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S1 MCMC simulation

We perform MCMC simulation for the models described in § 3 using the probabilistic pro-

gramming language Stan (Carpenter et al., 2017). We expect the mean function parameters

µ0 and µb, the Gaussian Process hyperparmeters η, ρ−1, and σ, and the negative binomial

over-dispersion φ−1 parameter to be at least somewhat correlated and not strongly iden-

tified, corresponding to significant curvature in the model posterior. Hamiltonian Monte

Carlo (HMC) is a particularly effective sampling strategy for posteriors with this property

(Betancourt and Girolami, 2015). Stan’s NUTS sampler performs full joint Bayesian esti-

mation of all parameters using HMC. The αρ and βρ hyperparameters of the ρ−1 hyperprior

distribution are fixed as described in § 3.1, but otherwise all parameters are sampled using

joint transitions to efficiently explore correlations between the parameters.

We typically fit 8 independent chains of length 2000 iterations (following an equal

number of NUTS warmup samples) in parallel using Stan and observe a typical execution

time of 1 min. However, in order to obtain the high resolution 2D posterior histograms

used in this work, we run a larger simulation of 20 chains of 4000 samples each. To optimize

the performance of the posterior simulation under the Stan modeling language, we use the

Cholesky factor transformed implementation of the normal distribution to calculate the

likelihood. We use the cov exp quad function in Stan to implement the squared exponential

covariance function, and we rescale ρ−1 by 2−1/2 to accommodate the difference between

this implementation and our definition in § 3. We use a non-centered parameterization (see

e.g. Papaspiliopoulos et al. 2003) for the Gaussian process, modeling the latent parameter

ỹ as standard normal and then transforming to a sampled value for y by rescaling by the

covariance matrix.

The MCMC trace shown in Figure S1 illustrates the high independence of samples

achieved after the NUTS algorithm warm-up period, and the low variance in sampling

distributions between chains.

While we chose the negative binomial to permit overdispersion in the annualized mass

shooting rate beyond counting noise, as Figure S1 shows, the data provides strong evidence

for small values of φ−1, consistent with Poisson noise.

We assess MCMC convergence quantitatively using the Gelman-Rubin convergence di-
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Figure S1: Traceplot showing the sequence of MCMC samples for the hyperparameters

for the Gaussian process – η2, which scales the strength of the covariance; ρ−1, which

scales the timescale; and σ2, which sets the baseline level of variance–as well as the linear

mean function–µ0, the offset; µb, which sets the slope; and NB−1
φ , which controls the

overdispersion of the count data. The left panel shows the trace from the model with the

strong prior on ρ−1 and the right side shows the model with the weak prior. The vertical

lines divide individual chains from the MCMC simulation.
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agnostic, R̂, a comparison of within- to between-chain variance. As shown in Figure S2, we

find that R̂ � 1.05 for all parameters, indicating a negligible discrepancy in the sampling

distributions between chains. This holds for both models.

We perform a posterior predictive check by visualizing in Figure S3 the sampled values

of z. The simulated data from this check realizes both a draw from the latent Gaussian

process for the public mass shootings rate and the overdispersed counting noise of the

negative binomial distribution. Visual inspection suggests that the observations simulated

under the model show similar variation over time as the actual observations (first panel).

We note that some realizations have annual counts at the later end of the modeled time

range that exceed the largest observed annual count (7 public mass shootings). Some

exceedence is expected given the counting noise, but this posterior predictive check could

guide revision of the prior on the over-dispersion parameter or the choice of the negative

binomial likelihood.

We note that the parameters of the linearized mean function are highly correlated, as

shown in Figure S4. If the mean rate of public mass shootings at the beginning of the time

series (µ0) is inferred to be higher, then the increase in the mean function over time needed

to explain the observations (µb) would be lower. However, at all probable values of µ0, the

distribution of µb is predominantly positive.
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Figure S2: Comparison of the Gelman-Rubin convergence diagnostic, R̂, across parameters

for the models with strong (filled circles) and weak (open circles) priors on the timescale

parameter ρ−1. For the multi-valued latent parameters for the occurrence rate at the

observed and interpolated points, y1 and y2 respectively, error bars are drawn to show the

90% interval of the distribution, though they are typically smaller than the marker size.
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Figure S3: Posterior predictive check for the model with the strong prior on ρ−1
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Figure S4: Two dimensional slice of the posterior distribution of the model with the strong

prior on ρ−1. The binned density of the posterior samples for the mean function intercept

(µ0) is compared to the mean function slope (µb) parameter.
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