
Supplementary Material for “Statistical Inference in a
Directed Network Model with Covariates”

This supplementary material contains the histograms of the estimated out-degree and in-

degree parameters for the Sino Weibo data, the proofs for Theorems 1 and 3, and the proof of

Lemma 4 in the main text. Section 2 presents the preliminaries that will be used in the proofs.

The proofs of Theorems 1 and 3 are in sections 3 and 4, respectively. Section 5 presents the

proof of Lemma 4.

1 Histograms of estimates of degree parameters fitted

in the Sino Weibo data

Figure 1 provides the histograms of α̂i’s and β̂j’s for the Sino Weibo data with 2242 nodes.
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Figure 1: The histogram of the estimates of the in-degree (left) and out-degree (right) param-
eters in the Sino Weibo data.
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2 Preliminaries

We first restate Lemma 1 giving the upper bound of the approximate error using S to approx-

imate the inverse of the matrix V in the main text here for clarity.

Lemma 5. If V ∈ Ln(m,M) with M/m = o(n), then for large enough n,

‖V −1 − S‖ ≤ c1M
2

m3(n− 1)2
,

where c1 is a constant that does not depend on M , m and n, and ‖A‖ := maxi,j |ai,j| for a

general matrix A = (ai,j).

Let D be an open convex subset of R2n−1, Ω(x, r) denote the open ball {y ∈ R2n−1 :

‖x− y‖∞ < r} and Ω(x, r) be its closure, where x ∈ R2n−1. In order to characterize the rate

of convergence of the Newton’s iterative sequence for the function defined in equation (7) in

the main text, we quote the theorem 7 from Yan et al. (2016), stated as one lemma below.

Lemma 6 (Yan et al. (2016)). Define a system of equations:

Fi(θ) = di −
n∑

k=1,k 6=i

f(αi + βk), i = 1, . . . , n,

Fn+j(θ) = bj −
n∑

k=1,k 6=j

f(αk + βj), j = 1, . . . , n− 1,

F (θ) = (F1(θ), . . . , Fn(θ), Fn+1(θ), . . . , F2n−1(θ))>,

where f(·) is a continuous function with the third derivative. Let D ⊂ R2n−1 be a convex set

and assume for any x,y,v ∈ D, we have

‖[F ′(x)− F ′(y)]v‖∞ ≤ K1‖x− y‖∞‖v‖∞, (1)

max
i=1,...,2n−1

‖F ′i (x)− F ′i (y)‖∞ ≤ K2‖x− y‖∞, (2)

where F ′(θ) is the Jacobin matrix of F on θ and F ′i (θ) is the gradient function of Fi on

θ. Consider θ(0) ∈ D with Ω(θ(0), 2r) ⊂ D, where r = ‖[F ′(θ(0))]−1F (θ(0))‖∞. For any

θ ∈ Ω(θ(0), 2r), we assume that F ′(θ) ∈ Ln(m,M) or −F ′(θ) ∈ Ln(m,M). For k = 1, 2, . . .,

define the Newton iterates θ(k+1) = θ(k) − [F ′(θ(k))]−1F (θ(k)). Let

ρ =
c1(2n− 1)M2K1

2m3n2
+

K2

(n− 1)m
. (3)
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If ρr < 1/2, then θ(k) ∈ Ω(θ(0), 2r), k = 1, 2, . . ., are well-defined and satisfy

‖θ(k+1) − θ(0)‖∞ ≤ r/(1− ρr). (4)

Further, limk→∞ θ(k) exists and the limiting point is precisely the solution of F (θ) = 0 in the

range of θ ∈ Ω(θ(0), 2r).

Regarding the asymptotic normality of gi − E(gi), we note that both di =
∑

k 6=i ai,k and

bj =
∑

k 6=j ak,j are sums of n − 1 independent Bernoulli random variables. By the central

limit theorem for the bounded case in Loéve (1977, p.289), we know that v
−1/2
i,i (di − E(di))

and v
−1/2
n+j,n+j(bj − E(bj)) are asymptotically standard normal if vi,i diverges. Since we assume

that Zij’s lie in a compact subset of Rp and the parameter space Θ of covariate parameters is

compact, we have for all i 6= j,

max
γ∈Θ
|Z>ijγ| ≤ κ, (5)

where κ is a constant. Since ex/(1 + ex)2 is a decreasing function on x when x ≥ 0 and an

increasing function when x ≤ 0, we have

(n− 1)e2‖θ∗‖∞+κ

(1 + e2‖θ∗‖∞+κ)2
≤ vi,i =

∑
j 6=i

eZ
>
ijγ
∗+α∗i +β∗j

(1 + eZ
>
ijγ
∗+α∗i +β∗j )2

≤ n− 1

4
, i = 1, . . . , 2n. (6)

When ‖θ∗‖∞ ≤ τ log n for τ < 1/24, both the lower and upper bounds go to ∞ as n → ∞.

Thus, we have the following proposition.

Proposition 1. Assume that A ∼ Pγ∗,θ∗ with γ∗ ∈ Γ. If e‖θ
∗‖∞ = o(n1/2), then for any fixed

k ≥ 1, as n→∞, the vector consisting of the first k elements of S{g−E(g)} is asymptotically

multivariate normal with mean zero and covariance matrix given by the upper left k × k block

of S.

3 Proofs for Theorem 1

The proof is similar to the proof of Theorem 1 in Yan et al. (2016) and we only give the

different steps here. Recall the definition of Fγ(θ) in equation (7) in the main text. For

notation convenience, we suppress the subscript γ in Fγ(θ) here. Then the Jacobin matrix

F ′(θ) of F (θ) can be calculated as follows. For i = 1, . . . , n,

∂Fi
∂αl

= 0, l = 1, . . . , n, l 6= i;
∂Fi
∂αi

= −
n∑

k=1;k 6=i

eZ
>
ijγ+αi+βk

(1 + eαi+βk)2
,
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∂Fi
∂βj

= − eZ
>
ijγ+αi+βj

(1 + eZ
>
ijγ+αi+βj)2

, j = 1, . . . , n− 1, j 6= i;
∂Fi
∂βi

= 0

and for j = 1, . . . , n− 1,

∂Fn+j

∂αl
= − eZ

>
ijγ+αl+βj

(1 + eZ
>
ijγ+αl+βj)2

, l = 1, . . . , n, l 6= j;
∂Fn+j

∂αj
= 0,

∂Fn+j

∂βj
= −

n∑
k=1;k 6=j

eZ
>
ijγ+αk+βj

(1 + eZ
>
ijγ+αk+βj)2

,
∂Fn+j

∂βl
= 0, l = 1, . . . , n− 1.

It is easily verified that −F ′(θ) ∈ Ln(m,M). Thus Lemmas 5 and 6 can be applied. Note that

γ∗ and θ∗ denote the true parameter vector. For every γ ∈ Θ, the constants K1, K2 and r in

Lemma 6 are given in the following.

Lemma 7. Take D = R2n−1 and θ(0) = θ∗ in Lemma 6. Assume that γ ∈ Θ and

max{ max
i=1,...,n

|di − E(di)|, max
j=1,...,n

|bj − E(bj)|} ≤
√

(n− 1) log(n− 1). (7)

Then we can choose the constants K1, K2 and r in Lemma 6 as

K1 = n− 1, K2 =
n− 1

2
, r ≤ (log n)1/2

n1/2

(
c11e

6‖θ∗‖∞ + c12e
2‖θ∗‖∞

)
,

where c11 and c12 are constants.

Proof. The proof is similar to the proof of Lemma 2 in Yan et al. (2016). Note that −F ′(θ∗) ∈

L2n−1(m∗,M∗), where

M∗ =
1

4
, m∗ =

e2‖θ∗‖∞+κ

(1 + e2‖θ∗‖∞+κ)2
.

The left proof only requires verification of the fact that all the steps hold when we replace

F ′i (θ) in Yan et al. (2016) with the new expression here.

Since the out- and in-degree of each node are a sequence of independent Bernoulli random

variables, Lemma 3 in Yan et al. (2016) assures that condition (7) holds with a large probability.

Lemma 8 (Lemma 3 in Yan et al. (2016)). With probability at least 1− 4n/(n− 1)2, we have

max{max
i
|di − E(di)|,max

j
|bj − E(bj)|} ≤

√
(n− 1) log(n− 1).

Combining the above two lemmas, we have the result of consistency.
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Proof of Theorem 1. Assume that γ ∈ Θ and condition (7) holds. Recall the Newton’s iterates

θ(k+1) = θ(k) − [F ′(θ(k))]−1F (θ(k)) with θ(0) = θ∗. Let r = O((log n)1/2e6‖θ∗‖∞n−1/2) given in

Lemma 6. If θ ∈ Ω(θ∗, 2r), then −F ′(θ) ∈ Ln(m,M) with

M =
1

4
, m =

e2(‖θ∗‖∞+2r+κ)

(1 + e2(‖θ∗‖∞+2r+κ))2
.

Then similar to derive the bound of ρr in the proof of Theorem 1 in Yan et al. (2016), by

Lemma 7 and condition (7), we have for sufficiently small r:

ρr = O

(
(log n)1/2e12‖θ∗‖∞

n1/2

)
.

Therefore, if ‖θ∗‖∞ ≤ τ log n, then ρr → 0 as n→∞. Consequently, by Lemma 6, limn→∞ θ̂
(n)

exists. Denote the limit as θ̂, then it satisfies

‖θ̂ − θ∗‖∞ ≤ 2r = O

(
(log n)1/2e8‖θ∗‖∞

n1/2

)
= o(1).

By Lemma 8, condition (7) holds with probability approaching one, thus the above inequality

also holds with probability approaching one. Here, θ̂(γ) depends on γ and the above inequality

holds for every γ ∈ Θ. Since γ̂ ∈ Θ, it shows the consistency of the MLE θ̂. Since the likelihood

is convex, if θ̂ exists, then it is unique.

4 Proofs for Theorem 3

The method of the proof of Theorem 3 follows the proof of Theorem 2 in Yan et al. (2016).

Before proving Theorem 3, we first establish two lemmas.

Lemma 9. Let R = V −1 − S and U = Cov[R{g − Eg}]. Then

‖U‖ ≤ ‖V −1 − S‖+
3(1 + e2‖θ∗‖∞+κ)4

4e4‖θ∗‖∞+2κ(n− 1)2
. (8)

Proof. Note that

U = WVW> = (V −1 − S)− S(I − V S),

where I is a (2n − 1) × (2n − 1) diagonal matrix, and by the inequality (C3) in Yan et al.

(2016), we have

|{S(I − V S)}i,j| ≤
3(1 + e2‖θ∗‖∞+κ)4

4e4‖θ∗‖∞+2κ(n− 1)2
.
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Thus,

‖U‖ ≤ ‖V −1 − S‖+ ‖S(I2n−1 − V S)‖ ≤ ‖V −1 − S‖+
3(1 + e2‖θ∗‖∞+κ)4

4e4‖θ∗‖∞+2κ(n− 1)2
.

Lemma 10. Assume that the conditions in Theorem 1 hold. If ‖θ∗‖∞ ≤ τ log n and τ < 1/40,

then for any i,

θ̂i − θ∗i = ([V (γ̂)]−1{g − E(g)})i + op(n
−1/2), (9)

where V (γ̂) is a matrix by replacing γ in V with its estimator γ̂.

Proof. The proof follows the same line of arguments as the proof of Lemma 9 in Yan et al.

(2016). The main difference is that the Taylor expansion for g − E(g) contains one more

term since it has the covariate term. We only present the different steps here. Let ξ̂i,j =

α̂i + β̂j − α∗i − β∗j . Specially, by Taylor’s expansion, for any 1 ≤ i 6= j ≤ n,

eZ
>
ij γ̂+α̂i+β̂j

1 + eZ
>
ij γ̂+α̂i+β̂j

− eZ
>
ij γ̂+α∗i +β∗j

1 + eZ
>
ij γ̂+α∗i +β∗j

=
eZ
>
ij γ̂+α∗i +β∗j

(1 + eZ
>
ij γ̂+α∗i +β∗j )2

ξ̂i,j + hi,j,

where

hi,j =
eZ
>
ij γ̂+α∗i +β∗j +φi,j ξ̂i,j(1− eZ>ij γ̂+α∗i +β∗j +φi,j ξ̂i,j)

(1 + eZ
>
ij γ̂+α∗i +β∗j +φi,j ξ̂i,j)3

ξ̂2
i,j,

and 0 ≤ φi,j ≤ 1. Let

ti,j :=
eZ
>
ij γ̂+αi+βj

1 + eZ
>
ij γ̂+αi+βj

− eZ
>
ijγ
∗+α∗i +β∗j

1 + eZ
>
ijγ
∗+α∗i +β∗j

=
Z>ij e

Z>ij γ̃+α∗i +β∗j

(1 + eZ
>
ij γ̃+α∗i +β∗j )2

(γ̂ − γ∗),

where γ̃ lies in between γ̂ and γ∗. In the above equation, the second equation is due to the

mean value theorem. By the likelihood equation (3) in the main paper, we have

g − E(g) = V (γ̂)(θ̂ − θ∗) + h + t,

where h = (h1, . . . , h2n−1)>, t = (t1, . . . , t2n−1)> and,

hi =
∑n

k=1,k 6=i hi,k, i = 1, . . . , n, hn+i =
∑n

k=1,k 6=i hk,i, i = 1, . . . , n− 1,

ti =
∑n

k=1,k 6=i ti,k, i = 1, . . . , n, tn+i =
∑n

k=1,k 6=i tk,i, i = 1, . . . , n− 1.

Equivalently,

θ̂ − θ∗ = [V (γ̂)]−1(g − E(g)) + [V (γ̂)]−1h + [V (γ̂)]−1t. (10)
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The upper bound for |[V (γ̂)]−1t)i| can be derived as follows. By noting that ex/(1+ex)≤1/4

and Zij is bounded by a constant, we have

‖ti,j‖∞ ≤
c

4
‖γ̂ − γ∗‖∞,

where c is a constant. Therefore,

|[V (γ̂)]−1t)i| ≤ |[S(γ̂)t]i|+ |[R(γ̂)t]i| ≤
|ti|
v̂ii

+
|t2n|
v̂2n,2n

+ ‖R‖∞ × [(2n− 1) max
i
|ti|] = o(n−1/2).

Proof of Theorem 3. Note that equation (10) holds. By Lemmas 9 and 10, if ‖θ∗‖∞ ≤ τ log n

and τ < 1/44, then

(θ̂ − θ)i = [S(γ̂){g − E(g)}]i + op(n
−1/2).

Since [S(γ̂)]r×r is a consistent estimator of Sr×r for a fixed r, Theorem 3 follows directly from

Proposition 1.

5 Proof for Lemma 4

Since aij’s for 1 ≤ i 6= j ≤ n are independent random variables and s∗γij(γ
∗,θ∗) is only

associated with the random variable aij, the n(n − 1) random variables s∗γij(γ
∗,θ∗) (1 ≤ i 6=

j ≤ n) are also independent. Next, we will show that s∗γij(γ
∗,θ∗) is a bounded random vector.

Since sγij(γ
∗,θ∗) is a bounded random vector, it is sufficient to show that HγθH

−1
θθ sθij(γ

∗,θ∗)

is bounded.

By calculations, we have

(−HγθS),i =

∑
j 6=i pij(1− pij)Zij

vii
+

∑
i 6=n pin(1− pin)Zin

v2n,2n

, i = 1, . . . , n,

(−HγθS),n+j =

∑
i 6=j pij(1− pij)Zij

vn+j,n+j

−
∑

i 6=n pin(1− pin)Zin

v2n,2n

, i = 1, . . . , n.

Therefore,

(−HγθS)Tij =

∑
j 6=i pij(1− pij)Zij

vii
+

∑
i 6=j pij(1− pij)Zij

vn+j,n+j

. (11)
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By lemma (5), we have

‖HγθW‖ ≤ (2n− 1)× c1M
2

m3(n− 1)2
× 1

4
‖Zij‖. (12)

Combining (11) and (12), we have

|[(−Hγθ)(−Hθθ)−1Tij]k|

= |(−HγθSTij)k − (HγθWTij)k|

≤
∑

j 6=i pij(1− pij)Zij,k
vii

+

∑
i 6=j pij(1− pij)Zij,k

vn+j,n+j

+ 2(2n− 1)× c1M
2

m3(n− 1)2
× 1

4
‖Zij,k‖

= O(1).

Since

(−Hγθ)(−Hθθ)−1sθij(γ
∗,θ∗) = (−Hγθ)(−Hθθ)−1Tij(aij −

eZ
>
ijγ+αi+βj

1 + eZ
>
ijγ+αi+βj

),

it shows that each element of HγθH
−1
θθ sθij(γ

∗,θ∗) is bounded. It can be checked that

V ar(
∑
i

∑
j 6=i

s∗γij(γ
∗,θ∗))

=
∑
i

∑
j 6=i

pij(1− pij)(ZijZ>ij − 2Zij(HγθH
−1
θθ Tij)

> +HγθH
−1
θθ TijT

>
ijH

−1
θθH

>
γθ

= NIn(γ∗).

Then Lemma 4 follows by the central limit theorem for the bounded case in Loéve (1977,

p.289).
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