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A Classical model-specific decision theory approaches for false

discovery control

Using a Frequentist perspective, Sun and Cai (2007) frame the multiple testing problem in a com-

pound decision theory framework. This thread of research considers controlling the marginal FDR,

using the fact that, under weak conditions, mFDR = E(FDR)+O(M−1/2) (Genovese and Wasser-

man, 2002). Sun and Cai (2007) note that two approaches can be taken to address the multiple

testing problem. First, one can set out with the goal of separating the non-null hypotheses from the

nulls, using a weighted classification approach. In other words, the decision rule δ is constructed

by minimizing the classification risk E[Lλ(θ, δ)], where the loss function is

Lλ(θ, δ) =
1

M

M∑
i=1

{
λ(1− θi)δi + θi(1− δi)

}
; (A.1)

here, λ > 0 is the loss attached to a false positive error (relative to a false negative error). Al-

ternatively, one can set out with the goal of discovering as many true findings as possible while

incurring a low proportion of false positive findings: in other words, find δ with the smallest false

non-discovery rate (FNR) among all rules with the FDR bounded by α ∈ (0, 1). Sun and Cai

(2007) go on to show that these two approaches are equivalent as long as a monotone likelihood

ratio condition is satisfied; that is, the optimal solution to the classification problem (where λ de-

pends on the desired α) is also optimal for the multiple testing approach, in the sense that the

classification rule yields the smallest marginal false negative rate (mFNR) among all procedures

that bound mFDR ≤ α.

Unfortunately, proofs for the optimality of all of these procedures rely on the notion of inde-

pendent hypotheses, and the optimality is called into question when the hypotheses are instead

dependent. On one hand, Benjamini and Yekutieli (2001) show that FDR is controlled at the stated

level for dependent hypotheses using either the original approach in Benjamini and Hochberg

(1995) or the adaptive procedure in Benjamini and Hochberg (2000). However, on the other hand,

Efron (2007) found that non-zero correlation between tests can result in testing procedures that

are either too conservative or too anti-conservative; Schwartzman and Lin (2011) show that the

procedure can fail to be consistent as the number of tests grows under certain types of dependence.

Sun and Cai (2009) also note that in dealing with the effects of correlation on an FDR procedure,
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the efficiency of the procedure should be the focus (not just the validity), and that failing to model

any known dependence structure can impact the optimality of the procedure. The decision rules

of Benjamini and Hochberg (1995), Benjamini and Hochberg (2000), Efron et al. (2001), and Sun

and Cai (2007) are simple, meaning that δi is a function only of Zi; i.e., δi(Z) = δi(Zi), and there-

fore symmetric, meaning that δ(τ(Z)) = τ(δ(Z)) for all permutation operators τ (Sun and Cai,

2007). It is easy to imagine that in the case of correlated hypotheses, compound decision rules (i.e.,

decision rules δ such that δi depends on the other Zj , j 6= i) are preferred in that they might be

able to identify non-nulls with a smaller signal by pooling information across tests. For example,

when hypotheses are positively correlated within a temporal or spatial domain, one would expect

that the non-null θi would appear in groups or clusters (Sun and Cai, 2009).

As a result, Sun and Cai (2009) extend the compound decision framework for multiple testing

in the presence of dependence. Specifically, modeling the unknown θi as random effects arising

from a hidden Markov model (HMM), Sun and Cai (2009) prove that the optimal classification

rule for the loss function (A.1) is of the form δi = I(Ti < tλ), where

Ti = Pξ(θi = 0|Z) (A.2)

is the so-called “oracle statistic” and ξ is a vector of all hyperparameters in the HMM. It is im-

portant to note that the derivation of (A.2) in Sun and Cai (2009) as the oracle statistic is specific

to the HMM framework. Furthermore, because the HMM satisfies a monotone likelihood ratio

condition, Ti is also the optimal statistic for the multiple testing problem, in that δi = I(Ti < tλ)

yields the smallest mFNR subject to mFDR ≤ α. The relationship between λ and α can be seen

by writing the decision rule as a step-up procedure (like Benjamini and Hochberg, 1995): first,

rank the oracle statistics T(1) ≤ · · · ≤ T(M), and find

r = max

{
j :

1

j

j∑
i=1

T(i) ≤ α

}
; (A.3)

then, reject H(1), . . . , H(r). In practice, of course, the Ti (and hence the {δi} and r) are unknown:

Sun and Cai (2009) outline a data-driven procedure that uses a plug-in estimate ξ̂ to estimate

T̂i = Pξ̂(θi = 0|Z) and therefore determine r by replacing T(i) with T̂(i) in (A.3). Since the

estimated oracle test statistic for the ith hypothesis depends on the entire vector of data, Sun and
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Cai (2009) note that the decision rule is neither simple nor symmetric.

Two recent papers by Sun et al. (2015) and Shu et al. (2015) extend the work of Sun and Cai

(2009) to provide similar results for spatial random fields and multi-dimensional Markov random

fields (MRFs), respectively. In spite of the different statistical models, in both cases the oracle

statistic is the same as (A.2) and the decision rule can be written as (A.3). However, model-specific

proofs are required to verify that (1) the classification risk is indeed minimized by δi = I(Ti < tλ),

and (2) the optimal classification (oracle) statistic satisfies a monotone likelihood ratio condition

and hence yields the smallest mFNR among all procedures with mFDR ≤ α (here, both mFNR

and mFDR are defined in a Frequentist sense). Furthermore, estimation of the oracle statistic Ti

is, of course, model-specific. Sun and Cai (2009) use random effect prediction conditional on

hyperparameter estimates: in the HMM, conditional on ξ̂, the oracle statistic can be expressed in

terms of forward and backward density variables, which can be calculated recursively. Sun et al.

(2015) also conduct random effect prediction (albeit marginalizing over hyperparameters), but,

since there is no longer an iterative formula for calculating the T̂i for a Gaussian random field, they

instead utilize the Bayesian computational framework (i.e., Markov chain Monte Carlo) as a way

to “extract information effectively from large spatial data sets” and implement their data-driven

procedure.

Both Sun and Cai (2009) and Sun et al. (2015) conduct simulation studies to verify that their

approach outperforms traditional FDR procedures (e.g., BH and AP) when simulated data arise

from the true statistical model (i.e., HMM or Gaussian random field). However, Sun et al. (2015)

also find that “the precision of [their] testing procedure shows some sensitivity to model misspeci-

fication.”

B Supplemental figures

Supplemental figures for the main text are shown in Figures B.1, B.2, B.3, B.4, B.5, and B.6.

Results for the simulation study with the larger WRAF regions (WRAF2 with M = 68) are shown

in Figures B.7, B.8, and B.9.

B.1 Main text
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Figure B.1: A comparison of the various decision criteria, for M = 100 artificially-generated
posterior probabilities clustered around zero. The triangular points are plotted on the scale of R1;
the square points are plotted on the scale of R2; the circular points are plotted on the scale of
R3. The horizontal threshold line illustrates the cutoff for all three decision criteria: R1, where
we want to make sure that fewer than 20% of our discoveries are false; R2 (which thresholds the
raw probabilities), when we have specified a false discovery to be 4 times more costly than a false
negative; and R3, where we want to make sure that we have fewer than 20 total false discoveries.
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Figure B.2: A comparison of the various decision criteria, for M = 100 artificially-generated
posterior probabilities clustered around one. The triangular points are plotted on the scale of R1;
the square points are plotted on the scale of R2; the circular points are plotted on the scale of
R3. The horizontal threshold line illustrates the cutoff for all three decision criteria: R1, where
we want to make sure that fewer than 20% of our discoveries are false; R2 (which thresholds the
raw probabilities), when we have specified a false discovery to be 4 times more costly than a false
negative; and R3, where we want to make sure that we have fewer than 20 total false discoveries.
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Figure B.3: The first four EOFs for the logit probability of a hot January over 1959-2014, for the
factual scenario.
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Figure B.4: The first four EOFs for the logit probability of a hot January over 1959-2014, for the
counterfactual scenario.
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Scheme 2: (approximately 50% true rejections)
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Figure B.5: Mean loss using theR2 criteria, aggregated over theNrep = 100 replicates, for schemes
1, 2, and 3. Note that the x-axis in each subgrid corresponds to the different methods/fitted models.
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Scheme 1: approximately 85% true rejections
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Scheme 2: approximately 50% true rejections
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Figure B.6: Mean FD and FN using the R3 criteria, aggregated over the Nrep = 100 replicates, for
schemes 1, 2, and 3. Note that the x-axis in each subgrid corresponds to the different methods/fitted
models. The target of γ = 0.1M = 23.7 is plotted for FD.
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B.2 Results from simulation study with M = 68 regions
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Figure B.7: Mean FDR and power using the R1 criteria for the WRAF2 regions (M = 68),
aggregated over the Nrep = 100 replicates, for schemes 1, 2, and 3. The target of α = 0.1 is
plotted for FDR.
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Scheme 1: (approximately 85% true rejections)
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Scheme 2: (approximately 50% true rejections)
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Scheme 3: (approximately 15% true rejections)

Figure B.8: Mean loss using the R2 criteria for the WRAF2 regions (M = 68), aggregated over
the Nrep = 100 replicates, for schemes 1, 2, and 3.
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Scheme 1: approximately 85% true rejections
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Figure B.9: Mean FD and FN using the R3 criteria for the WRAF2 regions (M = 68), aggregated
over the Nrep = 100 replicates, for schemes 1, 2, and 3. The target of γ = 0.1M = 6.8 is plotted
for FD.
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C Centered parameterization for the skew-t distribution

Note: the parameter symbols used in this section do not correspond to the symbols used in the

main draft of the text.

Azzalini and Capitanio (2003) introduced the skew-t family of distributions, with probability den-

sity function

fST (y; ξ, ω, α, ν) =
2

ω
tν

(
y − ξ
ω

)
Tν+1

(
α(y − ξ)

ω

√
ν + 1

ν + (y − ξ)/ω

)
, (C.1)

where tν and Tν denote the probability density and cumulative distribution function, respectively,

of a standard t distribution with ν degrees of freedom. In (C.1), ξ ∈ R is a location parameter,

ω ∈ R+ is a scale parameter, α ∈ R controls the skewness, and ν ∈ R+ controls the tail behavior.

Unfortunately, as noted by Arellano-Valle and Azzalini (2008) (and others), using the “direct”

parameterization θD = (ξ, ω, α, ν) has both theoretical and practical problems: for example, the

likelihood behaves strangely for a neighborhood of α = 0, in that the profile likelihood for α has

a stationary point at 0. Furthermore, at α = 0, the expected Fisher information is singular, even

though all of the parameters are identifiable. In practical terms, this means that the parameter

estimates (especially ξ and ω) can trade off with one another to give qualitatively similar results

for an individual data set.

To address this problem, Arellano-Valle and Azzalini (2008) discuss a “centered” parameter-

ization (for the skew-normal distribution; a corresponding result holds for the skew-t), originally

introduced by Azzalini and Capitanio (2003). Instead of θD, the centered parameterization involves

θC = (µ, σ, δ, ν), where

µ = ξ + ω
√

2/π
α√

1 + α2
, −∞ < µ <∞,

σ = ω

√
1− 2

π

α2

1 + α2
, 0 < σ <∞,

and

δ =
α√

1 + α2
, −1 < δ < 1,
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with inverse transformations

ξ = µ− σ√
1− 2

π
δ2

√
2/πδ, ω =

σ√
1− 2

π
δ2
, α =

δ√
1− δ2

. (C.2)

(Note: ν is the same in both parameterizations.) Using θC avoids the problems associated with θD;

in practice, the likelihood associated with θC is given by (C.1), after substituting in (C.2).

D Prior specification for the parametric Bayesian models

In general, the priors used for all parameters will be proper but diffuse, with fixed hyperparameters.

The details for each model are as follows; all of the priors below are for both k ∈ {F,C}.

M1 Beta-binomial, independent across regions

The only parameters in M1 are the probabilities themselves, which have already been assigned

beta priors. The hyperparameters are set to ap = bp = 1, i.e., the probabilities are given an uniform

prior.

M2 Exchangeable Gaussian prior

The parameters in M2 are the scenario-specific mean µk and variance τ 2k , with priors

µk ∼ N(0, 102), τk ∼ U(0, 100),

where N(a, b) is the Gaussian distribution with mean a and variance b and U(c, d) is the uniform

distribution on the interval (c, d).

M3 Exchangeable skew-t prior

Following Arellano-Valle and Azzalini (2008), M3 involves the scenario-specific “centered” pa-

rameters (see Appendix C) location µk, scale σk, skewness δk, and degrees of freedom νk. The

prior distributions used are

µk ∼ N(0, 102), σk ∼ U(0, 100), δk ∼ U(−1, 1), 1/νk ∼ U(0, 1).
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M4 CAR prior

The parameters in M4 are the scenario-specific mean µk and variance τ 2k ; however, because the

CAR prior is improper, we fix µk = 0 (see Appendix E). As before, τk ∼ U(0, 100).

M5 Hybrid CAR/exchangeable prior

The parameters in M5 are the scenario-specific mean µk, variance τ 2k , and mixture parameter λk,

with priors

µk ∼ N(0, 102), τk ∼ U(0, 100), λk ∼ U(0, 1).

M6 Gaussian process prior

The parameters in M6 are the scenario-specific mean µk, variance τ 2k , and spatial “range” parameter

φk, with priors

µk ∼ N(0, 102), τk ∼ U(0, 100), φk ∼ U(0, cφ),

where cφ = (1/2)max{||si− sj||}, since the range of the Gaussian process would not be expected

to exceed one-half of the maximum distance between the region centroids. Note that the smooth-

ness parameter for the Matérn correlation function will be considered fixed, at 0.5 (corresponding

to an exponential correlation function).

M7/M8/M9 EOF-based structure with a Gaussian prior for a fixed number of coefficients

The parameters in these three models are the scenario-specific mean µk, EOF coefficients αk, scale

σk, skewness δk, and degrees of freedom νk. As with the robust nonparametric Bayesian model,

µk ∼ N(0, 102), σk ∼ U(0, 1002), δk ∼ U(−1, 1), 1/νk ∼ U(0, 1).

In a more standard approach, the EOF coefficients (across p = 30, p = 10, and p = 50) now have

an exchangeable Gaussian prior:

αkl
iid∼ N(0, σ2

α), l = 1, . . . , p,

where σα ∼ U(0, 100).
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E Markov chain Monte Carlo

The posterior distribution for each of the hierarchical models M2-M9 and RNB is not available in

closed form, so we resort to Markov chain Monte Carlo (MCMC) methods to obtain samples from

the joint posterior distribution for each model. All models are fit using the nimble software for

R (de Valpine et al., 2017). While the MCMC is straightforward for RNB, M2, M3, M5, M6, M7,

M8, and M9 (using standard Gibbs sampling with Metropolis Hastings steps), model M4 requires

an adjustment to the standard MCMC (see the next section). The code used to fit these models are

available in the online reproducibility documents.

E.1 Computational details for the CAR parameterization

Recall that computation for the CAR model is hindered by the fact that the intrinsic CAR prior

is improper. This results in two problems: first, the random effects are identifiable only up to an

additive constant; second, the CAR prior is undefined for the full random effects vector. While

more sophisticated solutions to the first problem are possible, for the purposes of this work we

simply set µk = 0 to fix the identifiability problem.

Rue and Held (2005) outline steps to address the second problem. The CAR prior is

p(βk|Qk, τ
2
k ) ∝

∣∣τ−2k Q
∣∣1/2 exp{−1

2
β>kQkβk

}
;

however, the rank of Q is M − 1 (1>Q = 0), so the determinant
∣∣τ−2k Q

∣∣ = 0. While the CAR

prior is improper for an M -dimensional space, it is proper for a (M − 1)-dimensional subspace.

Following Rue and Held (2005), the prior contribution to the posterior is actually

p̃(βk|Qk, τ
2
k ) = (2πτ 2k )

− (M−1)
2

(
M−1∏
i=1

λki

)1/2

exp

{
−1

2
β>kQkβk

}
,

where {λki : i = 1, . . . ,M − 1} are the non-zero eigenvalues of Qk.
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F Further details on the simulation study

F.1 Simulation scheme for each true state

The six true states used as population distributions for the simulation study are listed in Table 1 of

the main text. The actual sampling procedure for each true state is now outlined.

First, for the Gaussian random effects (G-RE), the logit probabilities are simply draws from a

Gaussian distribution:

logit(pk)
iid∼ N(mk, v

2
k).

Next, for the gamma random effects (NG-RE), the logit probability anomalies (i.e., deviations from

the means mk) are draws from a shifted gamma distribution:

logit(pk)
iid∼ G(ak, bk)− ck,

where ak and bk are the shape and scale parameters, respectively. The Gaussian process samples

(GP-S and GP-L) are first drawn collectively from

logit(pk) ∼ NM(mk1M ,S),

where the elements of S are Sij = v2kMgk(||si − sj||/rk) (whereMg(·) is the Matérn correlation

function and si is the centroid of region i) and then centered to have an empirical mean of zero.

It is slightly less straightforward to generate samples from EOF-G and EOF-NG, especially

because the generated data needs to have properties comparable to the other simulations (in terms

of the correct proportion of true rejections and empirical variance of the true log risk ratio). The

following (somewhat complicated) scheme made this possible (the k subscript has been omitted).

1. For j = 1, . . . , p (where we use p = 30 basis functions for the “truth”), draw αj ∼ N(0, s2j).

2. Draw xj
iid∼ N(0, v2) (for EOF-G) or xj

iid∼ k[G(b, c)− d] (for EOF-NG).

3. Calculate the probabilities as p = logit−1
[
m1M +Ha+ x

]
.
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F.2 Fixed hyperparameter values for the true states

Tables F.1-F.5 contain the fixed hyperparameters used to sample draws from the fixed population

distributions across the Nrep replicates. The values were determined after trial and error, and were

set according to two criteria: first, that the true proportion of rejections would match up with the

corresponding scheme, and second, that the variance of the true log risk ratio (empirically, over

many replicates) would be approximately 0.9.

Table F.1: Fixed hyperparameter values used for simulations from the Gaussian random effects
(G-RE), across Schemes 1–3.

Scheme 1 Scheme 2 Scheme 3
mC logit(0.08) logit(0.08) logit(0.08)
mF logit(0.03) logit(0.08) logit(0.19)

v2C , v2F 0.722 0.742 0.7752

Table F.2: Fixed hyperparameter values used for simulations from the shifted gamma random
effects (NG-RE), across Schemes 1–3. Note: a is the shape parameter and b is the scale parameter.

Scheme 1 Scheme 2 Scheme 3
mC logit(0.08) logit(0.08) logit(0.08)
mF logit(0.03) logit(0.08) logit(0.18)

aC , aF 4 3.75 3.5
bC , bF 0.375 0.4 0.4286
cC , cF 1.5 1.5 1.5
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Table F.3: Fixed hyperparameter values used for simulations from the spatial Gaussian process
effects (GP-S and GP-L), across Schemes 1–3. Note: the distances in R3 are re-scaled to have a
maximum of 1 unit.

Scheme 1 Scheme 2 Scheme 3
mC logit(0.08) logit(0.08) logit(0.08)
mF logit(0.03) logit(0.08) logit(0.18)

v2C , v2F 0.6 0.6 0.6
rC , rF (short) 0.06 0.06 0.06
rC , rF (long) 0.10 0.10 0.10

gC , gF 2 2 2

Table F.4: Fixed hyperparameter values used for simulations from the EOF effects with Gaussian
discrepancy (EOF-G), across Schemes 1–3.

Scheme 1 Scheme 2 Scheme 3
mC logit(0.08) logit(0.08) logit(0.08)
mF logit(0.03) logit(0.08) logit(0.19)

s2j , j = 1, . . . 5 3.52 3.52 3.52

s2j , j = 5, . . . 10 12 12 12

s2j , j = 10, . . . 30 0.052 0.052 0.052

v2C , v2F 0.012 0.012 0.012

Table F.5: Fixed hyperparameter values used for simulations from the EOF effects with gamma
discrepancy (EOF-NG), across Schemes 1–3.

Scheme 1 Scheme 2 Scheme 3
mC logit(0.08) logit(0.08) logit(0.08)
mF logit(0.03) logit(0.08) logit(0.19)

s2j , j = 1, . . . 5 3.52 3.52 3.52

s2j , j = 5, . . . 10 12 12 12

s2j , j = 10, . . . 30 0.052 0.052 0.052

kC , kF 0.02 0.02 0.02
bC , bF 5 5 5
cC , cF 0.4 0.4 0.4
dC , dF 2 2 2
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