Supplementary materials for "cmenet $-$ a new method for bi-level variable selection of conditional main effects"

SIMON MAK and C. F. JEFF WU

Georgia Institute of Technology

March 1, 2018

Contents

1 Proofs of technical results

1.1 Proof of Theorem 1

The proof of this requires a simple lemma on normal orthant probabilities:

Lemma 1. (Stuart and Ord, 1994) Let (X_1, \dots, X_p) follow the equicorrelated normal distribution, with $\mathbb{E}(X_j) = 0$, $\mathbb{E}(X_j^2) = 1$ and $\mathbb{E}(X_j X_k) = \rho$ for all $j \neq k$, and let $p_m = \mathbb{P}(X_1 > 0, \dots, X_m > 0)$. Then:

$$
p_2 = \frac{\sin^{-1}\rho}{2\pi} + \frac{1}{4}
$$
 and $p_3 = \frac{3\sin^{-1}\rho}{4\pi} + \frac{1}{8}$.

For the main proof, note that each row of the latent matrix \mathbf{Z} is i.i.d., so it suffices to fix $n = 1$ and explore the correlation amongst the scalar ME quantities $\tilde{x}_{1,A}$ and CME quantities $\tilde{x}_{1,A|B+}$. We denote these as \tilde{x}_A and $\tilde{x}_{A|B+}$ for brevity. Under the latent equicorrelated distribution $\mathcal{N}\{\mathbf{0}, \rho \mathbf{J} + (1 - \rho)\mathbf{I}\}\$, it is easy to show that $\mathbb{E}[\tilde{x}_A] = 0$ and $\text{Var}[\tilde{x}_A] = 1$. Moreover, the CME $\tilde{x}_{A|B+}$ can be conditionally decomposed as $\tilde{x}_{A|B+} \stackrel{d}{=} R[2p_2]$ if $\tilde{x}_B = +1$, and 0 if $\tilde{x}_B = -1$, where R[q] is the Rademacher random variable taking on +1 w.p. $q \in [0, 1]$ and -1 otherwise. From this, we get:

$$
\mu_c \equiv \mathbb{E}[\tilde{x}_{A|B+}] = \mathbb{E}[\mathbb{E}[\tilde{x}_{A|B+}|\tilde{x}_B]] = \frac{1}{2}(4p_2 - 1),
$$

$$
\sigma_c^2 \equiv \text{Var}[\tilde{x}_{A|B+}] = \text{Var}[\mathbb{E}[\tilde{x}_{A|B+}|\tilde{x}_B]] + \mathbb{E}[\text{Var}[\tilde{x}_{A|B+}|\tilde{x}_B]] = \frac{1}{2} - \left(\frac{\sin^{-1}\rho}{\pi}\right)^2.
$$

Consider the correlation between the MEs \tilde{x}_A and \tilde{x}_B . Note that $\tilde{x}_A \tilde{x}_B$ equals $+1$ when \tilde{x}_A and \tilde{x}_B have the same sign, and equals -1 otherwise. Letting $\mathbb{P}(++)$ be the probability of $(\tilde{x}_A, \tilde{x}_B) = (+1, +1)$ (with similar notation for $+-$, $-+$ and $--$), Lemma 1 then gives:

$$
Corr(\tilde{x}_A, \tilde{x}_B) = [\mathbb{P}(++) + \mathbb{P}(++)] - [\mathbb{P}(+-) + \mathbb{P}(-+)\] = 2p_2 - 2[1/2 - p_2] = \frac{2\sin^{-1}\rho}{\pi}.
$$

Next, consider the two sibling CMEs $\tilde{x}_{A|B+}$ and $\tilde{x}_{A|C+}$. Note that $\tilde{x}_{A|B+}\tilde{x}_{A|C+}$ equals $+1$ when both $\tilde{x}_B = +1$ and $\tilde{x}_C = +1$, and equals 0 otherwise. It follows that:

$$
Corr(\tilde{x}_{A|B+}, \tilde{x}_{A|C+}) = \frac{1}{\sigma_c^2} [\mathbb{P}(++) - \mu_c^2] = \frac{1}{\sigma_c^2} [p_2 - \mu_c^2] = \frac{1}{\sigma_c^2} \left\{ -\left(\frac{\sin^{-1}\rho}{\pi}\right)^2 + \frac{\sin^{-1}\rho}{2\pi} + \frac{1}{4} \right\}.
$$

The correlation for parent-child pairs can be proved in an analogous way.

Consider now the two cousin CMEs $\tilde{x}_{B|A+}$ and $\tilde{x}_{C|A+}$. Note that $\tilde{x}_{B|A+}\tilde{x}_{C|A+}$ equals $+1$ when $\tilde{x}_A = +1$ and $\tilde{x}_B = \tilde{x}_C$, $\tilde{x}_{B|A+}\tilde{x}_{C|A+}$ equals -1 when $\tilde{x}_A = +1$ and $\tilde{x}_B \neq \tilde{x}_C$, and equals 0 otherwise. We then have:

$$
Corr(\tilde{x}_{B|A+}, \tilde{x}_{C|A+}) = \frac{1}{\sigma_c^2} \left[\{ \mathbb{P}(+++) + \mathbb{P}(+--) \} - \{ \mathbb{P}(++-) + \mathbb{P}(+-) \} - \mu_c^2 \right]
$$

=
$$
\frac{1}{\sigma_c^2} \left[\{ \mathbb{P}(+++) + (\mathbb{P}(--) - \mathbb{P}(---)) \} - 2 \{ \mathbb{P}(++) - \mathbb{P}(+++) \} - \mu_c^2 \right]
$$

=
$$
\frac{1}{\sigma_c^2} [2p_3 - p_2 - \mu_c^2] = \frac{1}{\sigma_c^2} \left\{ - \left(\frac{\sin^{-1} \rho}{\pi} \right)^2 + \frac{\sin^{-1} \rho}{\pi} \right\}.
$$

1.2 Proof of Theorem 2

Let $\mathbf{X} \in \mathbb{R}^{n \times p'}$ be the normalized model matrix consisting of all main effects and CMEs, where $p' = p + 4\binom{p}{2}$ $_{2}^{p}$). By the strong law of large numbers, the sample covariance matrix $\mathbf{C}_n = \mathbf{X}^T \mathbf{X}/n$ converges elementwise to some matrix $\mathbf{C} \in \mathbb{R}^{p' \times p'}$ with unit diagonal entries and off-diagonal entries given in Theorem 1. Consider the following block partition of $\mathbf{C} =$ $\sqrt{ }$ $\left\lfloor \right\rfloor$ \mathbf{C}_{11} \mathbf{C}_{12} C_{21} C_{22} \setminus , where \mathbf{C}_{11} is the block for the active set \mathcal{A} , and \mathbf{C}_{22} the block for the remaining variables. Zhao and Yu (2006) proved that the LASSO is sign-selection consistent only when the (weak) *irrepresentability condition* holds: $\forall \zeta \in \{-1, +1\}^{p'}$, $|\mathbf{C}_{21}\mathbf{C}_{11}^{-1}\zeta| < 1$ (this is a slight simplification of the original condition under the current i.i.d. setting). Hence, sign-selection inconsistency can be proven if $\exists \zeta \in \{-1, +1\}^{p'}$ and an inactive effect

j satisfying:

$$
|\mathbf{C}_{21,j}\mathbf{C}_{11}^{-1}\boldsymbol{\zeta}| \ge 1, \quad \text{where} \quad \mathbf{C}_{21,j} \text{ is the row corresponding to effect } j. \tag{1}
$$

Consider first a model with only $q \geq 3$ active siblings of the form $A|B_+, A|C_-, ...,$ A|R−. Using the same principles as in Theorem 1, C_{11} can be shown to be a $q \times q$ matrix with unit diagonal, $[(1/2 - p_2) - \mu_c^2]/\sigma_c^2$ for off-diagonal entries in the first row and column, and $\psi_{sib}(\rho)$ for all other off-diagonal entries ¹. Letting A be the inactive effect, we have $\mathbf{C}_{21,A} = \psi_{pc}(\rho) \mathbf{1}_q^T$, and letting $\boldsymbol{\zeta} = \mathbf{1}_q$, it follows that $|\mathbf{C}_{21,A}\mathbf{C}_{11}^{-1}\boldsymbol{\zeta}| \ge 1$ for $\rho \ge 0$. By (1), part (a) is proven.

Next, consider a model with only $q = 2$ active main effects, say, A and $-B$. From Theorem 1, \mathbf{C}_{11} is a $q \times q$ matrix with unit diagonal and $-\psi_{me}(\rho)$ on the off-diagonals. Let $A|B$ be the inactive effect, so $\mathbf{C}_{21,A|B-} = (\psi_{pc}(\rho), \tilde{\psi}(\rho))$. Taking $\boldsymbol{\zeta} = (1,1)^T$, $|\mathbf{C}_{21,A|B-}\mathbf{C}_{11}^{-1}\boldsymbol{\zeta}| \ge 1$ for $\rho \geq 0.27$, thereby proving selection inconsistency.

Lastly, consider a model with only $q \ge 6$ active cousins of the form $B|A|$, $C|A-$, ..., R|A−. Using the same principles as in Theorem 1, C_{11} is a $q \times q$ matrix with unit diagonal, $-\mu_c^2/\sigma_c^2$ for the off-diagonal entries in the first row and column, and $\psi_{cou}(\rho)$ for all other off-diagonal entries. Let B be the inactive effect with $\mathbf{C}_{21,B} = (\psi_{sib}(\rho), \tilde{\psi}(\rho) \mathbf{1}_{q-1})$. Taking $\zeta = \mathbf{1}_q$, $|\mathbf{C}_{21,B} \mathbf{C}_{11}^{-1} \zeta| \ge 1$ for $\rho \ge 0.29$, which proves inconsistency.

1.3 Proof of Proposition 1

As a note, since the objective $Q(\boldsymbol{\beta})$ is non-differentiable at $\boldsymbol{\beta} = \mathbf{0}$, what we mean by strict convexity here is that $\nabla^2_{\mathbf{u}}Q(\boldsymbol{\beta})$, the directional Hessian of $Q(\boldsymbol{\beta})$ in direction **u**, is positivedefinite for all β and all $\|\mathbf{u}\| = 1$. We follow a similar approach as Proposition 1 of Breheny (2015). Note that $\nabla^2 \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 = 2\mathbf{X}^T\mathbf{X}$. Moreover, with $\eta'_{\lambda,\tau}(\theta) = \lambda \exp(-\theta \tau/\lambda)$ and

 $1\psi_{me}(\rho), \psi_{sib}(\rho), \psi_{pc}(\rho)$ and $\psi_{cou}(\rho)$ are the pairwise correlations in Theorem 1 for main effects, siblings, parent-child pairs and cousins, respectively. $\tilde{\psi}(\rho) = \sin^{-1}(\rho)/(\pi \sigma_c)$ is the pairwise correlation between a CME and its conditioned effect.

 $\eta''_{\lambda,\tau}(\theta) = -\tau \exp(-\theta \tau/\lambda)$, one can show that $\nabla^2_{\mathbf{u}} P_s(\mathbf{\beta}) \geq -\tau(1) + \lambda(-1/(\lambda \gamma)) = -\tau - 1/\gamma$ and similarly $\nabla_{\mathbf{u}}^2 P_c(\boldsymbol{\beta}) \ge -\tau - 1/\gamma$, for all **u** and $\boldsymbol{\beta}$. Hence:

$$
\nabla_{\mathbf{u}}^2 Q(\boldsymbol{\beta}) = \nabla_{\mathbf{u}}^2 \left\{ \frac{1}{2n} ||\mathbf{y} - \mathbf{X}\boldsymbol{\beta}||_2^2 + P_s(\boldsymbol{\beta}) + P_c(\boldsymbol{\beta}) \right\} \ge \frac{\lambda_{min}(\mathbf{X}^T \mathbf{X})}{n} - 2\left(\tau + \frac{1}{\gamma}\right) \text{ for all } \mathbf{u} \text{ and } \boldsymbol{\beta},
$$

which is strictly positive when $\tau + 1/\gamma < \lambda_{min}(\mathbf{X}^T\mathbf{X})/(2n)$. The second part of the claim follows by replacing **X** with \mathbf{x}_j in the argument above, and using the fact that $\|\mathbf{x}_j\|_2^2 = n$.

1.4 Proofs of Theorem 3 and Corollary 1

The majorization claim a) follows from a first-order Taylor expansion of the outer penalty: $\eta_{\lambda,\tau}(\|\boldsymbol{\beta}_g\|_{\lambda,\gamma}) \geq \eta_{\lambda,\tau}(\|\tilde{\boldsymbol{\beta}}_g\|_{\lambda,\gamma}) + \tilde{\Delta}_g \left\{\|\boldsymbol{\beta}_g\|_{\lambda,\gamma} - \|\tilde{\boldsymbol{\beta}}_g\|_{\lambda,\gamma}\right\},\$ where the inequality holds due to the concavity of η . See Lemma 1 in Breheny (2015) for details.

To derive the threshold function in b), take the following optimization problem:

$$
\hat{\beta}_j = \underset{\beta_j}{\text{argmin}} \left\{ \frac{1}{2n} ||\mathbf{r} - \mathbf{x}_j \beta_j||_2^2 + \Delta_1 g_{\lambda_1, \gamma}(\beta_j) + \Delta_2 g_{\lambda_2, \gamma}(\beta_j) \right\}.
$$
 (2)

The KKT condition for (2) is:

$$
0 \in -\frac{1}{n}\mathbf{x}_{j}^{T}\mathbf{r} + \hat{\beta}_{j} + \Delta_{1}\partial_{\lambda_{1},\gamma}\hat{\beta}_{j} + \Delta_{2}\partial_{\lambda_{2},\gamma}\hat{\beta}_{j}, \quad \partial_{\lambda,\gamma}\beta_{j} = \begin{cases} \text{sgn}(\beta_{j}) \left(1 - \frac{|\beta_{j}|}{\lambda\gamma}\right)_{+} & \text{if } |\beta_{j}| > 0, \\ [-1,1] & \text{if } \beta_{j} = 0. \end{cases}
$$
(3)

Without loss of generality, assume $z \equiv \mathbf{x}_j^T \mathbf{r}/n > 0$. Consider the same four cases for z as presented in equation (9) in the paper:

1. $z \geq \lambda_{(1)}\gamma$: Suppose $\hat{\beta}_j = z$. Then the KKT condition (3) becomes $0 \in -z + \hat{\beta}_j$, which is satisfied. Since (2) is strictly convex, $\hat{\beta}_j = z$ must be its unique solution.

- 2. $c_2 \le z < \lambda_{(1)}\gamma$ (see equation (9) in the paper for c_2): Suppose $\hat{\beta}_j = (z-\Delta_{(1)})/((1-\frac{\Delta_{(1)}}{\lambda_{(1)}})^2)$ $\lambda_{(1)}\gamma$. Since $\lambda_{(2)}\gamma \leq \hat{\beta}_j < \lambda_{(1)}\gamma$, the KKT condition (3) becomes $0 \in -z + \hat{\beta}_j + \Delta_{(1)} \left(1 - \frac{\hat{\beta}_j}{\lambda_{(1)}\gamma}\right)$ $\big),$ which is satisfied. Hence, $\hat{\beta}_j$ is the unique solution to (2).
- 3. $\Delta_{(1)} + \Delta_{(2)} \leq z < c_2$ (see equation (9) in the paper for c_3): Suppose $\hat{\beta}_j = (z \Delta_{(1)} \Delta_{(2)})/\left(1-\frac{\Delta_{(1)}}{\lambda_{(1)}\gamma}-\frac{\Delta_{(2)}}{\lambda_{(2)}\gamma}\right)$ $\lambda_{(2)}\gamma$). Since $0 < \hat{\beta}_j < \lambda_{(2)}\gamma$, the KKT condition (3) becomes $0 \in -z + \hat{\beta}_j + \Delta_{(1)} \left(1 - \frac{\hat{\beta}_j}{\lambda_{(1)}\gamma}\right)$ $\Big) + \Delta_{(2)} \left(1 - \frac{\hat{\beta}_j}{\lambda_{(2)} \gamma} \right)$), which is satisfied. Hence, $\hat{\beta}_j$ is the unique solution to (2).
- 4. $0 \leq z < \Delta_{(1)} + \Delta_{(2)}$: Suppose $\hat{\beta}_j = 0$. The KKT condition then becomes $0 \in$ $-z+(\Delta_{(1)}+\Delta_{(2)})[-1,1],$ which is satisfied, so $\hat{\beta}_j$ is the unique solution to (2).

From this, Corollary 1 can be proved in a similar way as Proposition 3 of Breheny (2015).

1.5 Proof of Proposition 2

Since $Q(\boldsymbol{\beta})$ is strictly convex, it must have at most one minimizer $\boldsymbol{\beta}$. By definition, $\boldsymbol{\beta}$ must satisfy the KKT condition:

$$
0 \in -\frac{1}{n}\mathbf{x}_{j}^{T}(\mathbf{y}-\mathbf{X}\boldsymbol{\beta})+\Delta_{\mathcal{S}}(\boldsymbol{\beta})\partial_{\lambda_{s},\gamma}\beta_{j}+\Delta_{\mathcal{C}}(\boldsymbol{\beta})\partial_{\lambda_{c},\gamma}\beta_{j}, \quad j=1,\cdots,p',
$$
 (4)

where $\partial_{\lambda,\gamma}\beta_j$ is the subgradient defined in (3), and $\Delta_{\mathcal{S}}(\boldsymbol{\beta})$ and $\Delta_{\mathcal{C}}(\boldsymbol{\beta})$ are the linearized slopes for the sibling and cousin groups of effect j (see equation (5) of the paper). Setting $\beta = 0$, the right side of (4) becomes:

$$
-\frac{1}{n}\mathbf{x}_j^T\mathbf{y} + \lambda_s[-1,1] + \lambda_c[-1,1] = -\frac{1}{n}\mathbf{x}_j^T\mathbf{y} + [-\lambda_s - \lambda_c, \lambda_s + \lambda_c],
$$

which contains 0 when $\lambda_s + \lambda_c \ge |\mathbf{x}_j^T \mathbf{y}|/n$. Hence, when $\lambda_s + \lambda_c \ge \max_{j=1,\dots,p'} |\mathbf{x}_j^T \mathbf{y}|/n$, one can invoke the strict convexity of $Q(\boldsymbol{\beta})$ to show that the trivial solution $\boldsymbol{\beta} = \mathbf{0}$ is indeed the unique minimizer.

2 Algorithm statement for cv.cmenet

Algorithm 1 cv.cmenet: A cross-validation algorithm for tuning cmenet

1: function CV. CMENET (X, y, K) 2: • Initialize grid of potential parameters $\max_{j=1,\cdots,p'}|\mathbf{x}_j^T\mathbf{y}|/n > \lambda_s^1 > \cdots > \lambda_s^L > 0$, $\max_{j=1,\cdots,p'} |\mathbf{x}_j^T \mathbf{y}|/n > \lambda_c^1 > \cdots > \lambda_c^M > 0, \ \gamma^1 < \cdots < \gamma^G \text{ and } \tau^1 < \cdots < \tau^T \text{ (satisfying }$ $\tau + 1/\gamma < 1/2$). 3: • Obtain the tuned MC+ parameters (λ^*, γ^*) using cv. sparsenet in the R package SPARSENET, and set $\lambda_s^*, \lambda_c^* \leftarrow \lambda^*/2$ as an initial estimate. 4: • Randomly partition the data $\mathcal{D} = (\mathbf{X}, y)$ into K equal pieces $\{\mathcal{D}_1, \cdots, \mathcal{D}_K\}.$ 5: **for** $k = 1, \dots, K$ **do** \triangleright **K**-fold CV for tuning γ and τ 6: **for** $\gamma \in \{\gamma_1, \cdots, \gamma_G\}$ do γ is For each γ ... 7: • $\mathbf{\beta}_{prev} \leftarrow \mathbf{0}_{p'}$ \triangleright Reset warm start solution 8: **for** $\tau \in \{\tau_1, \cdots, \tau_T\}$ do $\qquad \qquad \triangleright$ For each $\tau \dots$ 9: \bullet $\beta_{\lambda^*_s, \lambda^*_c}(\gamma, \tau; k) \leftarrow \texttt{cmenet}(\mathbf{X}_{-k}, \mathbf{y}_{-k}, \lambda^*_s, \lambda^*_c)$ \triangleright Train w/o part k 10: \bullet $\beta_{prev} \leftarrow \beta_{\lambda_s^*,\lambda_c^*}$ s, \wedge_c \triangleright Update warm start solution 11: $\bullet (\gamma^*, \tau^*) \leftarrow \text{argmin}$ γ,τ \sum K $k=1$ $\|\mathbf{y}_k - \mathbf{X}_k\boldsymbol{\beta}_{\lambda_s^*,\lambda_c^*}(\gamma,\tau;k)\|_2^2$ ρ Estimate optimal γ and τ 12: **for** $k = 1, \dots, K$ **do** $\overline{}$ **b** K -fold CV for tuning λ_s and λ_c 13: **for** $\lambda_c \in \{\lambda_c^1, \cdots, \lambda_c^M\}$ \triangleright For each λ_c ... 14: \bullet $\beta_{prev} \leftarrow 0_{p'}$ 15: **for** $\lambda_s \in \{\lambda_s^1, \cdots, \lambda_s^L\}$ \triangleright For each λ ... 16: $\qquad \qquad \textbf{if} \ \lambda_c + \lambda_s < \max_{j=1,\cdots,p'} |\mathbf{x}_j^T \mathbf{y}|/n \textbf{ then}$ 17: • Screen using the three strong rules in Section 4.3. 18: $\bullet \quad \boldsymbol{\beta}_{\lambda_s,\lambda_c}(\gamma^*,\tau^*;k) \leftarrow \texttt{cmenet}(\mathbf{X}_{-k},\mathbf{y}_{-k},\lambda_s,\lambda_c,\gamma^*,\tau^*,\boldsymbol{\beta}_{prev}),$ using only screened effects. 19: • Check KKT conditions on converged solution $\beta_{\lambda_s,\lambda_c}(\gamma^*, \tau^*; k)$. 20: \bullet $\beta_{prev} \leftarrow \beta_{\lambda_s,\lambda_c}(\gamma^*, \tau^*; k)$ 21: $\bullet (\lambda_s^*, \lambda_c^*) \leftarrow \text{argmin}$ $\lambda_s,\! \lambda_c$ \sum K $k=1$ $\|\mathbf{y}_k - \mathbf{X}_k\boldsymbol{\beta}_{\lambda_s,\lambda_c}(\gamma^*, \tau^*; k)\|^2_2 \qquad \text{p Estimate optimal } \lambda_s \text{ and } \lambda_c$ $22\colon \qquad \bullet \ \ \hat{\boldsymbol{\beta}} \leftarrow \mathtt{cmenet}(\mathbf{X}, \mathbf{y}, \lambda^{*}_{s}, \lambda^{*}_{c}, \gamma^{*}, \tau^{*}, \mathbf{0}_p)$ \triangleright Refit using optimal parameters return optimal coefficients $\hat{\boldsymbol{\beta}}$.

Some comments on the implementation of active set optimization within cmenet:

• The active set of variables is initialized by performing the full coordinate descent cycle for 25 iterations, then choosing the variables whose coefficients are non-zero.

- Repeat coordinate descent iterations over the active set until convergence.
- Perform a full coordinate descent cycle over all p' variables. If this cycle does not change the active set, cmenet is terminated; otherwise, the active set is updated, and the above steps repeated.

3 Theoretical derivation of CME screening rules

Fix γ and τ , and suppose $\hat{\beta}_j(\lambda_s, \lambda_c) \in (0, \min{\{\Delta_{(1)} + \Delta_{(2)}, \lambda_{(2)}\gamma\}})$. For brevity, we denote $\hat{\beta}_j(\lambda_s,\lambda_c)$ as $\hat{\beta}_j$ from here on. Using equation (9) in the paper, we know that $\hat{\beta}_j$ takes the form:

$$
\hat{\beta}_j = \text{sgn}(z_j) \left(|z_j| - \Delta_{(1)} - \Delta_{(2)} \right)_+ / \left(1 - \frac{\Delta_{(1)}}{\lambda_{(1)} \gamma} - \frac{\Delta_{(2)}}{\lambda_{(2)} \gamma} \right)
$$

=
$$
\text{sgn}(z_j) \left(|z_j| - \Delta_S - \Delta_C \right)_+ / \left(1 - \frac{\Delta_S}{\lambda_S \gamma} - \frac{\Delta_C}{\lambda_C \gamma} \right),
$$
 (5)

where $z_j = \mathbf{x}_j^T \mathbf{r}_{-j}/n$ (see Theorem 3), and $\Delta_{\mathcal{S}}$ and $\Delta_{\mathcal{C}}$ are the linearized slopes for the current penalty setting (λ_s, λ_c) . Plugging this expression into (4), the KKT condition for $\hat{\beta}_j$ can be simplified to:

$$
0 = -c_j(\lambda_s, \lambda_c) + \text{sgn}(\hat{\beta}_j) \Delta_{\mathcal{S}} \left\{ 1 - \frac{(|z_j| - \Delta_{\mathcal{S}} - \Delta_{\mathcal{C}})_+}{\lambda_s \left(\gamma - \frac{\Delta_{\mathcal{S}}}{\lambda_s} - \frac{\Delta_{\mathcal{C}}}{\lambda_c} \right)} \right\} + \text{sgn}(\hat{\beta}_j) \Delta_{\mathcal{C}} \left\{ 1 - \frac{(|z_j| - \Delta_{\mathcal{S}} - \Delta_{\mathcal{C}})_+}{\lambda_c \left(\gamma - \frac{\Delta_{\mathcal{S}}}{\lambda_s} - \frac{\Delta_{\mathcal{C}}}{\lambda_c} \right)} \right\}
$$

\n
$$
\Leftrightarrow c_j(\lambda_s, \lambda_c) = \text{sgn}(\hat{\beta}_j) \Delta_{\mathcal{S}} \left\{ 1 - \frac{(|z_j| - \Delta_{\mathcal{S}} - \Delta_{\mathcal{C}})_+}{\lambda_s \left(\gamma - \frac{\Delta_{\mathcal{S}}}{\lambda_s} - \frac{\Delta_{\mathcal{C}}}{\lambda_c} \right)} \right\} + \text{sgn}(\hat{\beta}_j) \Delta_{\mathcal{C}} \left\{ 1 - \frac{(|z_j| - \Delta_{\mathcal{S}} - \Delta_{\mathcal{C}})_+}{\lambda_c \left(\gamma - \frac{\Delta_{\mathcal{S}}}{\lambda_s} - \frac{\Delta_{\mathcal{C}}}{\lambda_c} \right)} \right\}. \tag{6}
$$

Suppose no effects are active in either the sibling group S or the cousin group C , in which case $\Delta_{\mathcal{S}} = \lambda_s$ and $\Delta_{\mathcal{C}} = \lambda_c$. The KKT condition in (6) can then be rewritten as:

$$
c_j(\lambda_s, \lambda_c) = \text{sgn}(\hat{\beta}_j) \left\{ \lambda_s - \frac{(|z_j| - \lambda_s - \lambda_c)_+}{\gamma - 2} \right\} + \text{sgn}(\hat{\beta}_j) \left\{ \lambda_c - \frac{(|z_j| - \lambda_s - \lambda_c)_+}{\gamma - 2} \right\}.
$$
 (7)

Taking the derivative with respect to λ_s (and assuming z_j is approximately constant in λ_s , following Lee and Breheny, 2015), we get:

$$
\left|\frac{\partial}{\partial \lambda_s} c_j(\lambda_s, \lambda_c)\right| \lesssim 1 + \frac{1}{\gamma - 2} + \frac{1}{\gamma - 2} = \frac{\gamma}{\gamma - 2}.
$$
 (8)

A similar argument shows that this approximate upper bound also holds for $|(\partial/\partial\lambda_c) c_j(\lambda_s, \lambda_c)|$.

Now, suppose no effects are active in the sibling group $\mathcal S$ (but some in the cousin group C), in which case $\Delta_{\mathcal{S}} = \lambda_s$. The KKT condition in (6) can then be rewritten as:

$$
c_j(\lambda_s, \lambda_c) = \text{sgn}(\hat{\beta}_j) \left\{ \lambda_s - \frac{(|z_j| - \lambda_s - \Delta_c)}{\gamma - 1 - \frac{\Delta_c}{\lambda_c}} \right\} + \text{sgn}(\hat{\beta}_j) \Delta_c \left\{ 1 - \frac{(|z_j| - \lambda_s - \Delta_c)}{\lambda_c \left(\gamma - 1 - \frac{\Delta_c}{\lambda_c}\right)} \right\}.
$$
\n(9)

Taking the derivative on λ_s (and assuming z_j is approximately constant in λ_s), we get:

$$
\left|\frac{\partial}{\partial \lambda_s} c_j(\lambda_s, \lambda_c)\right| \lesssim 1 + \frac{1}{\gamma - 1 - \frac{\Delta_c}{\lambda_c}} + \frac{\frac{\Delta_c}{\lambda_c}}{\gamma - 1 - \frac{\Delta_c}{\lambda_c}} = \frac{\gamma}{\gamma - 1 - \frac{\Delta_c}{\lambda_c}}.\tag{10}
$$

Finally, suppose there are no active effects in the cousin group $\mathcal C$ (but some in sibling group \mathcal{S}). One can do a similar approximation and show that:

$$
\left|\frac{\partial}{\partial \lambda_c} c_j(\lambda_s, \lambda_c)\right| \lesssim 1 + \frac{1}{\gamma - \frac{\Delta s}{\lambda_s} - 1} + \frac{\frac{\Delta s}{\lambda_s}}{\gamma - \frac{\Delta s}{\lambda_s} - 1} = \frac{\gamma}{\gamma - \frac{\Delta s}{\lambda_s} - 1}.
$$
 (11)

These upper bounds on the absolute derivatives of $c_j(\lambda_s, \lambda_c)$, along with the proposed strong rules in Section 4.3, can then be used to demonstrate the inactivity of effect j at penalty setting $(\lambda_s^l, \lambda_c^m)$:

1. Consider the first part of the first strong rule, which applies when no active effects are in S and C for setting $(\lambda_s^{l-1}, \lambda_c^m)$. This rule discards effect j at setting $(\lambda_s^l, \lambda_c^m)$ if:

$$
|c_j(\lambda_s^{l-1},\lambda_c^m)| < \lambda_s^l + \lambda_c^m + \frac{\gamma}{\gamma-2}(\lambda_s^l - \lambda_s^{l-1}).
$$

This can be justified as follows. Using the approximate upper bound in (8), the inner-product of effect j at setting $(\lambda_s^l, \lambda_c^m)$ can be approximately upper bounded as:

$$
|c_j(\lambda_s^l, \lambda_c^m)| \le |c_j(\lambda_s^l, \lambda_c^m) - c_j(\lambda_s^{l-1}, \lambda_c^m)| + |c_j(\lambda_s^{l-1}, \lambda_c^m)|
$$

\n
$$
\approx \left| \frac{\partial}{\partial \lambda_s} c_j(\lambda_s^{l-1}, \lambda_c^m) \right| (\lambda_s^{l-1} - \lambda_s^l) + |c_j(\lambda_s^{l-1}, \lambda_c^m)|
$$

\n
$$
< \frac{\gamma}{\gamma - 2} (\lambda_s^{l-1} - \lambda_s^l) + \left[\lambda_s^l + \lambda_c^m + \frac{\gamma}{\gamma - 2} (\lambda_s^l - \lambda_s^{l-1}) \right]
$$

\n
$$
= \lambda_s^l + \lambda_c^m.
$$

Assuming effect j is the first variable to potentially be selected in S or C at current setting $(\lambda_s^l, \lambda_c^m)$, the KKT conditions in (4) suggest that effect j is inactive, which justifies the screening rule. A similar argument can be used to derive the second part of this rule.

2. Consider next the second strong rule, which applies when no active effects are in $\mathcal S$ for setting $(\lambda_s^{l-1}, \lambda_c^m)$. This rule discards effect j at setting $(\lambda_s^l, \lambda_c^m)$ if:

$$
|c_j(\lambda_s^{l-1},\lambda_c^m)| < \lambda_s^l + \Delta_{\mathcal C}' + \frac{\gamma}{\gamma - (\Delta_{\mathcal C}'/\lambda_c^m + 1)}(\lambda_s^l - \lambda_s^{l-1}).
$$

This can be justified as follows. Using the approximate upper bound in (10), the inner-product of effect j at setting $(\lambda_s^l, \lambda_c^m)$ can be approximately upper bounded as:

$$
|c_j(\lambda_s^l, \lambda_c^m)| \leq |c_j(\lambda_s^l, \lambda_c^m) - c_j(\lambda_s^{l-1}, \lambda_c^m)| + |c_j(\lambda_s^{l-1}, \lambda_c^m)|
$$

\n
$$
\approx \left| \frac{\partial}{\partial \lambda_s} c_j(\lambda_s^{l-1}, \lambda_c^m) \right| (\lambda_s^{l-1} - \lambda_s^l) + |c_j(\lambda_s^{l-1}, \lambda_c^m)|
$$

\n
$$
< \frac{\gamma}{\gamma - (\Delta_c^l/\lambda_c^m + 1)} (\lambda_s^{l-1} - \lambda_s^l) + \left[\lambda_s^l + \Delta_c^l + \frac{\gamma}{\gamma - (\Delta_c^l/\lambda_c^m + 1)} (\lambda_s^l - \lambda_s^{l-1}) \right]
$$

\n
$$
= \lambda_s^l + \Delta_c^l.
$$

Assuming:

- Effect j is the first variable to potentially be selected in S at current setting $(\lambda_s^l, \lambda_c^m),$
- The linearized slope $\Delta'_{\mathcal{C}}$ at previous setting $(\lambda_s^{l-1}, \lambda_c^m)$ is approximately the linearized slope $\Delta_{\mathcal{C}}$ at current setting $(\lambda_s^l, \lambda_c^m)$,

the KKT conditions in (4) suggest that effect j is inactive, which justifies the screening rule.

3. The third strong rule can be justified in a similar manner to the above two rules.

References

- Breheny, P. (2015). The group exponential lasso for bi-level variable selection. *Biometrics*, 71(3):731–740.
- Lee, S. and Breheny, P. (2015). Strong rules for nonconvex penalties and their implications for efficient algorithms in high-dimensional regression. Journal of Computational and Graphical Statistics, 24(4):1074–1091.
- Stuart, A. and Ord, J. (1994). Kendall's Advanced Theory of Statistics, Volume 1: Distribution Theory. Arnold London.
- Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. The Journal of Machine Learning Research, 7:2541–2563.