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1 Proofs of technical results

1.1 Proof of Theorem 1

The proof of this requires a simple lemma on normal orthant probabilities:

Lemma 1. (Stuart and Ord, 1994) Let (X1, · · · , Xp) follow the equicorrelated normal

distribution, with E(Xj) = 0, E(X2
j ) = 1 and E(XjXk) = ρ for all j 6= k, and let

pm = P(X1 > 0, · · · , Xm > 0). Then:

p2 =
sin−1 ρ

2π
+

1

4
and p3 =

3 sin−1 ρ

4π
+

1

8
.

For the main proof, note that each row of the latent matrix Z is i.i.d., so it suffices to fix

n = 1 and explore the correlation amongst the scalar ME quantities x̃1,A and CME quantities

x̃1,A|B+. We denote these as x̃A and x̃A|B+ for brevity. Under the latent equicorrelated

distribution N{0, ρJ + (1 − ρ)I}, it is easy to show that E[x̃A] = 0 and Var[x̃A] = 1.

Moreover, the CME x̃A|B+ can be conditionally decomposed as x̃A|B+
d
= R[2p2] if x̃B = +1,

and 0 if x̃B = −1, where R[q] is the Rademacher random variable taking on +1 w.p.

q ∈ [0, 1] and -1 otherwise. From this, we get:

µc ≡ E[x̃A|B+] = E[E[x̃A|B+|x̃B]] =
1

2
(4p2 − 1),

σ2
c ≡ Var[x̃A|B+] = Var[E[x̃A|B+|x̃B]] + E[Var[x̃A|B+|x̃B]] =

1

2
−
(

sin−1 ρ

π

)2

.

Consider the correlation between the MEs x̃A and x̃B. Note that x̃Ax̃B equals +1 when

x̃A and x̃B have the same sign, and equals -1 otherwise. Letting P(++) be the probability

of (x̃A, x̃B) = (+1,+1) (with similar notation for +−, −+ and −−), Lemma 1 then gives:

Corr(x̃A, x̃B) = [P(++) + P(++)]− [P(+−) + P(−+)] = 2p2 − 2[1/2− p2] =
2 sin−1 ρ

π
.
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Next, consider the two sibling CMEs x̃A|B+ and x̃A|C+. Note that x̃A|B+x̃A|C+ equals +1

when both x̃B = +1 and x̃C = +1, and equals 0 otherwise. It follows that:

Corr(x̃A|B+, x̃A|C+) =
1

σ2
c

[P(++)−µ2
c ] =

1

σ2
c

[p2−µ2
c ] =

1

σ2
c

{
−
(

sin−1 ρ

π

)2

+
sin−1 ρ

2π
+

1

4

}
.

The correlation for parent-child pairs can be proved in an analogous way.

Consider now the two cousin CMEs x̃B|A+ and x̃C|A+. Note that x̃B|A+x̃C|A+ equals +1

when x̃A = +1 and x̃B = x̃C , x̃B|A+x̃C|A+ equals -1 when x̃A = +1 and x̃B 6= x̃C , and equals

0 otherwise. We then have:

Corr(x̃B|A+, x̃C|A+) =
1

σ2
c

[
{P(+ + +) + P(+−−)} − {P(+ +−) + P(+ +−)} − µ2

c

]
=

1

σ2
c

[
{P(+ + +) + (P(−−)− P(−−−))} − 2 {P(++)− P(+ + +)} − µ2

c

]
=

1

σ2
c

[2p3 − p2 − µ2
c ] =

1

σ2
c

{
−
(

sin−1 ρ

π

)2

+
sin−1 ρ

π

}
.

1.2 Proof of Theorem 2

Let X ∈ Rn×p′ be the normalized model matrix consisting of all main effects and CMEs,

where p′ = p + 4
(
p
2

)
. By the strong law of large numbers, the sample covariance matrix

Cn = XTX/n converges elementwise to some matrix C ∈ Rp′×p′ with unit diagonal entries

and off-diagonal entries given in Theorem 1. Consider the following block partition of

C =

C11 C12

C21 C22

, where C11 is the block for the active set A, and C22 the block for the

remaining variables. Zhao and Yu (2006) proved that the LASSO is sign-selection consistent

only when the (weak) irrepresentability condition holds: ∀ζ ∈ {−1,+1}p′ , |C21C
−1
11 ζ| < 1

(this is a slight simplification of the original condition under the current i.i.d. setting).

Hence, sign-selection inconsistency can be proven if ∃ζ ∈ {−1,+1}p′ and an inactive effect
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j satisfying:

|C21,jC
−1
11 ζ| ≥ 1, where C21,j is the row corresponding to effect j. (1)

Consider first a model with only q ≥ 3 active siblings of the form A|B+, A|C−, ...,

A|R−. Using the same principles as in Theorem 1, C11 can be shown to be a q × q matrix

with unit diagonal, [(1/2− p2)− µ2
c ]/σ

2
c for off-diagonal entries in the first row and column,

and ψsib(ρ) for all other off-diagonal entries 1. Letting A be the inactive effect, we have

C21,A = ψpc(ρ)1
T
q , and letting ζ = 1q, it follows that |C21,AC

−1
11 ζ| ≥ 1 for ρ ≥ 0. By (1),

part (a) is proven.

Next, consider a model with only q = 2 active main effects, say, A and −B. From Theo-

rem 1, C11 is a q×q matrix with unit diagonal and −ψme(ρ) on the off-diagonals. Let A|B−

be the inactive effect, so C21,A|B− = (ψpc(ρ), ψ̃(ρ)). Taking ζ = (1, 1)T , |C21,A|B−C
−1
11 ζ| ≥ 1

for ρ ≥ 0.27, thereby proving selection inconsistency.

Lastly, consider a model with only q ≥ 6 active cousins of the form B|A+, C|A−, ...,

R|A−. Using the same principles as in Theorem 1, C11 is a q× q matrix with unit diagonal,

−µ2
c/σ

2
c for the off-diagonal entries in the first row and column, and ψcou(ρ) for all other

off-diagonal entries. Let B be the inactive effect with C21,B = (ψsib(ρ), ψ̃(ρ)1q−1). Taking

ζ = 1q, |C21,BC
−1
11 ζ| ≥ 1 for ρ ≥ 0.29, which proves inconsistency.

1.3 Proof of Proposition 1

As a note, since the objective Q(β) is non-differentiable at β = 0, what we mean by strict

convexity here is that ∇2
uQ(β), the directional Hessian of Q(β) in direction u, is positive-

definite for all β and all ‖u‖ = 1. We follow a similar approach as Proposition 1 of Breheny

(2015). Note that ∇2‖y − Xβ‖2
2 = 2XTX. Moreover, with η′λ,τ (θ) = λ exp(−θτ/λ) and

1ψme(ρ), ψsib(ρ), ψpc(ρ) and ψcou(ρ) are the pairwise correlations in Theorem 1 for main effects, siblings,

parent-child pairs and cousins, respectively. ψ̃(ρ) = sin−1(ρ)/(πσc) is the pairwise correlation between a
CME and its conditioned effect.
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η′′λ,τ (θ) = −τ exp(−θτ/λ), one can show that ∇2
uPs(β) ≥ −τ(1) + λ(−1/(λγ)) = −τ − 1/γ

and similarly ∇2
uPc(β) ≥ −τ − 1/γ, for all u and β. Hence:

∇2
uQ(β) = ∇2

u

{
1

2n
‖y −Xβ‖2

2 + Ps(β) + Pc(β)

}
≥ λmin(XTX)

n
−2

(
τ +

1

γ

)
for all u and β,

which is strictly positive when τ + 1/γ < λmin(XTX)/(2n). The second part of the claim

follows by replacing X with xj in the argument above, and using the fact that ‖xj‖2
2 = n.

1.4 Proofs of Theorem 3 and Corollary 1

The majorization claim a) follows from a first-order Taylor expansion of the outer penalty:

ηλ,τ (‖βg‖λ,γ) ≥ ηλ,τ (‖β̃g‖λ,γ) + ∆̃g

{
‖βg‖λ,γ − ‖β̃g‖λ,γ

}
, where the inequality holds due to

the concavity of η. See Lemma 1 in Breheny (2015) for details.

To derive the threshold function in b), take the following optimization problem:

β̂j = argmin
βj

{
1

2n
‖r− xjβj‖2

2 + ∆1gλ1,γ(βj) + ∆2gλ2,γ(βj)

}
. (2)

The KKT condition for (2) is:

0 ∈ − 1

n
xTj r + β̂j + ∆1∂λ1,γβ̂j + ∆2∂λ2,γβ̂j, ∂λ,γβj =


sgn(βj)

(
1− |βj|

λγ

)
+

if |βj| > 0,

[−1, 1] if βj = 0.

(3)

Without loss of generality, assume z ≡ xTj r/n > 0. Consider the same four cases for z as

presented in equation (9) in the paper:

1. z ≥ λ(1)γ: Suppose β̂j = z. Then the KKT condition (3) becomes 0 ∈ −z + β̂j , which

is satisfied. Since (2) is strictly convex, β̂j = z must be its unique solution.
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2. c2 ≤ z < λ(1)γ (see equation (9) in the paper for c2): Suppose β̂j = (z−∆(1))/
(

1− ∆(1)

λ(1)γ

)
.

Since λ(2)γ ≤ β̂j < λ(1)γ, the KKT condition (3) becomes 0 ∈ −z+β̂j+∆(1)

(
1− β̂j

λ(1)γ

)
,

which is satisfied. Hence, β̂j is the unique solution to (2).

3. ∆(1) + ∆(2) ≤ z < c2 (see equation (9) in the paper for c3): Suppose β̂j = (z −∆(1) −

∆(2))/
(

1− ∆(1)

λ(1)γ
− ∆(2)

λ(2)γ

)
. Since 0 < β̂j < λ(2)γ, the KKT condition (3) becomes

0 ∈ −z + β̂j + ∆(1)

(
1− β̂j

λ(1)γ

)
+ ∆(2)

(
1− β̂j

λ(2)γ

)
, which is satisfied. Hence, β̂j is the

unique solution to (2).

4. 0 ≤ z < ∆(1) + ∆(2): Suppose β̂j = 0. The KKT condition then becomes 0 ∈

−z + (∆(1) + ∆(2))[−1, 1], which is satisfied, so β̂j is the unique solution to (2).

From this, Corollary 1 can be proved in a similar way as Proposition 3 of Breheny (2015).

1.5 Proof of Proposition 2

Since Q(β) is strictly convex, it must have at most one minimizer β. By definition, β must

satisfy the KKT condition:

0 ∈ − 1

n
xTj (y −Xβ) + ∆S(β)∂λs,γβj + ∆C(β)∂λc,γβj, j = 1, · · · , p′, (4)

where ∂λ,γβj is the subgradient defined in (3), and ∆S(β) and ∆C(β) are the linearized

slopes for the sibling and cousin groups of effect j (see equation (5) of the paper). Setting

β = 0, the right side of (4) becomes:

− 1

n
xTj y + λs[−1, 1] + λc[−1, 1] = − 1

n
xTj y + [−λs − λc, λs + λc],

which contains 0 when λs + λc ≥ |xTj y|/n. Hence, when λs + λc ≥ maxj=1,··· ,p′ |xTj y|/n, one

can invoke the strict convexity of Q(β) to show that the trivial solution β = 0 is indeed

the unique minimizer.
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2 Algorithm statement for cv.cmenet

Algorithm 1 cv.cmenet: A cross-validation algorithm for tuning cmenet

1: function cv.cmenet(X,y,K)
2: • Initialize grid of potential parameters max

j=1,··· ,p′
|xTj y|/n > λ1

s > · · · > λLs > 0,

max
j=1,··· ,p′

|xTj y|/n > λ1
c > · · · > λMc > 0, γ1 < · · · < γG and τ1 < · · · < τT (satisfying

τ + 1/γ < 1/2).
3: • Obtain the tuned MC+ parameters (λ∗, γ∗) using cv.sparsenet in the R package

sparsenet, and set λ∗s, λ
∗
c ← λ∗/2 as an initial estimate.

4: • Randomly partition the data D = (X, y) into K equal pieces {D1, · · · ,DK}.
5: for k = 1, · · · ,K do . K-fold CV for tuning γ and τ
6: for γ ∈ {γ1, · · · , γG} do . For each γ...
7: • βprev ← 0p′ . Reset warm start solution
8: for τ ∈ {τ1, · · · , τT } do . For each τ ...
9: • βλ∗s ,λ∗c (γ, τ ; k)← cmenet(X−k,y−k, λ

∗
s, λ
∗
c , γ, τ,βprev) . Train w/o part k

10: • βprev ← βλ∗s ,λ∗c (γ, τ ; k) . Update warm start solution

11: • (γ∗, τ∗)← argmin
γ,τ

K∑
k=1

‖yk −Xkβλ∗s ,λ∗c (γ, τ ; k)‖22 . Estimate optimal γ and τ

12: for k = 1, · · · ,K do . K-fold CV for tuning λs and λc
13: for λc ∈ {λ1

c , · · · , λMc } do . For each λc...
14: • βprev ← 0p′

15: for λs ∈ {λ1
s, · · · , λLs } do . For each λs...

16: if λc + λs < maxj=1,··· ,p′ |xTj y|/n then
17: • Screen using the three strong rules in Section 4.3.
18: • βλs,λc(γ

∗, τ∗; k)← cmenet(X−k,y−k, λs, λc, γ
∗, τ∗,βprev),

using only screened effects.
19: • Check KKT conditions on converged solution βλs,λc(γ

∗, τ∗; k).
20: • βprev ← βλs,λc(γ

∗, τ∗; k)

21: • (λ∗s, λ
∗
c)← argmin

λs,λc

K∑
k=1

‖yk −Xkβλs,λc(γ
∗, τ∗; k)‖22 . Estimate optimal λs and λc

22: • β̂ ← cmenet(X,y, λ∗s, λ
∗
c , γ
∗, τ∗,0p′) . Refit using optimal parameters

return optimal coefficients β̂.

Some comments on the implementation of active set optimization within cmenet:

• The active set of variables is initialized by performing the full coordinate descent cycle

for 25 iterations, then choosing the variables whose coefficients are non-zero.
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• Repeat coordinate descent iterations over the active set until convergence.

• Perform a full coordinate descent cycle over all p′ variables. If this cycle does not

change the active set, cmenet is terminated; otherwise, the active set is updated, and

the above steps repeated.

3 Theoretical derivation of CME screening rules

Fix γ and τ , and suppose β̂j(λs, λc) ∈ (0,min{∆(1) + ∆(2), λ(2)γ}). For brevity, we denote

β̂j(λs, λc) as β̂j from here on. Using equation (9) in the paper, we know that β̂j takes the

form:

β̂j = sgn(zj)
(
|zj | −∆(1) −∆(2)

)
+
/

(
1−

∆(1)

λ(1)γ
−

∆(2)

λ(2)γ

)
= sgn(zj) (|zj | −∆S −∆C)+ /

(
1− ∆S

λSγ
− ∆C

λCγ

)
,

(5)

where zj = xTj r−j/n (see Theorem 3), and ∆S and ∆C are the linearized slopes for the

current penalty setting (λs, λc). Plugging this expression into (4), the KKT condition for

β̂j can be simplified to:

0 = −cj(λs, λc) + sgn(β̂j)∆S

1− (|zj | −∆S −∆C)+

λs

(
γ − ∆S

λs
− ∆C

λc

)
+ sgn(β̂j)∆C

1− (|zj | −∆S −∆C)+

λc

(
γ − ∆S

λs
− ∆C

λc

)


⇔ cj(λs, λc) = sgn(β̂j)∆S

1− (|zj | −∆S −∆C)+

λs

(
γ − ∆S

λs
− ∆C

λc

)
+ sgn(β̂j)∆C

1− (|zj | −∆S −∆C)+

λc

(
γ − ∆S

λs
− ∆C

λc

)
 .

(6)

Suppose no effects are active in either the sibling group S or the cousin group C, in

which case ∆S = λs and ∆C = λc. The KKT condition in (6) can then be rewritten as:

cj(λs, λc) = sgn(β̂j)

{
λs −

(|zj| − λs − λc)+

γ − 2

}
+ sgn(β̂j)

{
λc −

(|zj| − λs − λc)+

γ − 2

}
. (7)
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Taking the derivative with respect to λs (and assuming zj is approximately constant in λs,

following Lee and Breheny, 2015), we get:

∣∣∣ ∂
∂λs

cj(λs, λc)
∣∣∣ . 1 +

1

γ − 2
+

1

γ − 2
=

γ

γ − 2
. (8)

A similar argument shows that this approximate upper bound also holds for |(∂/∂λc) cj(λs, λc)|.

Now, suppose no effects are active in the sibling group S (but some in the cousin group

C), in which case ∆S = λs. The KKT condition in (6) can then be rewritten as:

cj(λs, λc) = sgn(β̂j)

{
λs −

(|zj| − λs −∆C)+

γ − 1− ∆C
λc

}
+ sgn(β̂j)∆C

1− (|zj| − λs −∆C)+

λc

(
γ − 1− ∆C

λc

)
 .

(9)

Taking the derivative on λs (and assuming zj is approximately constant in λs), we get:∣∣∣ ∂
∂λs

cj(λs, λc)
∣∣∣ . 1 +

1

γ − 1− ∆C
λc

+
∆C
λc

γ − 1− ∆C
λc

=
γ

γ − 1− ∆C
λc

. (10)

Finally, suppose there are no active effects in the cousin group C (but some in sibling group

S). One can do a similar approximation and show that:

∣∣∣ ∂
∂λc

cj(λs, λc)
∣∣∣ . 1 +

1

γ − ∆S
λs
− 1

+
∆S
λs

γ − ∆S
λs
− 1

=
γ

γ − ∆S
λs
− 1

. (11)

These upper bounds on the absolute derivatives of cj(λs, λc), along with the proposed

strong rules in Section 4.3, can then be used to demonstrate the inactivity of effect j at

penalty setting (λls, λ
m
c ):

1. Consider the first part of the first strong rule, which applies when no active effects

are in S and C for setting (λl−1
s , λmc ). This rule discards effect j at setting (λls, λ

m
c ) if:

|cj(λl−1
s , λmc )| < λls + λmc +

γ

γ − 2
(λls − λl−1

s ).
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This can be justified as follows. Using the approximate upper bound in (8), the

inner-product of effect j at setting (λls, λ
m
c ) can be approximately upper bounded as:

|cj(λls, λmc )| ≤ |cj(λls, λmc )− cj(λl−1
s , λmc )|+ |cj(λl−1

s , λmc )|

≈
∣∣∣ ∂
∂λs

cj(λ
l−1
s , λmc )

∣∣∣(λl−1
s − λls) + |cj(λl−1

s , λmc )|

<
γ

γ − 2
(λl−1

s − λls) +

[
λls + λmc +

γ

γ − 2
(λls − λl−1

s )

]
= λls + λmc .

Assuming effect j is the first variable to potentially be selected in S or C at current

setting (λls, λ
m
c ), the KKT conditions in (4) suggest that effect j is inactive, which

justifies the screening rule. A similar argument can be used to derive the second part

of this rule.

2. Consider next the second strong rule, which applies when no active effects are in S

for setting (λl−1
s , λmc ). This rule discards effect j at setting (λls, λ

m
c ) if:

|cj(λl−1
s , λmc )| < λls + ∆′C +

γ

γ − (∆′C/λ
m
c + 1)

(λls − λl−1
s ).

This can be justified as follows. Using the approximate upper bound in (10), the

inner-product of effect j at setting (λls, λ
m
c ) can be approximately upper bounded as:

|cj(λls, λmc )| ≤ |cj(λls, λmc )− cj(λl−1
s , λmc )|+ |cj(λl−1

s , λmc )|

≈
∣∣∣ ∂
∂λs

cj(λ
l−1
s , λmc )

∣∣∣(λl−1
s − λls) + |cj(λl−1

s , λmc )|

<
γ

γ − (∆′C/λ
m
c + 1)

(λl−1
s − λls) +

[
λls + ∆′C +

γ

γ − (∆′C/λ
m
c + 1)

(λls − λl−1
s )

]
= λls + ∆′C.
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Assuming:

• Effect j is the first variable to potentially be selected in S at current setting

(λls, λ
m
c ),

• The linearized slope ∆′C at previous setting (λl−1
s , λmc ) is approximately the

linearized slope ∆C at current setting (λls, λ
m
c ),

the KKT conditions in (4) suggest that effect j is inactive, which justifies the screening

rule.

3. The third strong rule can be justified in a similar manner to the above two rules.
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