model is contained in

the fitted model, a value of R close to 1 impedes the concentration of k around K = 2. We derive

lower bound for ñ(z, z0) in terms of the Rand-Index R and investigate the bounds for different
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regimes of R. R � 1 corresponds to the case when the separation between the log-marginal like-

lihoods is relatively weak, but strong enough to offset the model complexity and the prior. In this

case ñ(z, z0) and n(z, z0) both are of the order n; however the number of such configurations is

polynomial in n, so that the posterior concentrates at K = 2 with a rate e−Cn.

2. Underfitted case (K = 3 and the model is fitted with k = 2): In the underfitted case,R can never

approach 1 which makes separation between the log-marginal likelihoods stronger. In this case

both n(z, z0) and ñ(z, z0) are of the order n2 which is enough to offset the model complexity

leading to a posterior concentration rate of e−n2 .

In the following, we analyze the above two cases separately.

1. Overfitted case: Here K = 2 and m = n/2 and

n↑↑(z, z0) =

∑k
α=1(n

2
α1 + n2

α2)

2
−m, n↑↓(z, z0) =

k∑
α=1

nα1nα2

n↓↑(z, z0) = m2 −
∑k

α=1(n
2
α1 + n2

α2)

2
, n↓↓(z, z0) = m2 −

k∑
α=1

nα1nα2.

We express n(z, z0) and ñ(z, z0) in terms of R as

n(z, z0) =
n↑↑(z, z0)n↓↓(z, z0)(1−R) + n↑↓(z, z0)n↓↑(z, z0)R

(m2 −m)m2/
(
n
2

) , (A.30)

ñ(z, z0) =
n↑↑(z, z0)n↓↓(z, z0)(1−R) + n↑↓(z, z0)n↓↑(z, z0)R

n↑(z)n↓(z)/
(
n
2

) . (A.31)

Lemma F.1 derives upper and lower bounds for n(z, z0) and ñ(z, z0) depending on 5 possible range

of values for R. For cases 1 and 2, tn
√
n(z, z0) − D̄(p0, q0)ñ(z, z0) ≤ ntn − D̄(p0, q0)n

2. For

Cases 3 and 4, the bounds are {ntn
√
ηn−D̄(p0, q0)n

2ηn} and {tn
√
n−D̄(p0, q0)n

2ηn} respectively.

Thus for each of the cases 1-4, the bound for the ratio of the marginal likelihood in (A.29) is

faster than exponential. For Case 5, the bound is C{tn
√
n− D̄(p0, q0)n}. Note that this means the

ratio of the marginal likelihood in (A.29) can be at the minimum e−Cn for Case 5. However, for z

satisfying Case 5, one can improve on the bound of the prior ratio in (A.28) as

Π(z | k = 3)

Π(z0 | K = 2)
≤ C
√
n(n+ 2)3. (A.32)

The proof of (A.32) is appended with the proof of Lemma F.1. Thus for Case 5, we have

L(A | z, k = 3)

L(A | z0, K = 2)

Π(z | k = 3)

Π(z0 | K = 2)
≤ e−Cn.

Instead of a global bound on the model complexity, we separately analyze the complexity of

configurations corresponding to Cases 1-4 and 5. From the proof of Lemma F.1, configurations
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corresponding to Case 5 satisfy the following: choose a constant a from m observations in cluster

one and a constant value b from cluster two, then randomly place a + b nodes into three clusters.

The number such configurations is at most polynomial in n, say nκ for some κ > 0.

For Cases 1-4, choose tn = o(n
√
ηn) with 3ne−Ct

2
n → 0. For Case 5, choose tn = o(

√
n)

with nκe−Ct2n → 0. Then P(Cc) → 0. Hence the right hand side of (A.27) can be bounded by

3n exp{−Cn2ηn}+ nκ exp{−Cn} which can be upper bounded by exp{−Cn}.

Lemma F.1. 1. If 1−2R � βn or 1−2R � Cm−1 with βn → 0 andmβn → 0, n(z, z0) ≤ Cn2

and ñ(z, z0) ≥ Cn2.

2. If either 1−R or 1− 2R are constants, n(z, z0) ≤ Cn2 and ñ(z, z0) ≥ Cn2.

3. If 1−R � ηn with ηn → 0 and mηn →∞, n(z, z0) ≤ Cn2ηn and ñ(z, z0) ≥ Cn2ηn.

4. When 1−R = C/m and B/m→∞ and B/(m2ηn)→ C, then n(z, z0) ≤ Cn, ñ(z, z0) ≥
n2ηn.

5. When 1 − R = C/m for some constant C > 0, and B = Cm, then n(z, z0) ≤ Cn and

ñ(z, z0) ≥ Cn

2. Underfitted case: AssumeK = 3 andm = n/3. ThenB = 2
∑k

α=1(nα1nα2+nα1nα3+nα2nα3).

Also, note that

n↑↑(z, z0) =

∑k
α=1(n

2
α1 + n2

α2 + n2
α3)

2
− 3m

2
, n↑↓(z, z0) =

k∑
α=1

(nα1nα2 + nα1nα3 + nα2nα3)

n↓↑(z, z0) =
3m2

2
−
∑k

α=1(n
2
α1 + n2

α2 + +n2
α3)

2
, n↓↓(z, z0) = 3m2 − n↓↑(z, z0).

It is straightforward to show n↑↑(z, z0) ≥ Cn2. Also,

B =
n2
1 + n2

2

2
+

(
3− 9

2
R

)
m2 +

(
3

2
R− 3

2

)
m ≥ 9

4
m2 +

(
3− 9

2
R

)
m2 +

(
3

2
R− 3

2

)
m = Cn2.

(A.33)

The first inequality in (A.33) follows because n2
1 + n2

2 ≥ 2(n/2)2 and n = 3m. The last equality

in (A.33) follows since 0 ≤ R ≤ 1. Hence n↑↑(z, z0)n↑↓(z, z0)/n↑(z) ≥ Cn2 and thus ñ(z, z0) ≥
Cn2. Choosing tn = o(n) concludes the proof.
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G. PROOF OF A FEW AUXILIARY LEMMATA

G.1 Proof of Lemma E.1

We introduce some additional notations to analyze the terms n↑↓(z, z0) and n↓↑(z, z0). Set m =

n/K and define ak = |{i : zi 6= k, z0i = k}|, bk = |{i : zi = k, z0i 6= k}|, nk = |{i : zi = k}|
and n0

k = |{i : z0i = k}| = m for all k = 1, . . . , K. Clearly,
∑K

k=1 ak =
∑K

k=1 bk = r and

n0
k − ak = nk − bk. Fix z with d(z, z0) = r. Then 0 ≤ r ≤ n −m. Defining n(k)

↑↓ (z, z0) = |{i :

zi = zj = k, z0i 6= z0j }| and n(k)
↓↑ (z, z0) = |{i : z0i = z0j = k, zi 6= zj}|, we write

n↑↓(z, z0) =
K∑
k=1

n
(k)
↑↓ (z, z0), n↓↑(z, z0) =

K∑
k=1

n
(k)
↓↑ (z, z0).

Observe that,

n
(k)
↑↓ (z, z0) ≥

∣∣{i : zi = k, z0i = k}
∣∣ ∣∣{i : zi = k, z0i 6= k}

∣∣ = (nk − bk)bk
n
(k)
↓↑ (z, z0) ≥

∣∣{i : zi = k, z0i = k}
∣∣ ∣∣{i : zi 6= k, z0i = k}

∣∣ = (n0
k − ak)ak.

Proof of lower bound on ñ(z, z0):
Note that ∑

†

∏
†′ n††′(z, z0)

n†(z)
=

n↑↑(z, z0)n↑↓(z, z0)

n↑↑(z, z0) + n↑↓(z, z0)
+

n↓↓(z, z0)n↓↑(z, z0)

n↓↓(z, z0) + n↓↑(z, z0)

=
n↑↓(z, z0)

1 +
n↑↓(z,z0)

n↑↑(z,z0)

+
n↓↑(z, z0)

1 +
n↓↑(z,z0)

n↓↓(z,z0)

:= T1 + T2.

The proof is based on the following three inequalities:

n↑↓(z, z0) + n↓↑(z, z0) ≥ Crm, (A.34)

n↑↑(z, z0) ≥ Cm2, (A.35)

n↓↓(z, z0) ≥ 2n↓↑(z, z0)− n↑↓(z, z0). (A.36)

Hence C > 0 denotes a generic constant. By (A.34), either n↑↓(z, z0) ≥ Crm/2 or n↓↑(z, z0) ≥
Crm/2. If n↑↓(z, z0) ≥ Crm/2, then T1 ≥ Crm since n↑↑(z, z0) ≥ Cm2 by (A.35). If

n↓↑(z, z0) ≥ Crm/2 and n↑↓(z, z0) < Crm/2, n↓↑(z, z0)/n↑↓(z, z0) > 1. Then by (A.36),

n↓↓(z, z0) ≥ 2n↓↑(z, z0)− n↑↓(z, z0) and hence

n↓↑(z, z0)

1 +
n↓↑(z,z0)

n↓↓(z,z0)

≥ n↓↑(z, z0)

1 +
n↓↑(z,z0)

2n↓↑(z,z0)−n↑↓(z,z0)

>
n↓↑(z, z0)

2
.

Thus T2 ≥ Crm. The lower bound on ñ(z, z0) then follows immediately.
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We next turn our attention to proving (A.34) - (A.36). We first show (A.35). Defining n(k)
↑↑ (z, z0) =

|{(i, j) : zi = zj = k, z0i = z0j }|, observe that

n↑↑(z, z0) =
K∑
k=1

n
(k)
↑↑ (z, z0)

≥
K∑
k=1

(
nk − bk

2

)
=

K∑
k=1

(n0
k − ak)

nk − bk − 1

2
=

n

K

K∑
k=1

nk − bk − 1

2
−

K∑
k=1

ak
n0
k − ak − 1

2

=
n2

2K
− nr

2K
− n

2
− nr

2K
+
r

2
+

K∑
k=1

a2k
2

≥ n2

2K
− nr

K
− n

2
+
r

2
+

r2

2K
=

(n− r)2

2K
+
r − n

2
= Cm2 (A.37)

for some constant C > 0. The inequality in (A.37) follows since
∑
a2k is minimized at ak = r/K.

Next, we show (A.36). Observe that

n↓↓(z, z0) =
∣∣{(i, j) : zi 6= zj, z

0
i 6= z0j }

∣∣ =
∣∣{(i, j) : z0i 6= z0j }

∣∣− n↑↓(z, z0)
=

(
n

2

)
−K

(
m

2

)
− n↑↓(z, z0) =

(K − 1)K

2
m2 − n↑↓(z, z0).

The conclusion will then follow if we can show 2n↓↑(z, z0) ≤ (K−1)K
2

m2. We denote akt =

|{(i, j) : zi = t, z0i = k}|, and we fix akk = 0 for all k = 1, ...K. Then
∑K

t=1 akt = ak and there

are K − 1 non-zero terms.

n↓↑(z, z0) =
K∑
k=1

{n(k)
↓↑ (z, z0)}

=
K∑
k=1

{
(n0

k − ak)ak +

(
ak
2

)
−

K∑
t=1

(
akt
2

)}

= mr +
K∑
k=1

(−a
2
k

2
−

K∑
t=1

a2kt
2

)

≤ mr +
K∑
k=1

{
− a2k

2
− a2k

2(K − 1)

}
= mr − K

2(K − 1)

K∑
k=1

a2k (A.38)

≤ mr − r2

2(K − 1)
. (A.39)

(A.38) follows since
∑K

t=1 a
2
kt/2 is minimized at akt = ak/(K − 1) for t = 1, ..., K and t 6= k.

(A.39) follows since
∑K

k=1 a
2
k is minimized at ak = r/K for k = 1, ..., K. Observe that r 7→

mr − r2/2(K − 1) is maximized at r = (K − 1)m. Then the upper bound in (A.39) becomes

m(K − 1)m− (K − 1)m2

2
=

(K − 1)m2

2
.
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It is easy to see that 2n↓↑(z, z0) ≤ (K − 1)m2 ≤ (K−1)K
2

m2 when K ≥ 2.

We finally prove (A.34). We split the proof into two cases.

Case 1: When r/m→ 0 asm→∞, we want to show that n↑↓(z, z0)+n↓↑(z, z0) ≥ Crm. Observe

that

n↑↓(z, z0) + n↓↑(z, z0) =
K∑
k=1

{
n
(k)
↑↓ (z, z0) + n

(k)
↓↑ (z, z0)

}
≥

K∑
k=1

(nk − bk)bk +
K∑
k=1

(n0
k − ak)ak

=
K∑
k=1

(n0
k − ak)(ak + bk) = m

K∑
k=1

(ak + bk)−
K∑
k=1

(a2k + akbk),

which implies

n↑↓(z, z0) + n↓↑(z, z0) ≥ 2mr −
K∑
k=1

ak(ak + bk) ≥ 2mr −
{ K∑
k=1

ak

}{ K∑
k=1

(ak + bk)

}
= 2mr − 2r2 = 2rm(1− r/m) ≥ Crm. (A.40)

(A.40) follows from the fact that
∑K

k=1 ak(ak + bk) < {
∑K

k=1 ak}{
∑K

k=1(ak + bk)}.
Case 2: When r = am, where a is a constant that satisfies 0 < a ≤ K − 1,

n↑↓(z, z0) + n↓↑(z, z0) ≥ Crm (A.41)

for some C > 0. Observe that

n↑↓(z, z0) + n↓↑(z, z0) = (n↑(z)− n↑↑(z, z0)) + (n↑(z0)− n↑↑(z, z0))

=
K∑
k=1

(
nk
2

)
+

K∑
k=1

(
m

2

)
− 2

K∑
α=1

K∑
β=1

(
nαβ
2

)

=
K∑
k=1

(
n2
k + n0

k
2

2
)−

K∑
α=1

K∑
β=1

n2
αβ

=
K∑
α=1

[(
∑K

β=1 nαβ)2 + (
∑K

β=1 nβα)2]

2
−

K∑
α=1

K∑
β=1

n2
αβ

=
K∑
k=1

∑
a>b

nkαnkb +
K∑
k=1

∑
α>β

nαknβk. (A.42)

In the preceding display, n↑↓(z, z0) +n↓↑(z, z0) are the sum of squares of all column sums and row

sums minus the sum of squares of each term in matrix N = {nαβ : α = 1, . . . , K, β = 1, . . . , K}.
This quantity is essentially the sum of interaction terms within each column and row. The matrix

N satisfies the following requirements:

• For diagonal terms of N , we have
∑K

k=1 nkk ≥ m.
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• For all k in 1, . . . , K,
∑K

α=1 nαk = m.

For each column, if there is no term in that column which satisfies nkα ≥ Cm, from the second

requirement above, we can see that there must be at least one term nkα which satisfied nkα ≥
Cm/K. Then it is straightforward to see for each column k,

∑
α>β nαknβk ≥

Cm
K

(m − Cm
K

) ≥
Cm2/K. When r = am, it is easy to show n↑↓(z, z0) + n↓↑(z, z0) ≥ Cm2

K
K = Crm. If there is

at least one column or row in which there are more than one term that is Cm (say nk1 and nk2 are

Cm), then from (A.42) and r = am, it follows that n↑↓(z, z0) + n↓↑(z, z0) ≥ Cm2 = Crm. If

there is only one term that is Cm in all columns and rows and all other terms are o(m), one can

switch labels to make r satisfy r/m → 0 by putting all the Cm terms into diagonal terms of the

matrix N . This phenomenon is exemplified in Appendix G.2 for K = 4.

Proof of upper bound on n(z, z0): From (A.39), n↓↑(z, z0) ≤ Crm. In the following, we show

that n↑↓(z, z0) ≤ C{rm+ r2}. We proceed similar to (A.39). Observe that

n↑↓(z, z0) =
K∑
k=1

{
(n0

k − ak)bk +

(
bk
2

)
−

K∑
t=1

(
bkt
2

)}

= mr +
K∑
k=1

{
− akbk + b2k/2−

K∑
t=1

b2kt/2

}
≤ mr + Cr2 (A.43)

for some constant C > 0. Since n↑↑(z, z0) ≤ n↑(z0) and n↓↓(z, z0) ≤ n↓(z0), the upper bound for

n(z, z0) in Lemma E.1 follows.

G.2 Example in the proof of Lemma E.1

Let N = (nαβ)1≤α,β≤4 and n11 = Cm without loss of generality. A particular instance of occur-

rence of only Cm term in each of the columns and rows is the following:
Cm n12 n13 n14

n21 n22 Cm n24

n31 n32 n33 Cm

n41 Cm n43 n44


in which n11, n42, n23 & n34 are Cm and all other terms are O(m). Then if we switch the labels as

4→ 2, 2→ 3 and 3→ 4 for z, the matrix N becomes
Cm n12 n13 n14

n21 Cm n23 n24

n31 n32 Cm n34

n41 n42 n43 Cm

 .
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Then we have n↑↓(z, z0) + n↓↑(z, z0) ≥
∑K

k=1 nkk(nk − nkk) ≥ Cm
∑K

k=1(nk − nkk) = Crm.

G.3 Proof of Lemma F.1
Expressing the denominator for (A.31) in terms of B, R and m:

(2R− 1)(3− 2R)m4 − (6R− 4R2 − 1)m3 + (4− 4R)Bm2 +B(2R− 1)m−B2 + o(m3)

2m2 −m
. (A.44)

(A.44) shows that the denominator is smaller than Cm2. Since we are interested in finding a lower

bound to (A.31), we henceforth assume the denominator to be Cm2. The numerator for (A.31) is

expressed as:

(1−R)Bm2 + (R2 −R)m3 + (2R− 1)(1−R)m4 − B2

4
.

The order of the numerator is decided by the order of B, 1 − R and 1 − 2R. It is straightforward

to show B ≤ Cm2. Observe that

R =
n↑↑(z, z0) + n↓↓(z, z0)(

n
2

) =
m2 −m+

∑k
α=1(nα1 − nα2)2/2

2m2 −m
.

The minimum value for R is achieved when nα1 = nα2 for all α. Then Rmin � 0.5 − 1/4m. The

maximum value of R is achieved when
∑k

α=1(nα1 − nα2)2 is the largest. The constraint here is

at least one of nα1 and nα2 will be non-zero for all α. Also
∑k

α=1 nα1 =
∑k

α=1 nα2 = m. Under

these constraints, the maximum value will be achieved at n11 = m, n21 = ... = nk1 = 0, n12 = 0,

n22 = m− (k − 2) and there are k − 2 1’s in nα2 for α > 2. Then we have

Rmax =
m2 −m+ {(m− k + 2)2 +m2 + (k − 2)}/2

2m2 −m
� 1− k − 2

2m
+
k2 − 3k

4m2
.

Hence 1 − R ≥ Ck/m. Define a sequence ηn → 0 and mηn → ∞ as m → ∞. Define another

sequence βn, which satisfies βn → 0 and mβn → 0 as m→∞. We split into five different cases.

Case 1: If R is close to 0.5 and 1− 2R � βn or 1− 2R � Cm−1, then we show the lower bound

of (A.31) is Cm2/k. We provide the justification below.

Note that 2B =
∑k

α=1 n
2
α − (4R− 2)m2 + (2− 2R)m ≥ Cm2/k. Then observe that the first

term of (A.31) can be lower-bounded as

n↑↑(z, z0)n↑↓(z, z0)

n↑(z)
=

{∑k
α=1(n

2
α1 + n2

α2)

2
−m

}
B/2∑k

α=1(n
2
α1 + n2

α2)

2
−m+B/2

≥ C
m2

k
.

Case 2: If R is between 0.5 and 1 and both 1 − R and 1 − 2R are constants, we provide the

justification below.
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If B/m2 → 0 as m → ∞, the numerator for (A.31) is greater than Cm4. Thus we have the

lower bound for (A.31) as Cm2. If B/m2 → C as m→∞, we have the lower bound of (A.31) to

be Cm2/k from the same justification as in Case 1.

Case 3: If R is close to 1 and 1−R � ηn, we provide the justification below.

If B
m2√ηn → 0 as m → ∞, the numerator for (A.31) is greater than Cηnm4. Thus we have the

lower bound for(A.31) as Cηnm2. If B
m2√ηn → ∞ as m → ∞, we can have the lower bound of

(A.31) to be Cm2

k
or Cm2√ηn whichever is smaller, from the same justification in Case 1.

Case 4: If R is close to 1 and 1 − R � Cm−1, then we show the lower bound of numerator is

Cm−1. We provide the justification below.

If B/m → ∞ and B/(m2ηn) → C as m → ∞, we can have the lower bound of (A.31) to

be Cm2/k or Cm2ηn whichever is smaller from the same justification in case 1. If B/m → C as

m→∞, we have the lower bound of (A.31) as:

(2R− 1)(1−R)m4

(2R− 1)(3− 2R)m4/
(
n
2

) � (1− 1

3− 2R
)m2 ≥ (1− 1

1 + k−2
m

)m2 � (k − 2)m.

Case 5: If 1− R � Cm−1 when the order of B/m → C as m → ∞, the lower bound for (A.31)

is km. However, the bound for the prior ratio in (A.27) is different. If one of ni is n− k + 1, then

B/m→∞ as m→∞. If we take a look at the definition of B = 2
∑k

α=1 nα1nα2, nα1nα2/m→
C or nα1nα2/m→ 0 for all α = 1, . . . , k. Under the constraint that both nα1 and nα2 are less than

m, in order to maximize nα = nα1 + nα2, one out of nα1 and nα2 has to be c1m− c2 and the other

one has to be a constant. Then in order to find an upper bound for the prior ratio in the right-most

expression of (A.27), there are two ni’s, which are of the form of ni = m− ci, where ci is at most

of the order of k. Then

Π(z | K = k)

Π(z0 | K = 2)
=

(k − 1)!
∏k

i=1 ni!

(n+ k − 1)!
m!m!

(n+ 1)!

� (k − 1)!(m− c1)!(m− c2)!(n+ 1)!

(n+ k − 1)!m!m!

� C(k − 1)k−1/22k
√
ne−c1k(n+ k − 1)c2−c3k. (A.45)
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