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1 SUPPLEMENTARY DATA

The following mathematical deduction establishes the ratio of surface area of P. aeruginosa that releases
AHL that will theoretically collide with C. albicans, assuming that the AHL will be released perpendicularly
to the cell envelope and that P. aeruginosa is oriented along the y-axis (Figure S1). The deduction is
expressed as a function of the distance between the two cells.

Considering the Cartesian coordinate system, the sphere, that represents C. albicans, is assumed to be
centered at the origin of the referential, i.e C1 = (0, 0, 0), and with radius r1. The spherocylinder is parallel
to the z − axis and its centroid C2 = (a, 0, 0) is aligned with the sphere center in the plan z = 0 (see
Figure S1 ). The spherocylinder is composed by: a cylinder defined by the equation (x− a)2 + y2 = r22
with −h2 6 z 6 h

2 (i.e. the height of the cylinder is h), r2 < r1; two semi-spheres with radius r2 and
centers (a, 0, h2 ) and (a, 0,−h2 ).

Figure S1. Schematic diagram of the sphere (C. albicans) and the spherocylinder (P. aeruginosa). In P.
aeruginosa we can observe the surface region from where the AHL molecules that collide with C. albicans
will emerge.

The goal of this mathematical study is to find an expression for the ratio between the surface area
highlighted in the spherocylinder, represented in Figure S1, and its surface area. In this case, it is necessary
to decompose the surface area of the spherocylinder in two parts. The part of the cylinder surface and the
two spherical caps.

Determination of the surface area of the region of the cylinder

Half of the surface area of the part of the cylinder that is necessary to calculate is represented in Figure
S2 , i.e. considering the highlight region when 0 6 z 6 h

2 . This part may be planned according to
the representation in Figure S3. The length of the bases of this trapezium are the length of the arcs
correspondent to the circumference with center C2 and the circumference with center C4 = (a, 0, h2 ), in
Figure S2, i.e., the length of the arcs D̄F and ĀG represented by L(D̄F ) and L(ḠA), respectively.
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Figure S2. Schematic diagram of the sphere and the cylinder. Detail of Figure S1.

Figure S3. 2D projection of the surface area highlighted in the cylinder of Figure S2.

So, the surface area of the highlighted region in Figure S2 is obtained by

ATrapezium =
(
L(D̄F ) + L(ḠA)

)
× h

2
(S1)

In order to calculate the length of the arcs ĀG and D̄F , it is necessary to calculate the coordinates of the
points A and D. (see Figure S4 and S5)

Figure S4. Detail of Figure S2, sliced in z = 0 (on left) and zoom of this representation in relation to the
θ angle (on right).

As the mathematical deduction to calculate the length of the two arcs is similar, we will only present the
calculations for the case of the arc ĀG.
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Figure S5. Detail of Figure S2, sliced in z = h
2 (on left) and zoom of this representation in relation to the

α angle (on right).

From Figure S4, we may observe that the circumferences that result from the intersection of the sphere
and spherocylinder with the plane z = 0 are the circumference with C1 = (0, 0, 0) and radius r1 of the
sphere and the circumference with C2 = (a, 0, 0) and radius r2 of the cylinder.

The equation of the straight line that crosses the point C2 and that is tangent to the circumference with
center in C1 (in Figure S4) is the following:

x = a+ v1t

y = v2t, t ∈ R
z = 0

where it is assumed that −→v = (v1, v2, 0) is an unitary vector, i.e. ‖−→v ‖ =
»
v21 + v22 = 1.

The intersection between the circumference with center in C1, defined by x2 + y2 = r21 ∧ z = 0 with the
tangent straight line defined above, is as follows:

x2 + y2 = r21

⇔ (a+ v1t)
2 + v22t

2 = r21

⇔ a2 + 2av1t+ v1t
2 + v22t

2 = r21

⇔ (v21 + v22)︸ ︷︷ ︸
1

t2 + 2av1t− r21 + a2 = 0

⇔ t2 + 2av1t+ (a2 − r21) = 0

⇔ t =
−2av1 ±

»
(2av1)2 − 4(a2 − r21)

2

(S2)

As the straight line is tangent to the circumference with center C1, the equation S2 only has one solution
if:

4a2v21 − 4a2 + 4r21 = 0

⇔ a2v21 = a2 − r21
⇔ av1 = ±

»
a2 − r21︸ ︷︷ ︸
k
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The last condition, av1 = k, indicates that the scalar product between the vectors
−−−→
C2C1 = (a, 0, 0) and

−→v is constant and equal to k.

From the definition of the scalar product and considering θ as the angle between
−−−→
C2C1 and −→v , we have:

−−−→
C2C1|−→v = ‖

−−−→
C2C1‖‖−→v ‖ cos θ = |a| cos θ = k ⇔ cos θ =

k

|a|
=

»
a2 − r21
|a|

. (S3)

On the other hand, from Figure S4 we may observe that cos θ = ‖
−−→
C2B‖
r2

. Consequently, applying the
expression S3 we may conclude that

‖
−−→
C2B‖ =

r2
»
a2 − r21
|a|

(S4)

Also from Figure S4 we may observe the classical relation between the sides of a right-angled triangle
that allow us to determine ‖

−→
AB‖,

‖
−−→
C2A‖2 = ‖

−→
AB‖2 + ‖

−−→
BC2‖2. (S5)

From expressions S4 and S5, we may calculate the distance ‖
−→
AB‖ as follows:

‖
−−→
C2A‖2 = ‖

−→
AB‖2 + ‖

−−→
BC2‖2

⇔ r22 = ‖
−→
AB‖2 +

Ñ
r2
»
a2 − r21
a

é2

⇔ ‖
−→
AB‖2 = r22 −

(a2 − r21)r22
a2

⇔ ‖
−→
AB‖ = r1r2

|a|

(S6)

Knowing the value ‖
−→
AB‖ it is possible to calculate the coordinates of points A and B, in Figure S4 .

Assuming A = (x, y, 0) and B = (x, 0, 0), we have ‖
−→
AB‖ = y. From the expression S6, we may conclude

that
y = ‖

−→
AB‖ = r1r2

|a|
.

On the other hand, ‖
−−→
BC2‖ = |x− a| so, from expression S4 we may conclude that
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‖
−−→
BC2‖ = |x− a| = r2

√
1− r21

a2

⇔ x = a± r2
|a|
»
a2 − r21

Finally, the coordinates of the points A and B are then:

A =

Ç
a− r2
|a|
»
a2 − r21,

r1r2
|a|

, 0

å
B =

Ç
a− r2
|a|
»
a2 − r21, 0, 0

å
With an analogous procedure, it is possible to determinate the coordinates of the points C and D, in

Figure S5.

D =

Ç
a− r2
|a|
»
a2 − r23,

r3r2
|a|

, h

å
E =

Ç
a− r2
|a|
»
a2 − r23, 0, h

å
Knowing the coordinates of the points A,B,D and E, it is now possible to calculate the length of the arcs

of the circumferences represented in Figures S4 and S5. Next, we will present the mathematical deductions
to calculate the length of the arc in the circumference with center C2. For the arc in the circumference with
center C4, the process is similar.

From the expression S3 we may conclude that the θ angle in Figure S4 may be defined as θ =

arccos

Ç√
a2−r21
|a|

å
. Consequently, the arc in circumference with center C2, i.e. the arc ĀG may be

parametrized, in polar coordinates, as follows:

r(θ) = (r2 cos θ + a, r2 sin θ), θ ∈

0, arccos
Ñ»

a2 − r21
|a|

é
The length of the arc ĀG, i.e L(ĀG) may be calculated from the resolution of the curve integral
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L(ĀG) =
∫ arccos

Ç√
a2−r2

1
|a|

å
0

||r′(θ)|| dθ

=
∫ arccos

Ç√
a2−r2

1
|a|

å
0

r2 dθ

⇔ r2 arccos

Ñ»
a2 − r21
|a|

é (S7)

Analogously, the length of an arc D̄F , i.e. L(D̄F ), in Figure S5, is

L(D̄F ) = r2 arccos

Ñ»
a2 − r23
|a|

é
. (S8)

Knowing the length of the arc ĀG and D̄F , the surface area of the part of the cylinder highlighted in
Figure S3 may be calculated from expression S1:

ATrapezium =
(
L(D̄F ) + L(ḠA)

)
× h

2

ATrapezium =⇔ hr2
2

arccos
Ñ»

a2 − r23
|a|

é
+ arccos

Ñ»
a2 − r21
|a|

é (S9)

Determination of the surface area of the region of the semi-sphere

The spherocylinder has in the upper and lower part of the cylinder two semi-spheres, the one at the top
with a center at C4 = (a, 0, h2 ) and the one at the bottom with a center at (a, 0,−h2 ). The area in each of
the semi-spheres that contributes with AHL molecules that will collide with the sphere with a center at C1

is an area of half of a spherical cap. In Figure S6, the surface of half of the spherical cap in the semi-sphere
with center C4 = (a, 0, h2 ) is represented.

Figure S6. Schematic diagram of the sphere and the semi-sphere. Detail of Figure S1.
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This situation is analogous to the mathematical deduction shown in Supplementary Material 1, where only
part of the semi-sphere that represents P. aeruginosa contributes with AHL molecules that will theoretically
collide with C. albicans. Whereas, in the earlier case the area of the semi-sphere that would contribute with
AHL molecules was a spherical cap, in this case only half of the spherical cap contributes with molecules.

The surface area of half of the spherical cap represented in Figure S6, is given by trapezium

A calote
2

= π‖
−−→
MN‖‖

−−→
MQ‖

where, according to the mathematical deductions shown in Supplementary Material 1,

‖
−−→
MN‖ = r2r3

‖
−−−→
C3C4‖

=
r2r3
|a|

and ‖
−−→
MQ‖ =

r2(a−
»
a2 − r23r2)
|a|

=
r2(|a| −

»
a2 − r23)

|a|
.

As such, the surface area of half of the spherical cap with height ‖
−−→
MQ‖ and radius ‖

−−→
MN‖ is given by:

A calote
2

= π‖
−−→
MN‖‖

−−→
MQ‖ = π

r3r
2
2(a−

»
a2 − r23)

a2
(S10)

Expression of the ratio between the surface area in the spherocylinder that contributes with AHL
molecules that will collide with sphere and its total surface area.

Finally, the expression from the ratio between the surface area highlighted in Figure S1 and the surface
area of the spherocylinder, in the conditions defined in this supplementary material, is the following:

Asup
Atotal

=
2× ATrapezium + 2× A calote

2

ACylinder + 2× ASemisphere

Considering the expressions S9 and S10, and having a = r1 + r2 + d, the ratio between the surface area
of the region drawn in the spherocylinder and the total area is, in this situation, the following applies:

Asup
Atotal

=
2× hr2

2

ñ
arccos

Ç√
a2−r23
|a|

å
+ arccos

Ç√
a2−r21
|a|

åô
+

2πr3r
2
2

Ä
a−
√
a2−r23

ä
a2

2πr2h+ 4πr22

=

hr2
2

ñ
arccos

Ç√
a2−r23
|a|

å
+ arccos

Ç√
a2−r21
|a|

åô
+

πr3r
2
2

Ä
a−
√
a2−r23

ä
a2

πr2h+ 2πr22

=

hr2
2

ñ
arccos

Ç√
(r1+r2+d)2−r23
r1+r2+d

å
+ arccos

Ç√
(r1+r2+d)2−r21
r1+r2+d

åô
+

πr3r
2
2

Ä
(r1+r2+d)−

√
(r1+r2+d)2−r23

ä
(r1+r2+d)2

πr2h+ 2πr22
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