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Data Uncertainty

I Data uncertainty represents lack of knowledge about a geophysical
quantity of interest (QOI) after observing relevant data.

I The true value of the QOI, X, is generally unknown, so plausible/likely
values must be characterized.

I Probability offers a coherent framework for representing the distribution of
the QOI, or the plausible error X̂ − X, given an estimate X̂ based on
observed data.

I Earth science data records are relying on increasingly complex methods
for constructing estimates X̂.

I Remote sensing retrievals using satellite radiances and radiative
transfer models (Rodgers, 2000)

I Data assimilation using Earth system models and multiple data
sources
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VVUQ

I National Research Council report (NRC, 2012) places uncertainty
quantification (UQ) for complex physical systems in a probabilistic
framework.

I UQ methodology seeks to identify the impact of sources, or contributors, to
the distribution of the error for a quantity of interest (QoI).

I A probabilistic framework benefits from representing the system as a
data-generating process, with the QoI as an outcome.

I Monitoring the process includes describing the prediction error under a
particular set of conditions, such as a particular version of a retrieval
algorithm.

I Improving the process can result from improved understanding of error
sources.

I UQ has a role in both monitoring and improvement.
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Observing System
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I Remote sensing observing system is a complex data-generating process
with several key components.

I True top-of-atmosphere radiance is a function of atmospheric state.
I Instrument observes noisy radiance.
I Retrieval algorithm produces estimate of state.
I Science data system scales processing.

I Objective is inference on the state given the observed radiances, an
inverse problem.
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Approaches

Multiple approaches for probabilistic assessment of observing systems
I In situ validation: Summarize the error distribution, X̂ − X, where

substantially more accurate and precise observations of X are available.
I Simulation studies: Monte Carlo experiments with the data-generating

process, estimation procedure, and ensembles of user-specified true QOIs
X.
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Error Distributions

I How should uncertainty be summarized?
I Bias, variance may be sufficient for a symmetric error distribution.
I Quantiles may be more appropriate for skewed, mutli-modal

distributions.
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Current Work

I Toward Unified Error Reporting (TUNER): International effort to provide
validation-based error assessment for retrievals of comparable QOIs from
different satellites.

I NASA AIST effort to develop tools for simulation-based UQ for retrievals
(Hobbs et al., 2017)

I JPL internal initiative on UQ for Earth science applications
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