Appendix 2

Diﬀusion model analysis and model fit

[bookmark: _CTVP001e2f6dd30c912491b88c4c158b8f67e3a][bookmark: _CTVP00199337353535f4f9186416dcbd033e3ec][bookmark: _CTVP001be19a63209b24c1080e5ff8c4d2741cc][bookmark: _CTVP001d571717ff0754bdfb79389085cb4d597]Analyses followed the same steps in each study. We conducted the diffusion model analysis with the program fast-dm (Voss & Voss, 2007). Following Voss, Nagler, and Lerche (2013), the model’s parameters were estimated separately for each participant. Our analyses followed a twofold procedure of first identifying the optimal model (i.e., model selection using maximum likelihood estimation, ML) and then employing the parameter values of this model to test our hypotheses. The final model was (re-)estimated using the Kolgorov-Smirnov estimation criterion (KS), because it  is robust against outliers whereas ML is particular vulnerable against (fast) outliers (Lerche, Voss, & Nagler, 2016).
 In a first step, we used maximum likelihood as the optimization criterion, because it enabled us to calculate the values of the Akaike Information Criterion (AICs) to compare different models. Our aim was to find the model with least number of parameters (i.e., the simplest model), which fitted the data for most of our participants, and which allowed us to compare parameter values between both tasks. 
[bookmark: _CTVP001884dbc98b8e0417083ddb1121c63b92c]We fitted the model according to the responses participants had to give in their respective task (i.e., the “task response” model, Voss et al., 2013). Thus in the location task, the upper decision threshold corresponded to the right response and the lower decision threshold to the left response. In the identification task, the upper decision threshold corresponded to the “u” response and the lower decision threshold to the “n” response. It would have been also possible to recode the responses to “correct vs. incorrect response” and fit the “correctness” model (i.e., upper threshold = correct response). However, as we needed to apply the same model to both conditions, zr would have to vary as a function of cue validity (i.e., whether the cue location is congruent to the probe location or not). Logically, zr can vary as a function of cue validity in the location task (as the cue location is informative for probe location), but not for the identification task (cue location bears absolutely no information on the identity of the probe). It thus does not make any sense to let zr vary and doing so might have the disadvantage that this effect binds variance that logically needs to belong elsewhere. We would thus argue that the “correctness” model is unsuitable not due to fit but for theoretical reasons and sought to test a model that is theoretically comparable across tasks, which is the "task response" model. Logically, zr effect here are not plausible but possible, participants might have an idiosyncrasy of having a bias towards pressing "n" if the cue if presented on the left (as a carry-over from a horizontal to a vertical SNARC on the keyboard). Thus, there is no logical problem to let zr vary across conditions. In other words, only the “task response” model allows us to test for zr effects in both task without running into theoretical/logical problems in one task (i.e., the identification task). Additionally, if there really was a systematic effect of cue in the identification task (i.e., a result against our hypotheses), we would also find it in the “task response” model. Thus, we do not work for our hypotheses using this model.
[bookmark: _CTVP001cf5d3196f2c34a46bc9ab0df64363f9c]Our search for the best model consisted of two steps. In the first step, we compared four models. The first model was the incorporated all parameter necessary to disentangle the hypothesized effects (i.e., decisional bias, attentional bias). Different drift rates (ν) were estimated as a function of target location and identity. Different relative starting points (zr) were estimated as a function of cue location. Different response-time constants (t0) were estimated as a function of target and cue location. The distance between thresholds a was held constant across all conditions. The variability parameters were set to zero. Thus, the model comprised 11 parameters (four νs, two zrs, four t0s, and one a). We did not model effects of cue valence or arousal, because the main aim of the diffusion model analyses was to uncover the processes underlying the cue validity effect per se. Furthermore, modeling theses effects would have led to numbers of trial per condition which would have been too small for conducting a diffusion model analysis (Voss et al., 2013). Next, we added the variability parameters to enhance model fit. For the second, the third, and the fourth model, we successively added the variability of the response-time constants (st0; model 2, 12 parameters), the relative starting point (szr, model 3, 13 parameters), and the drift rate (sv; model 4, 14 parameters), respectively. Over all studies, the comparison of the four models showed that model 3 had the lowest AICs and was thus the best model for the majority of participants (Nmodel 1= 3, Nmodel 2 = 64, Nmodel 3 = 221, Nmodel 4 = 102). In the second step, we fitted model 3 with different st0s as function of target and cue location (model 5, 16 parameters) as well as additionally with different szrs as function of cue location (model 6, 17 parameters). Over all studies, the comparison of the three models revealed that model 5 was the best model for the majority of participants (Nmodel 3= 72, Nmodel 5 = 188, Nmodel 6 = 130). Hence, model 5 was estimated using KS and its parameter value were then used to test our hypotheses (see main article).
To explore, whether our results were robust against changes in parameter compositions, we also tested for hypothesized differences using parameter values from all other models. The results showed virtually the same pattern as described in the results sections of the article. 
Specifically, we conducted analyses for four studies, with six different models, two model algorithms (ML, KS) on each of the two parameters. For t0 the critical three-way interaction of cue location, target location, and condition was significant at p < .001 in 45 out of 48 potential times. Likewise, for zr, the critical interaction of cue location and condition was always significant – except for models based on KS estimation for Study 2. For maximum transparency, we provide an overview table of all ANOVA results for all studies and models based on the (more robust) KS estimations as well as the (more vulnerable) ML estimations on the project site on OSF.

The following tables display the AIC mean values for each model in each step in each study and each task. Additionally, the table show the number of participants, for whom the particular model the best within the given step of our model search.

	Table A2.1

	AIC mean values and number of participants, for whom the particular model was the best one, as a function of model and step of model search in Study 1

	
	Number of parameters
	AIC (Mean)1
	Nbest model

	
	
	Location
	identification
	location
	identification

	Step 1
	
	
	
	
	

	Model 1
	11
	-384.98
	-335.64
	1
	0

	Model 2
	12
	-746.19
	-477.62
	11
	14

	Model 3
	13
	-786.58
	-485.50
	42
	44

	Model 4
	14
	-766.20
	-489.09
	29
	20

	
	
	
	
	
	

	Step 2
	
	
	
	
	

	Model 3
	13
	-786.58
	-485.50
	21
	4

	Model 5
	16
	-786.80
	-534.43
	36
	49

	Model 6
	17
	-797.29
	-548.60
	26
	25


Note. 1Please not that our selection of models was not based on AIC mean values but on the comparisons between values for each participant. They are displayed to give a general impression of values. Since AICs were not normally distributed and there were outliers, mean values do not directly reflect, which model was the best for most participants.

	Table A2.2

	AIC mean values and number of participants, for whom the particular model was the best one, as a function of model and step of model search in Study 2

	
	Number of parameters
	AIC (Mean)
	Nbest model

	
	
	Location
	identification
	location
	identification

	Step 1
	
	
	
	
	

	Model 1
	11
	-436.68
	-58.30
	0
	0

	Model 2
	12
	-779.73
	-205.60
	2
	8

	Model 3
	13
	-806.31
	-238.86
	19
	22

	Model 4
	14
	-803.40
	-230.53
	7
	6

	
	
	
	
	
	

	Step 2
	
	
	
	
	

	Model 3
	13
	-806.31
	-238.86
	7
	3

	Model 5
	16
	-825.42
	-271.49
	9
	26

	Model 6
	17
	-814.54
	-258.25
	12
	7



	
Table A2.3

	AIC mean values and number of participants, for whom the particular model was the best one, as a function of model and step of model search in Study 3a

	
	Number of parameters
	AIC (Mean)
	Nbest model

	
	
	Location
	identification
	location
	identification

	Step 1
	
	
	
	
	

	Model 1
	11
	-274.96
	61.93
	0
	1

	Model 2
	12
	-569.07
	-12.25
	4
	9

	Model 3
	13
	-611.45
	-38.01
	28
	22

	Model 4
	14
	-616.04
	-55.52
	11
	12

	
	
	
	
	
	

	Step 2
	
	
	
	
	

	Model 3
	13
	-611.45
	-38.01
	16
	2

	Model 5
	16
	-607.40
	-143.96
	12
	28

	Model 6
	17
	-620.08
	-93.93
	15
	14




	Table A2.4

	AIC mean values and number of participants, for whom the particular model was the best one, as a function of model and step of model search in Study 3b

	
	Number of parameters
	AIC (Mean)
	Nbest model

	
	
	Location
	identification
	location
	identification

	Step 1
	
	
	
	
	

	Model 1
	11
	-274.37
	-70.00
	0
	1

	Model 2
	12
	-622.34
	-157.34
	7
	9

	Model 3
	13
	-651.14
	-171.77
	19
	25

	Model 4
	14
	-684.30
	-169.05
	13
	4

	
	
	
	
	
	

	Step 2
	
	
	
	
	

	Model 3
	13
	-651.14
	-171.77
	13
	6

	Model 5
	16
	-653.69
	-220.15
	10
	18

	Model 6
	17
	-682.69
	-223.64
	16
	15



[bookmark: _GoBack]
	Table A2.5

	AIC mean values and number of participants, for whom the particular model was the best one, as a function of model and step of model search across all studies

	
	Number of parameters
	AIC (Mean)
	Nbest model

	
	
	Location
	identification
	location
	identification

	Step 1
	
	
	
	
	

	Model 1
	11
	-345.62
	-143.57
	1
	2

	Model 2
	12
	-686.57
	-260.57
	24
	40

	Model 3
	13
	-723.06
	-278.37
	108
	113

	Model 4
	14
	-721.59
	-281.64
	60
	42

	
	
	
	
	
	

	Step 2
	
	
	
	
	

	Model 4
	13
	-723.06
	-278.37
	57
	15

	Model 5
	16
	-725.54
	-336.95
	67
	121

	Model 6
	17
	-737.15
	-329.66
	69
	61
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