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Here are presented in details mathematical formulations and algorithms for the eikonal and Snell-

Descartes ray tracing methods.

1 Eikonal equation

1.1 Formulation
The fundamental relation of underwater acoustics is the eikonal equation, linking the wavefront of the

emitted rays set with an equal phase ¢, thus an equal propagation time 7.
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s is the arc length of the ray. By definition, V¢ is perpendicular to the wavefront, so :
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Then we differentiate this expression along s for each component x; of x.
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So we have for each component :
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We substitute the sound speed ¢(x) by his reciprocal, the sound slowness o(x) so as o(x) = o)
o t dt
We can also define the sound slowness as a vector o = |o,|. Because o = 1 and o, = 10 Ve have
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The final set of differential equations to be solved is :
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1.2 Solving Methods

Here are described the different methods used to solve the set of differential equations above.

1.2.1 Euler method

The Euler Method is the simplest ODE resolution method existing. With a stepwise approach, new values

at point s+h can be obtained using values and their derivatives at point s, where h is the step of integration
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1.2.2 Runge-Kutta 4 (RK4) method

The main idea of Runge-Kutta method is to dispatch the points where f is evaluated between s and s + h
to gain in precision. The method is called a fourth-order one, meaning that the total accumulated error is
order O(h%).

Knowing Y; at point s, values Y;y1 at point s + h may be determined using the following formulas
(Butcher, 1963) :

Yiii(s+h) = Yi(s) + % - (k1 + 2ks + 2ks + ki) (22)
where :
ki = dz’;s(s) (23)
ko = f (Yi,) with Yi, = Yi(s) + g K (24)
ks = f (Yi,) with Yi, = Yi(s) + g ks (25)
ky =f(Yy,) with Yy, =Yi(s) +h-ks (26)

We also implement the simpler Order 2 Runge-Kutta Method, in order to compare the differences
between both methods.

1.2.3 Adaptive Runge Kutta Integration, the Fehlberg method

The aim of an adaptive method is to validate the stability of the ODE solving, by estimating two forward
steps with a different order, and use them to find the optimal step for the next iteration. It allows a stable

final result with a minimum number of iterations, thus a reduced processing time.

Here we describe the Runge-Kutta-Fehlberg (RKF45) (Fehlberg, 1969), which estimates a forward step
Y1 of order 4, and a second one Yiﬂ of order 5, along with an optimized step.
We have :
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the step h is adapted using the following algorithm. We first determine two coefficients R and ¢ :

1 -

R=[Yir1 = Yin] (35)
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If R < e we keep S?Z-H as the step solution, and the next solution will be determined using the step size
0 h.

If R > e another step solution shall be determined, using d - h as step size.

We have also implemented the Cash-Karp method (RKCK) (Cash and Karp, 1990) and Dormand-Prince
method (RKDP) (Dormand and Prince, 1986), based on the same principle, but with different coefficients,
in order to compare the effective differences between those adaptive methods.

1.3 Implementation of the eikonal method direct problem solver

The implementation of a direct problem solver for an eikonal ray tracing is described in algorithm 1.

2 Snell-Descartes’s Law

With the hypothesis of a horizontally layered ocean like described in section 2 of the article, meaning
that there is only a sound speed gradient along the z axis, the problem may be simplified using a radial
symmetry, so the planimetrics components  and y becomes equivalent to a radial component r. Hence,
the azimuthal angle ¢ becomes superfluous, thus the propagation direction can only be described with a

unique dip angle 6(s).

2.1 Formulation

Starting from the equations 10, we have :
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This relation, linking the incident angle with the sound speed is known as the Snell-Descartes law.

The constant k, called the ray parameter, only depends on the sound speed in the water column and

0
COCS(O()O)' This approach is used in the GNSS/A technique

the initial emission angle, and we have k =

(Chadwell and Sweeney, 2010).



Algorithm 1 Algorithm used to solve the eikonal method direct problem

1+ 0

sop« 0

hnew A hO

Yo = ['x57y57257

end of path < false

border zone < false

change direction < false

while notend of path do
if s; + Pnew > Smaz then

cos B cos g cos By sin g sin Oy ]
co ’ co ? ¢

h; = ||5m(zm - 51”

else if border zone then
hi = S;

else
hi = hnew

end if

if change direction then
change direction < false
border zone < false
end if
good step < false
while notgood step do
Y new, hnew < Integration Function(Y;, s;, h;)
if Zin < Znew < Zmaz then
good step < true
break
else if change direction then
good step < true
break
else
border zone < true
if h; = H[last element| then
if Zpew > Zmaz then
h; = Zmaz — %i
CiO 4
change direction < true
else if 2,0 > Zmasr then
h; = Zmin — Zi
Ci0y
change direction < true
end if
else if h; in Hlast element] then
h; < H[next element]
else
h; < H|[first element]
end if
end if
end while
Yi—i—l — Ynew
Siy1 < 8+ hy
if ||si+1 — Smaz|| < 107% then
end of path < true
end if
14 1+1
end while




Direct problem In the case of a discretized SSP ¢(z), the water column may be divided in layers of

depth [z;, zi+1]. In each layer i a sound speed gradient may be defined.

~de(z)  cip1—c

7

9(2) =
In the layer ¢, the sound speed variation is ¢ :

c(z)=ci+9g(z—z)
The equation 41 leads directly to the relation :

dc=gdz

And differencing the relation 40 gives :

2.1.1 Ray progression into a layer

Taking account of the identity sin? z 4 cos? x = 1, we have :
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The spatial propagation along the radial component r is :
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The length of the ray path s in the layer ¢ is :
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If k2¢%(2z;11) > 1 (leading to cos @ > 1, which is impossible), then the direction of propagation is inverted

along z, and the previous equations become (Hovem, 2013) :
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Finally, the total propagation time, the total radial propagation distance, and the total path length are

the sum of each parameter in each layer.

T:iATZ‘ fr:iAn SZiASi (59)

If we use the propagation time ¢,,4, as the stop parameter, we need to determine the sound speed c;,

in the last layer at 7, to have 7 = Z?‘l AT; + ATy, It is given by :

ele(z (1 + \/ (ke(zi) — 1) (ke(z) + 1))
k2 (e!9)? 2(z;) + 2 + 2/ — (ke(zi) — 1) (ke(zi) + 1) — k2c2(z;)

We can also use a maximum depth z,,4, as a stop parameter. In this case, the sound speed is “cut”

(60)

CTn

at the depth 2,4, the corresponding sound speed is given by ¢(zmaz) = 9(Zmaz) - (Zmaz — 2i), and a ray
tracing is performed in the whole water column.
2.2 Implementation of the Snell-Descartes method direct problem solver

The implementation of a direct problem solver for a Snell-Descartes ray tracing is described in algorithm
2.



Algorithm 2 Algorithm used to solve the Snell-Descartes method direct problem

a <— 907maas,im't = 88°

b« QO,min,im't =0°

Tstop < 10°

€+ 10°

Ar < ||rg —rg]|

while € > ¢,,;, do
TRa < [ (rs,C,a,zR)
TRy < f(rs, C,b, 2R)
OTR,q < TRa — AT
O0rRp TRy — AT

a—>b
C%a—i-&”}g’a
(57“37,1—57"371)
b« a
a<—c

Tstop < TR,a
€ < | AT — Tsp0p]
end while
90 —C
TR, T,S < f(rs,C,00,2R)

3 Comparison of the different eikonal ray tracing methods



3.1 Direct problem

Eikonal raytracings vs Snell-Descartes raytracing as reference
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Figure 1: Direct ray tracing using the eikonal method compared to the Snell-Descartes one depending on
integration steps h and different initial parameters (emission angle equal to 40 °and 80°, and maximum
depth equal to 500 m and 3000 m).
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3.2 Inverse problem
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