
Shape constrained kernel-weighted least
squares: Estimating production functions for

Chilean manufacturing industries

This appendix includes:

• Extensions to SCKLS and a description of the relationship between SCKLS, CNLS
and CWB (Appendix A),

• Technical proofs of the theoretical results (Appendix B).

• A test of affinity based on SCKLS (Appendix C)

• An algorithm for SCKLS computational performance (Appendix D).

• Comprehensive results of existing and additional numerical experiments (Appendix
E).

• Description of a semiparametric partially linear model to integrate contextual variable
(Appendix F).

• Details about the application to the Chilean manufacturing data (Appendix G)
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A More on SCKLS, CNLS and CWB

In this section, we first give details on the extensions and practical considerations to SCKLS.

We then mention some recently proposed estimators that are related to SCKLS, and make

connections and comparisons among these methods.

A.1 More on practical considerations and extensions to SCKLS

A.1.1 SCKLS with general constraints

We focus on global concavity/convexity and monotonicity constraints in the main manuscript.

But the SCKLS estimator can handle any types of shape constrained by imposing con-

straints on decision variables {ai, bi}
m
i=1. We re-define the SCKLS estimator as

min
a,b

m
∑

i=1

n
∑

j=1

(yj − ai − (Xj − xi)
′bi)

2K

(

Xj − xi

h

)

subject to l(xi) ≤ ĝ(s)(xi|a, b) ≤ u(xi), i = 1, . . . , m

(A.1)

where a = (a1, . . . , am)
′ and b = (b′1, . . . , b

′
m)

′. l(·) and u(·) represent lower and upper

bounds at each evaluation point respectively. s denotes the order of partial derivative to

each evaluation point xi.

A.1.2 SCKLS with Local Polynomial

With the proposed estimator in (A.1), we are only able to impose the constraints by

using the functional estimate and/or first partial derivatives. For constraints involving a

higher order of derivatives, we need to formulate SCKLS estimator with a higher order

local polynomial function. For the multivariate local polynomial, we borrow the following
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notation from Masry (1996).

r = (r1, . . . , rd), r! = r1!× · · · rd!, r̄ =
d
∑

k=1

rk,

xr = xr1
1 × · · ·xrd

d ,
∑

0≤r̄≤p

=

p
∑

k=0

k
∑

r1=0

· · ·

k
∑

rd=0

, and

(Drg) (x) =
∂rg(x)

∂xr1
1 · · ·∂xrd

d

With this notation, we can approximate any function g : Rd → R locally (around any x)

using a multivariate polynomial of total order p, given by

g(z) :=
∑

0≤r̄≤p

1

r!
(Dr̄g) (x) (z − x)r̄ . (A.2)

We now define the SCKLS estimator with a local polynomial function of order p as follows:

min
bi

m
∑

i=1

n
∑

j=1

(

yj −
∑

0≤r̄≤p

b′i(Xj − xi)
r̄

)2

K

(

Xj − xi

h

)

subject to l(xi) ≤ ĝ(s)(xi|b) ≤ u(xi), i = 1, . . . , m

(A.3)

where bi is the functional or derivative estimates at each evaluation points and b =

(b′1, . . . , b
′
m)

′. When we select p = 1, then the problem becomes exactly same as the

proposed estimator in (A.1). This extension allows us to make the proposed methods more

general and applicable for other applications of shape restricted functional estimation in

which higher order derivative restricts may be required. From a computational complexity

point of view, it is still optimizing a quadratic objective function within a convex solution

space, and thus, the problem is still typically solvable within polynomial time.

As demonstrated in Li and Racine (2007), the rate of convergence of local polynomial

estimator is the same for p = 1 and p = 2. From a theoretical perspective, one could

attempt to select a polynomial estimator with p ≥ 3 to improve its convergence performance

(at least theoretical). But that would require much stronger assumption on the smoothness

of g0, and would lead to additional computational burden1. Our experience suggests that

1While the optimization problem is still polynomial time solvable, the number of decision variables
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SCKLS inherits these properties from the local polynomial method. Therefore, in practice,

with only monotonicity and concavity/convexity constraints, we feel that it suffices to

consider SCKLS with p = 1 (i.e. local linear).

A.1.3 SCKLS with k-nearest neighbor

Our primary application of interest is production functions estimated for census manufac-

turing data where the input distributions are often highly skewed meaning there are many

small establishments, but relatively few large establishments2. To address this issue, we

propose to use a k-nearest neighbor (k-NN) approach in SCKLS which we will refer to as

SCKLS k-NN which is in spirit similar to the extension to the CWB-type estimator pro-

posed by Li et al. (2016). The k-NN approach uses a smaller bandwidth for smoothing in

dense data regions and a larger bandwidth when the data is sparse. For a further descrip-

tion of the method, see for example Li and Racine (2007). For any given k, the formulation

of SCKLS k-NN with monotonicity and concavity constraints leads to a different weighting

scheme in the objective function, as illustrated in the following.

min
ai,bi

m
∑

i=1

n
∑

j=1

(yj − ai − (Xj − xi)
′bi)

2w

(

‖Xj − xi‖

Rxi

)

subject to ai − al ≥ b′i(xi − xl), i, l = 1, . . . , m

bi ≥ 0, i = 1, . . . , m

(A.4)

where w(·) is a general weight function, ‖·‖ is the Euclidean norm and Rxi
denotes the Eu-

clidean distance between xi and k-th nearest neighbor of xi among the set of all covariates

{Xj}
n
j=1. In practice, k can be chosen by leave-one-out cross validation (LOOCV).

would increase and the constraint matrix would become significantly more dense, lending to computational
challenges.

2An establishment is defined as a single physical location where business is conducted or where services
or industrial operations are performed.
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A.1.4 SCKLS with non-uniform grid

As noted in the paper, the SCKLS estimator requires the user to specify the number

and locations of the evaluation points. We can also address the input skewness issue

by constructing the evaluation points differently, using a non-uniform grid method. To

do so, we first use kernel density estimation to estimate the density function for each

input dimension. Then we take the equally spaced percentiles of the estimated density

function and construct non-uniform grid. Figure A.1 demonstrates how the non-uniform

grid are constructed for the 2-dimensional case. In this example, we set the minimum and

maximum of the observed inputs (with respect to each coordinate) as the edge of the grid,

and compute equally spaced percentile. When the support of the covariates is non-regular

(e.g. not a hyperrectangle), we shall limit ourselves to evaluation points inside the convex

hull of {Xj}
n
j=1.

x1

x2

Figure A.1. Example of non-uniform grid with kernel density estimation.
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A.2 Some related work

A.2.1 Convex Nonparametric Least Squares (CNLS)

Kuosmanen (2008) extends Hildreth’s least squares approach to the multivariate setting

with a multivariate input vector, and coins the term “Convex Nonparametric Least Squares”

(CNLS)3. CNLS builds upon the assumption that the true but unknown production func-

tion g0 belongs to the class of monotonically increasing and globally concave functions,

denoted by G2 in this paper. Given the observations {Xj , yj}
n
j=1, a set of unique fitted

values, ŷj = α̂j + β̂jXj , can be found by solving the quadratic programming (QP) problem

min
α,β

n
∑

j=1

(yj − (αj + β′
jXj))

2

subject to αj + β′
jXj ≤ αl + β′

lXj , j, l = 1, . . . , n

βj ≥ 0, j = 1, . . . , n

(A.5)

where αj and βj define the intercept and slope parameters that characterize the estimated

set of hyperplanes. The inequality constraints in (A.5) can be interpreted as a system

of Afriat inequalities (Afriat, 1972; Varian, 1984) to impose concavity constraints. We

emphasize that CNLS does not assume or restrict the domain G2 to only piece-wise affine

functions. We also note that the functional estimates resulting from (A.5) is unique only

at the observed data points. In addition, when d = 1, Chen and Wellner (2016) and

Ghosal and Sen (2016) proved that the CNLS-type estimator attains n−1/2 pointwise rate

of convergence if the true function is piece-wise linear.

Finally, we remark that CNLS is related to the method of sieves (Grenander, 1981;

Chen and Qiu, 2016) in the following way. The estimator could be rewritten as

ĝn ∈ argmin
g∈Gn

1

n

n
∑

j=1

(yj − g(Xj))
2,

where Gn = {g : Rd → R | g(x) = minj∈{1...,n}(αj + β′
jx), with βj ≥ 0 for j = 1, . . . , n}.

3A related maximum likelihood formulation was proposed by Banker and Maindiratta (1992), with its
consistency proved by Sarath and Maindiratta (1997).
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However, since the sets G1,G2, . . . are not compact, most known results on sieves do not

directly apply here.

A.2.2 Constrained Weighted Bootstrap (CWB)

A.2.2.1 Introduction

Hall and Huang (2001) proposed the monotone kernel regression method in univariate func-

tion. Du et al. (2013) generalized this model to handle multiple general shape constraints

for multivariate functions, which they refer to as Constrained Weighted Bootstrap (CWB).

CWB estimator is constructed by introducing weights for each observed data point. The

weights are selected to minimize the distance to unconstrained estimator while satisfying

the shape constraints. The function is estimated as

ĝ(x|p) =

n
∑

j=1

pjAj(x)yj (A.6)

where p = (p1, . . . , pn)
′, pj is the weights introduced for each observation and Aj(x) is a

local weighting matrix (e.g. local linear kernel weighting matrix). Du et al. (2013) relaxed

the restriction imposed by Hall and Huang (2001) that pj is non-negative and propose to

calculate p by minimizing its distance to unrestricted weights, pu = (1/n, . . . , 1/n)′, under

derivative-based shape constraints4. The problem is formulated as follows.

min
p

D(p) =
n
∑

j=1

(pj − pu)
2 =

n
∑

j=1

(pj − 1/n)2

subject to l(xi) ≤ ĝ(s)(xi|p) ≤ u(xi), i = 1, . . . , m

(A.7)

where xi represents a set of points for evaluating constraints, the elements of s represent

the order of partial derivative, and gs(x) = [∂s1g(x) · · ·∂srg(x)]/[∂xs1
1 · · ·∂xsr

r ] for s =

(s1, s2, . . . , sr). Here the shape restrictions (e.g. concavity/convexity and monotonicity

constraints) are imposed at a set of evaluation points {xi}
m
i=1 through setting appropriate

lower and upper bounds to the corresponding partial derivatives of the function. One way to

4The use of the equality constraint
∑

j pj = 1 in Du et al. (2013) is a typo, and this condition is not
used by them. In fact, it may harm the estimation procedure. Our empirical results show that this equality
constraint only makes difference in very few cases and the difference is typically small.
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interpret the CWB estimator is as a two-step process: 1) estimate an unconstrained kernel

estimator; 2) find the shape constrained function that is as close as possible (as measured

by the Euclidean distance in p-space) to the unconstrained kernel estimator. Based on

our experience, CWB tends to suffer from computational difficulties and occasionally poor

estimates in small samples. We suggest changing the objective function to minimize the

distance from the estimated function to the observed data. This modification seems to

improve the estimates empirically as shown in Appendix E.

A.2.2.2 CWB estimator that minimize the distance from the observed data

We propose an extension of the CWB estimator by converting the objective function from

p-space to y-space. Instead of minimizing the distance between the unconstrained estimator

and the shape restricted functional estimate by minimizing the distance between the two

functions in p-space, we propose to minimize the distance between the observed vector of

y and the shape restricted functional estimates in y-space. The estimator, which we shall

refer to as CWB in y-space, is formulated as follows:

min
p

Dy(p) =
n
∑

j=1

(yj − ĝ(Xj |p))
2

subject to l(xi) ≤ ĝ(s)(xi|p) ≤ u(xi), i = 1, . . . , m,
n
∑

j=1

pj = 1.

(A.8)

Since the objective function is not necessarily convex in p, this problem is a general

nonlinear optimization problem which is harder to solve.

A.2.2.3 Calculating the first partial derivative of ĝ(x|p) for CWB

Du et al. (2013) proposed the CWB estimator which requires estimating the first partial

derivatives of unconstrained functional estimates, ĝ(1)(x|p). Here, we test two different

methods of calculating the partial derivatives. The first method is to calculate the numerical

derivative, ĝ(1)(x|p) = ĝ(x+∆|p)−ĝ(x|p)
∆

, to obtain the approximated derivative estimate.

Racine (2016) shows that the numerical derivative is very close to the analytic derivative.
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The second method is to use the slope estimates of local linear estimator directly as a

proxy for the first partial derivative. We evaluate the performance of CWB in p-space

estimator with these two different methods. Table A.1 and Table A.2 summarize the

RMSE performance against the true function on the observed points and the evaluation

points respectively. The experimental setting is based on Experiment 1 in Section 5.

Table A.1. RMSE on observation points for different methods to obtain ĝ(1)(x|p).

Average RMSE on the observation points
Number of observations 100 200 300 400 500

2-input
Numerical derivative 0.260 0.163 0.143 0.153 0.164

Slope estimates of LL 0.421 0.357 0.284 0.306 0.293

3-input
Numerical derivative 0.236 0.256 0.208 0.246 0.240

Slope estimates of LL 0.356 0.427 0.336 0.294 0.279

4-input
Numerical derivative 0.259 0.226 0.222 0.216 0.210

Slope estimates of LL 0.388 0.397 0.276 0.261 0.259

Table A.2. RMSE on evaluation points for different methods to obtain ĝ(1)(x|p).

Average RMSE on the evaluation points
Number of observations 100 200 300 400 500

2-input
Numerical derivative 0.284 0.188 0.157 0.176 0.193

Slope estimates of LL 0.445 0.387 0.321 0.334 0.323

3-input
Numerical derivative 0.309 0.355 0.272 0.331 0.271

Slope estimates of LL 0.438 0.507 0.403 0.371 0.363

4-input
Numerical derivative 0.408 0.381 0.354 0.333 0.308

Slope estimates of LL 0.530 0.535 0.396 0.387 0.368

The results show that CWB using the numerical derivative performs better than CWB

using the slope estimates from the local linear kernel estimator particularly when the sample

size is small.

A.3 A comparison between SCKLS, CNLS and CWB

Figure A.2 is meant to be illustrative of the relationship between the SCKLS, CNLS and

CWB estimators in a two-dimensional estimated ǫ-space where there are more than two

observations, but for the rest of the n−2 observations, their estimated ǫjs are held fix. The
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 ǫ
i

 ǫ
l

Cone of Concave and
Monotonic Functions

  True Function

  SCKLS Estimate

  Unconstrained Kernel Estimate

  CNLS Estimate

   CWB Estimate

(0, 0)

Figure A.2. Comparison of different estimators in the estimated-ǫ-space.

gray area indicates the cone of concave and monotonic functions. CNLS estimates a mono-

tonic and concave function while minimizing the sum of squared errors, that is, minimizing

the distance from the origin to the cone in the estimated ǫ-space. CWB estimates a mono-

tonic and concave function by finding the closest point, measured in p-space, on the cone

of concave and monotonic functions to unconstrained kernel estimate. SCKLS minimizes

a weighted function of estimated errors, and therefore avoids overfitting the observed data.

However, as shown in B.2, SCKLS can be interpreted as minimizing the weighted distance

from the unconstrained local linear kernel estimator to the cone of concave and monotonic

functions.

A.3.1 CNLS as a Special Cases of SCKLS

Let ĝn and ĝCNLS
n denote the SCKLS estimator and the CNLS estimator respectively. We

will next examine the relationship between them.

Assumption A.1. The set of evaluation points is equal to the set of sample input vectors,

i.e. m = n and xi = Xi for i = 1, . . . , n.

Proposition A.1. Suppose that Assumption A.1 holds. Then, for any n, when the vector

10



of bandwidth goes to zero, i.e. ‖h‖ → 0 (where h = (h1, . . . , hd)
′), the SCKLS estimator

ĝn converges to the CNLS estimator ĝCNLS
n pointwise at X1, . . . ,Xn.

Proposition A.1 essentially says that CNLS can be viewed as a special case of SCKLS.

Note that in comparison to the CNLS estimator, our SCKLS estimator has tuning pa-

rameters, which to some extent control the bias–variance tradeoff (in a non-trivial way

given the shape restrictions). For reasonable values of these tuning parameters, SCKLS

estimator performs better than CNLS. See also Section 5 of the main manuscript. This

is especially true for the estimates close to the boundary of the input space, where im-

posing the shape constraint alone could lead to severe overfitting of the data, and thus

biased estimates. Indeed, in view of Theorem 3 (from the main manuscript), we have that

supS

∣

∣ĝn(x) − g0(x)
∣

∣ = op(1), while on the other hand, supS

∣

∣ĝCNLS
n (x) − g0(x)

∣

∣ does not

converge to zero in probability.

Additional equivalence results can also be shown. Proposition A.2 shows the equivalence

of linear regression subject to monotonicity constraints and the SCKLS estimator when the

bandwidth vector approaches infinity.

Proposition A.2. Given Assumption 1(v). For any given n, when the bandwidth vector

goes to infinity (i.e. mink=1,...,d hk → ∞), the SCKLS estimator converges to the least

squares estimator of the linear regression model subject to monotonicity constraints.

A.3.2 CWB in y-space as a Special Cases of SCKLS

Let ĝn and ĝCWBY
n denote the SCKLS estimator and the CWB y-space estimator respec-

tively. We will next examine the relationship between them.

Proposition A.3. Suppose that Assumption A.1 holds. Then, for any n, when the vector

of bandwidth goes to zero for both the SCKLS estimator and the CWB in y-space estimator,

i.e. ‖h‖ → 0 (where h = (h1, . . . , hd)
′), the SCKLS estimator ĝn converges to the CWB in

y-space estimator ĝCWBY
n pointwise at X1, . . . ,Xn.

Proposition A.3 states that SCKLS and CWB in y-space estimators converge to the

same estimates as ‖h‖ → 0. Combining with Proposition A.1, CNLS can be viewed as a

special case of SCKLS and CWB in y-space.
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A.3.3 The relationship between CWB in p-space and SCKLS

Again start from the SCKLS estimator, and in view of Assumption 1 (v), for any sufficiently

small h, we have

K

(

Xj − xi

h

)

=











0 if xi 6= Xj,

K(0) if xi = Xj,
for ∀i, j.

Then, the objective function of the SCKLS estimator (3) is equal to
∑n

j=1(yj − aj)
2K(0),

and thus

argmin
a1,b1,...,an,bn

n
∑

j=1

(yj − aj)
2K(0) = argmin

a1,...,an

n
∑

j=1

(yj − aj)
2 = argmin

a1,...,an

L(g(aj))

where L(·) =
∑n

j=1(·)
2 is the squared error loss function, g(aj) = yj − aj the definition

of the residual.

Alternatively now consider the objective function of CWB, specificallyD(p) =
∑n

j=1(pu−

pj)
2 =

∑n
j=1(1/n − pj)

2 = L(m(g(pj))). And let L(·) continue to be defined as above as

the squared error lost function and g(pj) as the definition of the residual. This implies

that m(·) = ·
yjn

. Therefore, the CWB estimator can be interpreted as a projection of

a local polynomial estimator to the cone of functions which are monotonic and concave

in which the direction of projection minimizes a specific weighting of the unconstrained

local polynomial residuals in which the weights are defined as 1
yjn

. Therefore, even if the

vector of bandwidth goes to zero for the CWB in p-space estimator, i.e. ‖h‖ → 0 (where

h = (h1, . . . , hd)
′), the CWB estimator and CNLS are not equivalent because the yj in the

denominator of the weights is not a function of the bandwidth.

A.3.4 On the computational aspects

We also compare the computational burden of each estimators. Table A.3 shows the size

of quadratic programming problems of each estimators: SCKLS, CNLS and CWB. The

size of a quadratic programming problem of the SCKLS estimator is fully controllable

because the number of decision variables and constraints is a function of the number of
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evaluation points and independent of the number of observed points. Because of this,

we can solve large-scale problems with n > 100, 000 using the SCKLS estimator while

other shape constrained nonparametric estimators might face prohibitive computational

difficulties without any data pre-processing.

Table A.3. The size of quadratic programming problems of each estimator.

SCKLS CNLS CWB

Number of decision variables m(d+ 1) n(d+ 1) n

Number of global concavity constraints m(m−1) n(n− 1) m(m−1)

B Technical proofs

B.1 Summary of the proof strategy

Theorems 1– 4 concern the consistency and convergence rate of the SCKLS estimator and

serve as the primary results in our theoretical development. As such, before presenting the

technical details, we summarize our proof strategy as follows:

1. We rewrite the SCKLS estimator, after some manipulations, as the projection of the

local linear estimator to a convex cone of monotonic and concave functions under a

certain norm. More precisely, the SCKLS estimator

ĝn ∈ argming∈G2
‖g − g̃n‖

2
n,m,

where g̃n is the local linear estimator, G2 is the set that contains all the concave and

increasing functions, and ‖ · ‖n,m is a norm defined in detail later in Appendix B.2.

2. (Theorem 1). Let ĝn be the SCKLS estimator and g0 ∈ G2 be the truth. Using the

new formulation of SCKLS above, we see that

‖ĝn − g̃n‖n,m ≤ ‖g0 − g̃n‖n,m.
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Moreover, by the triangular inequality, we have that

‖ĝn − g0‖n,m ≤ ‖ĝn − g̃n‖n,m + ‖g̃n − g0‖n,m ≤ 2‖g̃n − g0‖n,m.

Using the results on the uniform consistency of the local linear estimator (e.g. Fan

and Guerre (2016), see our Lemma B.1 and Lemma B.2), we can bound the RHS

of the triangle inequality equation by Op(n
−2/(4+d) logn) = op(1). Consequently,

‖ĝn−g0‖n,m converges to zero at the same rate. To complete the proof, we show that

the discrete L2 distance between ĝn and g0 is bounded above by a constant times

‖ĝn − g0‖n,m.

3. (Theorem 2). Building upon Theorem 1, we then make use of the concavity of ĝn

and g0 to establish uniform consistency. Loosely speaking, this relies on the fact that

the convergence in L2 for a sequence of Lipschitz (and concave) functions implies the

uniform convergence in the interior of the domain. See Lemma B.3 and Lemma B.4

below for more detail. Note that we only look at ĝn on the a compact subset interior

of its domain, in order to make sure that ĝn is Lipschitz there. That is also why we

do not have consistency on the boundary from the current proof strategy.

4. (Theorem 3). If we let the number of evaluation points, m, grow at a certain rate

slower than n, we can extend the uniform consistency result to the entire support

of X. The assumption on the rate of growth of m makes sure that the first partial

derivative of SCKLS, ∂ĝn
∂x

(x), is bounded for some positive constant, so the SCKLS

is Lipschitz over the entire domain.

5. (Theorem 4). This can be viewed as a generalization of Theorem 2. The main ingre-

dient of its proof is to establish ‖ĝn − g∗0‖n,m = op(1). Then the uniform consistency

follows from the concavity of ĝn and g∗0 via Lemma B.4.

B.2 Alternative definition of SCKLS

Recall that given observations {Xj, yj}
n
j=1 and evaluation points {xi}

m
i=1, the (uncon-

strained) local linear estimator at xi is (ãi, b̃i) for i = 1, . . . , m, where (ã1, b̃1, . . . , ãm, b̃m)
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is the (unique) minimizer of

m
∑

i=1

n
∑

j=1

(yj − ai − (Xj − xi)
′bi)

2K

(

Xj − xi

h

)

.

For simplicity, we assume that the bandwidth is equal for all input dimensions, i.e. h =

(h, . . . , h)′. Since the objective function is quadratic, for any (a1, b1, . . . , am, bm), its value

equals

nhd

m
∑

i=1

(

ãi − ai, (b̃i − bi)
′h
)

Σi





ãi − ai

(b̃i − bi)h



+ Const

where

Σi =
1

nhd

n
∑

j=1

U
(Xj − xi

h

){

U
(Xj − xi

h

)}′

K

(

Xj − xi

h

)

with U(x) being the vector (1,x′)′ and

Const =

m
∑

i=1

n
∑

j=1

(yj − ãi − (Xj − xi)
′b̃i)

2K

(

Xj − xi

h

)

.

Therefore, SCKLS can be simply viewed as a minimizer of

m
∑

i=1

(

ãi − ai, (b̃i − bi)
′h
)

Σi





ãi − ai

(b̃i − bi)h





subject to the shape constraints imposed on (a1, b1, . . . , am, bm). More generally, fixing

{X1, . . . ,Xn}, {x1, . . . ,xm} and h, and define a new squared distance measure between

two functions g1, g2 as

‖g1−g2‖
2
n,m =

1

m

m
∑

i=1

(

g1(xi)−g2(xi),
(∂g1
∂x

(xi)−
∂g2
∂x

(xi)
)′
h
)

Σi





g1(xi)− g2(xi)
(

∂g1
∂x

(xi)−
∂g2
∂x

(xi)
)′
h



 ,
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then SCKLS belongs to5

argmin
g∈G2

‖g − g̃n‖n,m

where G2 is the set that contains all the concave and increasing functions from S to R.

Below, we list some useful results on the behaviors of Σi and (ãi, b̃i). These results

follow from Fan and Guerre (2016).

Lemma B.1 (Lemma 5 of Fan and Guerre (2016), Page 508). Suppose that Assumption

1(i)-1(vi) hold, then with probability one, there exists C > 1 such that the eigenvalues of

Σi are in [1/C, C] for all i = 1, . . . , m for sufficiently large n.

Lemma B.2 (Proposition 7 of Fan and Guerre (2016), Page 509). Suppose that Assumption

1(i)-1(vi) hold, then as n → ∞,

sup
i=1,...,m

(

|ãi − g0(xi)|
2,
∥

∥

∥
h
{

b̃i −
∂g0
∂x

(xi)
}∥

∥

∥

2)

= Op(n
−4/(4+d) log n).

B.3 Proof of Theorems in Section 3

B.3.1 Proof of Theorem 1

Proof. With a sufficiently large n, the uniqueness of the estimates of ĝn(xi) and ∂ĝn
∂x

(xi)

for i = 1, . . . , m is established because our objective function corresponds to is a quadratic

programming problem with a positive definite (strictly convex) objective function with a

feasible solution. See Bertsekas (1995).

Based on our characterization of SCKLS in Appendix B.2, we note that the objective

function at the SCKLS estimate is smaller than or equal to that at the truth, and thus

‖ĝn − g̃n‖
2
n,m ≤ ‖g0 − g̃n‖

2
n,m.

5To be more precise technically, if g1 − g2 is not differentiable, then ‖g1 − g2‖n,m needs to be taken
as the infimum among all possible sub-gradients in the previous definition. Nevertheless, since we only
consider the behavior of the functions at finitely many points, without loss of generality, here we can
restrict ourselves to differentiable functions.
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Moreover, by the triangular inequality, we have that

‖ĝn − g0‖n,m ≤ ‖ĝn − g̃n‖n,m + ‖g̃n − g0‖n,m ≤ 2‖g̃n − g0‖n,m.

As such,

‖ĝn − g0‖
2
n,m ≤ 4‖g̃n − g0‖

2
n,m. (B.1)

Recall that the (unconstrained) local linear estimator at xi is (ãi, b̃i) for i = 1, . . . , m. It

follows from Lemma B.2 that

‖g̃n−g0‖
2
n,m =

1

m

m
∑

i=1

(

ãi−g0(xi),
(

b̃i−
∂g0
∂x

(xi)
)′
h
)

Σi





ãi − g0(xi)
(

b̃i −
∂g0
∂x

(xi)
)

h



 = Op(n
−4/(4+d) log n)

In addition, from Lemma B.1, we have that

‖ĝn − g0‖
2
n,m =

1

m

m
∑

i=1

(

ĝn(xi)− g0(xi),
(∂ĝn
∂x

(xi)−
∂g0
∂x

(xi)
)′
h
)

Σi





ĝn(xi)− g0(xi)
(

∂ĝn
∂x

(xi)−
∂g0
∂x

(xi)
)

h





≥
1

Cm

m
∑

i=1

(ĝn(xi)− g0(xi))
2, (B.2)

where C is the constant mentioned in the statement of Lemma B.1.

Plugging the above two equations into (B.1) yields

1

m

m
∑

i=1

(ĝn(xi)− g0(xi))
2 ≤ Op(n

−4/(4+d) log n) = op(1).

B.3.2 Proof of Theorem 2

For the sake of clarity, we have divided the proof of Theorem 2 into several parts.

B.3.2.1 Some useful lemmas

Here we list two useful lemmas on the convergence of convex functions.
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Lemma B.3. Suppose that f0, f1, f2, . . . : C
′ → R are Lipschitz and convex functions,

where C ′ ⊂ R
d is a compact and convex set. In addition, assume that these functions all

have the same bound and Lipschitz constant. Then

lim
n→∞

∫

C′

{fn(x)− f0(x)}
2dx = 0

implies that

lim
n→∞

sup
x∈C

|fn(x)− f0(x)| = 0

for any compact C in the interior of C ′.

Proof. Suppose that the common Lipschitz constant is M > 0. Moreover, suppose that

sup
x∈C′

inf
y∈C

‖x− y‖ =: δ.

Essentially, that means that for any x ∈ C ′, the ball of radius δ centered at x (denoted as

Bδ(x)) intersects with C.

Next, suppose that supx∈C |fn(x)− f0(x)| ≥ ǫ for some ǫ > 0. Let

x∗ ∈ argmaxx∈C |fn(x)− f0(x)|.

Then for any x that lies inside the ball of radius min{δ, ǫ/(4M)} centered at x∗, we have

that

|fn(x)− f0(x)| = |fn(x)− fn(x
∗) + fn(x

∗)− f0(x
∗) + f0(x

∗)− f0(x)|

≥ |fn(x
∗)− f0(x

∗)| − |fn(x)− fn(x
∗)| − |f0(x

∗)− f0(x)|

≥ ǫ−
ǫ

4M
M −

ǫ

4M
M =

ǫ

2
,

where we made use of the Lipschitz constant for fn and f0 in the second last line above.

Consequently,

∫

C′

{fn(x)− f0(x)}
2dx ≥

( ǫ

2

)2

Vol(Bmin{δ,ǫ/(4M)}(x
∗)) = Const.× ǫd+2
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for any 0 < ǫ < 4Mδ.

But since ǫ > 0 is arbitrary, lim supn→∞ supx∈C |fn(x)− f0(x)| ≥ ǫ for any sufficiently

small ǫ would imply

lim sup
n→∞

∫

C′

{fn(x)− f0(x)}
2dx ≥ Const. × ǫd+2,

violating

lim
n→∞

∫

C′

{fn(x)− f0(x)}
2dx = 0.

Our proof is thus completed by contradiction.

The following Lemma B.4 can be viewed as a small extension of Lemma B.3. This is

the version that we shall use in the proof of Theorem 2.

Lemma B.4. Suppose that f0, f1, f2, . . . : C
′ → R are Lipschitz and convex functions (that

could be random), where C ′ ⊂ R
d is a compact and convex set. In addition, assume that

these functions all have the same bound and Lipschitz constant. Furthermore, q : C ′ → R

with infx∈C′ q(x) > 0. Then, for any fixed compact set C in the interior of C ′,

∫

C′

{fn(x)− f0(x)}
2q(x)dx

p
→ 0

implies that

sup
x∈C

|fn(x)− f0(x)|
p
→ 0

as n → ∞.

Proof. Following the arguments in the proof of Lemma B.3, we see that supx∈C |fn(x) −

f0(x)| ≥ ǫ would entail

∫

C′

{fn(x)− f0(x)}
2q(x)dx ≥

( ǫ

2

)2

Vol(Bmin{δ,ǫ/(4M)}(x
∗)) inf

x∈C
q(x) = Const.× ǫd+2

for any sufficiently small ǫ. Consequently,
∫

C′
{fn(x) − f0(x)}

2q(x)dx
p
→ 0 implies that

supx∈C |fn(x)− f0(x)|
p
→ 0.
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B.3.2.2 Lipschitz continuity of SCKLS

For the reasons that will become clearer later, it is useful to investigate the Lipschitz

continuity of SCKLS before we present our proof of Theorem 2. Our finding is summarized

in the following lemma. Its proof is similar to that of Proposition 4 of Lim and Glynn (2012,

Page 201–202), or that of Theorem 1 of Chen and Samworth (2016, online supplementary

material, Page 2–6). We provide a concise version of the proof for the sake of completeness.

To better illustrate its main idea and intuition, below we focus on the scenario of d = 1.

Lemma B.5. Under the assumptions of the first part of Theorem 2 (in the case where m

increases with n), for any convex and compact set C ⊂ int(S) (where int(·) denotes the

interior of a set), there exists some constants B > 0 and M > 0 such that ĝn is B-bounded

and M-Lipschitz over C with probability one as n → ∞.

Proof. As explained before, here we focus on the scenario of d = 1. Without loss of

generality, we can take S = [0, 1] and C = [δ, 1− δ] for some δ ∈ (0, 1/2).

Let B0 = sup[0,1] |g0(x)|. First, we show that the event

sup
x∈[δ,1−δ]

|ĝn(x)| ≤ 2B0 + 1 =: B

happens with probability one as n → ∞.

Since ĝn is increasing, supx∈[δ,1−δ] |ĝn(x)| = max
(

|ĝn(δ)|, |ĝn(1 − δ)|
)

. In addition, due

to the monotonicity of ĝn, suppose that ĝn(δ) ≤ 0, then |ĝn(x)| ≥ |ĝn(δ)| for x ∈ [0, δ];

otherwise, if ĝn(δ) > 0, |ĝn(x)| ≥ |ĝn(δ)| for x ∈ [δ, 2δ] (actually, this statement is true

for x ∈ [δ, 1]; but for our purpose, it suffices to only consider x ∈ [δ, 2δ]). As such,
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|ĝn(δ)| > 2B0 + 1 would imply that

1

m

m
∑

i=1

(ĝn(xi)− g0(xi))
2 ≥

1{ĝn(δ)≤0}

m

m
∑

i=1

(ĝn(xi)− g0(xi))
21{xi∈[0,δ]}

+
1{ĝn(δ)>0}

m

m
∑

i=1

(ĝn(xi)− g0(xi))
21{xi∈[δ,2δ]}

≥ (2B0 + 1− B0)
2

(

1{ĝn(δ)≤0}

m

m
∑

i=1

1{xi∈[0,δ]} +
1{ĝn(δ)>0}

m

m
∑

i=1

1{xi∈[δ,2δ]}

)

≥ (B0 + 1)2min

(

1

m

m
∑

i=1

1{xi∈[0,δ]},
1

m

m
∑

i=1

1{xi∈[δ,2δ]}

)

n→∞
≥ B2

0δmin
[0,1]

q(x) > 0.

where q(·) is the density function with respect to what the empirical distribution of {x1, . . . ,xm}

converges to (see Assumption 2(i)). Here the last line also follows from Assumption 2(i).

Note that Theorem 1 says that 1
m

∑m
i=1(ĝn(xi)− g0(xi))

2 = op(1), which would result in a

contradiction. Therefore, |ĝn(δ)| ≤ 2B0 + 1.

Furthermore, we can reapply the above argument to show that |ĝn(1 − δ)| ≤ 2B0 + 1.

Consequently,

sup
x∈[δ,1−δ]

|ĝn(x)| ≤ 2B0 + 1 = B

happens with probability one as n → ∞.

Second, note that the above proof works for any δ ∈ (0, 1/2). Therefore, we also have

that

sup
x∈[δ/2,1−δ/2]

|ĝn(x)| ≤ 2B0 + 1

with probability one as n → ∞.

Finally, since ĝn is concave, we note that the Lipschitz constant over [δ, 1−δ] is bounded

above by

max
( |ĝn(δ/2)− ĝn(δ)|

δ/2
,
|ĝn(1− δ/2)− ĝn(1− δ)|

δ/2

)

≤ 4(2B0 + 1)/δ =: M.

In other words, intuitively speaking, in terms of the Lipschitz constant, the most extreme

case for concave functions always occurs on the boundary. For general cases (i.e. d > 1),
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see for instance, van der Vaart and Wellner (1996, Page 165, Problem 7).

B.3.2.3 Putting things together to prove Theorem 2

Proof.

First claim: when m increases with n.

Let C ′ be a compact and convex set such that C ⊂ int(C ′) and C ′ ⊂ int(S), where

int(·) denotes the interior of a set.

By Lemma B.5, we have that ĝn is B-bounded andM-Lipschitz over C ′ with probability

one as n → ∞. Therefore, {ĝn(x)− g0(x)}
21{x∈C′} belongs to the class of functions that is

bounded and equicontinuous over C ′. By Theorem 3.1 of (Rao, 1962, Page 662) (which can

also be viewed as a generalization of the Uniform Law of Large Numbers; see also Chapter

2.4 of van der Vaart and Wellner (1996)), we have that

∣

∣

∣

∣

∣

1

m

m
∑

i=1

(ĝn(xi)− g0(xi))
21{xi∈C′} −

∫

C′

{ĝn(x)− g0(x)}
2q(x)dx

∣

∣

∣

∣

∣

p
→ 0.

In addition, it follows from Theorem 1 that

op(1) =
1

m

m
∑

i=1

(ĝn(xi)− g0(xi))
2 ≥

1

m

m
∑

i=1

(ĝn(xi)− g0(xi))
21{xi∈C′}.

Combining the above two equations together yields

∫

C′

{ĝn(x)− g0(x)}
2q(x)dx = op(1).

It then follows immediately from Lemma B.4 that as n → ∞,

sup
x∈C

|ĝn(x)− g0(x)|
p
→ 0.

Second claim: when m is fixed.
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In views of Lemma B.1 and Theorem 1,

1

C

m
∑

i=1

[

|ĝn(xi)− g0(xi)|
2 +

∥

∥

∥

(∂ĝn
∂x

(xi)−
∂g0
∂x

(xi)
)

h
∥

∥

∥

2
]

≤ ‖ĝn−g0‖
2
n,m = Op(n

−4/(4+d) logn)

where the first inequality is from Lemma B.1, and the last equality is from Theorem 1.

Sincem is fixed and h = O(n−1/(4+d)), it follows from that |ĝn(xi)−g0(xi)| = Op(n
−2/(4+d) log n)

p
→

0 and ‖∂ĝn
∂x

(xi)−
∂g0
∂x

(xi)‖ = Op(n
−1/(4+d) log n)

p
→ 0 for every i = 1, . . . , m.

B.3.3 Proof of Theorem 3

Proof. Using Equation (B.2) but focusing on the difference between the derivatives instead,

we have that

h2

Cm

m
∑

i=1

∥

∥

∥

(∂ĝn
∂x

(xi)−
∂g0
∂x

(xi)
)∥

∥

∥

2

≤ ‖ĝn − g0‖
2
n,m = Op(n

−4/(4+d) log n)

as n → ∞. It then follows from h = O(n−1/(4+d)) and Assumption 3 that

m
∑

i=1

∥

∥

∥

∂ĝn
∂x

(xi)−
∂g0
∂x

(xi)
∥

∥

∥

2

= Op(h
−2mn−4/(4+d) logn) = op(1).

This implies that maxi=1,...,m

∥

∥

∥

∂ĝn
∂x

(xi)
∥

∥

∥

∞
≤ supx∈S

∥

∥

∥

∂g0
∂x

(x)
∥

∥

∥

∞
+ op(1). Now since

ĝn(x) = min
i∈{1,...,m}

{

ĝn(xi) + (x− xi)
′∂ĝn
∂x

(xi)
}

,

we have that with probability one,

sup
x∈S

∥

∥

∥

∂ĝn
∂x

(x)
∥

∥

∥

∞
≤ M

for some M > 0, as n → ∞.

For any ǫ > 0, we can always find a compact set Cǫ ⊂ S such that supx∈S infy∈Cǫ
‖x−

y‖ < ǫ
2(M+Mg0 )

, whereMg0 is the Lipschitz constant of g0. In view of Theorem 2, supx∈Cǫ
|ĝn(x)−
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g0(x)| → 0 in probability. Therefore,

sup
x∈S

|ĝn(x)− g0(x)| ≤ sup
x∈Cǫ

|ĝn(x)− g0(x)|+ (M +Mg0)
{

sup
x∈S

inf
y∈Cǫ

‖x− y‖
}

≤ ǫ

as n → ∞. Since ǫ is picked arbitrarily, we have shown the consistency of ĝn over S.

B.4 Proof of Theorems in Section 4

B.4.1 Proof of Theorem 4

Proof. Using the definition of SCKLS in Appendix B.2 and the notation in the proofs of

Theorem 1 and Theorem 2, we have that

m
∑

i=1

(

ãi − g∗0(xi),
(

b̃i −
∂g∗0
∂x

(xi)
)′
h
)

Σi





ãi − g∗0(xi)
(

b̃i −
∂g∗0
∂x

(xi)
)

h





≥
m
∑

i=1

(

ãi − âi, (b̃i − b̂i)
′h
)

Σi





ãi − âi
(

b̃i − b̂i
)

h





=

m
∑

i=1

(

ãi − g∗0(xi),
(

b̃i −
∂g∗0
∂x

(xi)
)′
h
)

Σi





ãi − g∗0(xi)
(

b̃i −
∂g∗0
∂x

(xi)
)

h





+ 2

m
∑

i=1

(

ãi − g∗0(xi), (b̃i −
∂g∗0
∂x

(xi))
′h
)

Σi





g∗0(xi)− âi

(
∂g∗0
∂x

(xi)− b̂i
)

h





+

m
∑

i=1

(

g∗0(xi)− âi, (
∂g∗0
∂x

(xi)− b̂i)
′h
)

Σi





g∗0(xi)− âi
(∂g∗0

∂x
(xi)− b̂i

)

h





where we recall that âi and b̂i are respectively the estimated value and its gradient from

SCKLS at evaluation point xi, i.e., âi = ĝn(xi) and b̂i =
∂ĝn
∂x

(xi).
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Therefore, in view of Lemma B.2, with probability one, for sufficiently large n,

2

m

m
∑

i=1

(

ãi − g∗0(xi), (b̃i −
∂g∗0
∂x

(xi))
′h
)

Σi





âi − g∗0(xi)

(b̂i −
∂g∗0
∂x

(xi))h



 (B.3)

≥
1

m

m
∑

i=1

(

g∗0(xi)− âi, (
∂g∗0
∂x

(xi)− b̂i)
′h
)

Σi





g∗0(xi)− âi
(∂g∗0

∂x
(xi)− b̂i

)

h



 ≥
1

mC

m
∑

i=1

(g∗0(xi)− âi)
2

(B.4)

Next, we show that the quantity in (B.3) converges to zero in probability as n → ∞.

The proof can be divided into six steps:

1. The contribution to (B.3) from evaluation points lying outside a carefully pre-chosen

compact subset S′ of the interior of S (denoted as int(S)) can be made arbitrarily

small. This follows from the Cauchy–Schwarz inequality that

1

m

m
∑

i=1

(

ãi − g∗0(xi), (b̃i −
∂g∗0
∂x

(xi))
′h
)

Σi





âi − g∗0(xi)

(b̂i −
∂g∗0
∂x

(xi))h



 1{x/∈S′}

≤

√

√

√

√

√

1

m

m
∑

i=1

(

ãi − g∗0(xi), (b̃i −
∂g∗0
∂x

(xi))′h
)

Σi





ãi − g∗0(xi)

(b̃i −
∂g∗0
∂x

(xi))h



 1{x/∈S′} (B.5)

×

√

√

√

√

√

1

m

m
∑

i=1

(

âi − g∗0(xi), (b̂i −
∂g∗0
∂x

(xi))′h
)

Σi





âi − g∗0(xi)

(b̂i −
∂g∗0
∂x

(xi))h



. (B.6)

Because of Lemma B.1 and Assumption 2(i), the quantity in (B.5) can be made arbi-

trarily small by choosing S′ sufficiently close to S. In addition, applying the Cauchy–
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Schwarz inequality to (B.3) and comparing it to (B.4) yields

2

√

√

√

√

√

1

m

m
∑

i=1

(

ãi − g∗0(xi), (b̃i −
∂g∗0
∂x

(xi))′h
)

Σi





ãi − g∗0(xi)

(b̃i −
∂g∗0
∂x

(xi))h





×

√

√

√

√

√

1

m

m
∑

i=1

(

âi − g∗0(xi), (b̂i −
∂g∗0
∂x

(xi))′h
)

Σi





âi − g∗0(xi)

(b̂i −
∂g∗0
∂x

(xi))h





≥
1

m

m
∑

i=1

(

g∗0(xi)− âi, (
∂g∗0
∂x

(xi)− b̂i)
′h
)

Σi





g∗0(xi)− âi
(∂g∗0

∂x
(xi)− b̂i

)

h



 ,

so (B.6) is no greater than

2

√

√

√

√

√

1

m

m
∑

i=1

(

ãi − g∗0(xi), (b̃i −
∂g∗0
∂x

(xi))′h
)

Σi





ãi − g∗0(xi)

(b̃i −
∂g∗0
∂x

(xi))h





→ 2
{

∫

S

(g0(x)− g∗0(x))
2Q(dx)

}1/2

≤ 2
{

∫

S

g20(x)Q(dx)
}1/2

.

Consequently, the claim in this step is proved.

2. We now investigate the contribution to (B.3) from evaluation points lying inside S′.

Using Lemma B.5, we have that ĝn is bounded (i.e. from both below and above) and

M-Lipschitz over S′ in probability.

Combining this with Lemma B.1 implies that

∣

∣

∣

∣

∣

1

m

m
∑

i=1

(

ãi − g∗0(xi), (b̃i −
∂g∗0
∂x

(xi))
′h
)

Σi





âi − g∗0(xi)
(

b̂i −
∂g∗0
∂x

(xi)
)

h



 1{x∈S′}

−
1

m

m
∑

i=1

(

(g0 − g∗0)(xi), (
∂(g0 − g∗0)

∂x
(xi))

′h

)

Σi





âi − g∗0(xi)
(

b̂i −
∂g∗0
∂x

(xi)
)

h



 1{x∈S′}

∣

∣

∣

∣

∣

→ 0
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in probability. As such, we can instead work on

1

m

m
∑

i=1

(

(g0 − g∗0)(xi), (
∂(g0 − g∗0)

∂x
(xi))

′h

)

Σi





âi − g∗0(xi)
(

b̂i −
∂g∗0
∂x

(xi)
)

h



1{x∈S′} (B.7)

3. Next, we bound (and eliminate) the influence from the parts involving partial derivatives

of g0, g
∗
0 and ĝn in (B.7). Since ĝn is bounded and M-Lipschitz over S′ in probability,

together with Lemma B.2, we could bound (B.7) from above by

1

m

m
∑

i=1

(g0(xi)− g∗0(xi))(ĝn(xi))− g∗0(xi))1{x∈S′} +O(h) +O(h2),

which is arbitrarily close to 1
m

∑m
i=1(g0(xi)− g∗0(xi))(ĝn(xi)− g∗0(xi))1{x∈S′} as n → ∞

(i.e. h → 0). Here we also used the fact that supi=1,...,m |Σ
(11)
i − 1| → 0, where Σ

(11)
i is

the first diagonal entry of the matrix Σi.

4. Now we re-expand ĝn from S′ to S as

ĝS
′

n (x) = min
i∈{1,...,m|xi∈S′},

{

ĝn(xi) + (x− xi)
′∂ĝn
∂x

(xi)
}

.

Three useful facts about ĝS
′

n are listed below:

• ĝS
′

n ≥ ĝn, with ĝS
′

n (xi) = ĝn(xi) for any xi ∈ S′.

• there exists some B > 0 such that supx∈S ĝS
′

n (x) ≤ B in probability. Importantly,

given that there is a common compact and convex set C such that C ⊂ S′ for all

the S′ to be considered, the constant B does not depend on the choice of S′. To

see this, we note that ĝCn = ĝn over C, which is also B′-bounded and M ′-Lipschitz

over C in probability via Lemma B.5. Then it follows that

ĝS
′

n ≤ ĝCn ≤ B′ +M ′ sup
y1,y2∈S

‖y1 − y2‖ =: B

in probability as n → ∞.

• The function {(g0−g∗0)(ĝn−g∗0)}(·) is bounded and Lipschitz over S′ in probability
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(where the constants do not depend on n). So is {(g0 − g∗0)(ĝ
S′

n − g∗0)}(·) over S.

This also means that {(g0 − g∗0)(ĝ
S′

n − g∗0)}(·) is equicontinuous over S.

5. Returning to the quantity we mentioned at the end of Step 3, we note that

1

m

m
∑

i=1

(g0(xi)− g∗0(xi))(âi − g∗0(xi)1{xi∈S′}

=
1

m

m
∑

i=1

(

(g0 − g∗0)(ĝ
S′

n − g∗0)
)

(xi)−
1

m

m
∑

i=1

(

(g0 − g∗0)(ĝ
S′

n − g∗0)
)

(xi)1{xi /∈S′}

=
1

m

m
∑

i=1

(

(g0 − g∗0)(ĝ
S′

n − g∗0)
)

(xi)−
1

m

m
∑

i=1

(

(g0 − g∗0)(ĝn − g∗0)
)

(xi)1{xi /∈S′}

−
1

m

m
∑

i=1

(

(g0 − g∗0)(ĝn − ĝS
′

n )
)

(xi)1{xi /∈S′}

= (I) + (II) + (III).

We deal with each of these items separately.

• By the third fact listed in the above Step 4 and Theorem 3.1 of Rao (1962), (I) in

the limit (i.e. as n → ∞) is at most

sup
g∈G2

∫

S

{(g0(x)− g∗0(x)}{g(x)− g∗0(x)}q(x)dx ≤ 0.

Note that g∗0 minimizes

G(g) :=

∫

S

(g0(x)− g(x))2q(x)dx

over all g ∈ G2. The previous inequality thus follows by studying the functional

derivative for the function G(·) at g∗0 in the direction of g−g∗0 (N.B. g∗0+ǫ(g−g∗0) ∈

G2 for ǫ → 0) for all g ∈ G2.

• Both |(II)| and |(III)| in the limit can be arbitrarily small for S′ sufficiently close

to S. This follows from Cauchy–Schwarz inequality and an argument similar to

that in Step 1.

6. We now put things together by noting that in light of Steps 1 to 5, for any ǫ, we can find
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some S′ such that the quantity in (B.3) is no bigger than ǫ in probability as n → ∞.

Since the quantity in (B.3) is also non-negative, our claim that (B.3) converges to zero

in probability is verified.

Finally, uniform consistency over any C can be shown using exactly the same approach

we demonstrated in the final stage of proving the first part of Theorem 2 via Lemma B.4.

B.4.2 Proof of Theorem 5

Proof. Our proof can be divided into three parts.

1. The case of g0 = 0.

Using the definition of SCKLS in Appendix B.2, it is easy to verify that Tn = ‖ĝn −

g̃n‖n,m. For reasons that will become clear later, we denote ĝ◦n and g̃◦n the SCKLS and

LL estimators based on the same covariates, evaluation points and bandwidth used in

calculating Tn, but with the response vector (ǫ1, . . . , ǫn)
′ (instead of yn) and set T ◦

n =

‖g̃◦n − ĝ◦n‖n,m. Obviously, when g0 = 0 (which is the case here), ĝ◦n = ĝn, g̃
◦
n = g̃n and

T ◦
n = Tn.

Now, for k = 1, . . . , B, Tnk = ‖ĝnk − g̃nk‖n,m, where ĝnk and g̃nk are respectively the

SCKLS and LL estimators based on the same covariates, evaluation points and bandwidth

used in calculating Tn, but with the response vector (u1kǫ̃1, . . . , unkǫ̃n)
′. Further, we define

a slightly modified bootstrap version of the test statistic as T ◦
nk = ‖ĝ◦nk − g̃◦nk‖n,m, where

ĝ◦nk and g̃◦nk are the SCKLS and LL estimators based on the same covariates, evaluation

points and bandwidth used in calculating Tn, but with the response (u1kǫ1, . . . , unkǫn)
′.

Let e = (|ǫ1|, . . . , |ǫn|)
′ and denote p◦n = 1

B

∑B
i=1 1{T ◦

n≤T ◦

nk
}. Then, it follows from the

symmetry of the error distribution that conditioning on the values of the absolute errors

(i.e. (|ǫ1|, . . . , |ǫn|)
′ = e), the quantities

T ◦
n , T

◦
n1, . . . , T

◦
nB

are exchangeable. Consequently, as B → ∞,

P (p◦n ≤ α) = E
{

P
(

p◦n ≤ α
∣

∣

∣
(|ǫ1|, . . . , |ǫn|)

′ = e
)}

≤
⌊Bα⌋ + 1

1 +B
→ α.
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Back to the elements in the quantity pn, our aim is to show that 1{Tn≤T ◦

nk
} ≤ 1{Tn≤Tnk+∆n}

for large n. Note that

Tnk−T ◦
nk = ‖g̃nk−ĝnk‖n,m−‖g̃◦nk−ĝ◦nk‖n,m ≤ ‖g̃nk−ĝ◦nk‖n,m−‖g̃◦nk−ĝ◦nk‖n,m ≤ ‖g̃nk−g̃◦nk‖n,m

Because we estimated the error vector in Step 1 using LL (without any shape restric-

tions), it follows from Proposition 7 of Fan and Guerre (2016) that supj |ǫ̃j − ǫj | ≤

Op(n
−2/(4+d) log1/2 n). By the linearity of the LL estimator (w.r.t. the response vector), we

have that supk ‖g̃nk − g̃◦nk‖
2
n,m = Op(n

−4/(4+d) logn). Consequently, with arbitrarily high

probability,

inf
k=1,...,B

(Tnk +∆n − T ◦
nk) > 0

for sufficiently large n. This yields 1{T ◦

n≤T ◦

nk
} ≤ 1{Tn≤Tnk+∆n} and thus pn ≥ p◦n. As a result,

P (pn ≤ α) ≤ P (p◦n ≤ α) ≤ α, as required.

2. The general case of g0 ∈ G2.

To relate Tn to what we investigated before (i.e. g0 = 0), we recall the definitions of ĝ◦n

and g̃◦n from the previous case, and define an additional quantity g̃†n to be the LL estimator

in exactly the same setting, but is obtained using the response vector (g0(X1), . . . , g0(Xn))
′.

By the linearity of the LL, g̃n = g̃◦n + g̃†n. Since g0 is continuously twice-differentiable, we

have that

Tn = ‖g̃n − ĝn‖n,m ≤ ‖g̃◦n + g̃†n − ĝ◦n − g0‖n,m ≤ ‖g̃◦n − ĝ◦n‖n,m + ‖g̃†n − g0‖n,m = T ◦
n +Op(h

2).

As a result, with arbitrarily high probability, for every k = 1, . . . , B,

Tnk +∆n − Tn = T ◦
nk − T ◦

n + (Tnk − T ◦
nk)− (Tn − T ◦

n) + ∆n ≥ T ◦
nk − T ◦

n

for sufficiently large n. This also leads to 1{T ◦

n≤T ◦

nk
} ≤ 1{Tn≤Tnk+∆n}. We could then directly

apply the argument from the previous case to conclude that P (pn ≤ α) ≤ α.
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3. The case of g0 /∈ G2

Here g0 is assumed to be fixed and continuously twice-differentiable.

First, two situations are considered.

• Under Assumption 2(i), we recall that

g∗0 := argmin
g∈G2

∫

S

{g(x)− g0(x)}
2Q(dx).

Since g0 /∈ G2, there must exists some compact set S′ ⊂ int(S) such that Q(S′) > 0

and

inf
x∈S′

|g∗0(x)− g0(x)| > δ.

Note that

T 2
n = ‖ĝn−g̃n‖

2
n,m ≥

1

m

m
∑

i=1

(

ĝn(xi)−g̃n(xi),
(∂(g1 − g2)

∂x
(xi)

)′
h
)

Σi





ĝn(xi)− g̃n(xi)

∂(ĝn−g̃n)
∂x

(xi)h



 1{xi∈S′}.

Here we have that g̃n → g0 by Fan and Guerre (2016) and ĝn → g∗0 over S′ by our

Theorem 4. Since g̃n − ĝn is Lipschitz over S′, it is easy to verify (see also Step 3

of the proof of Theorem 4) that the righthand side of the above display equation

is bounded below by δ2Q(S′) in the limit as n → ∞ (also h → 0). Consequently,

Tn ≥ c′ in probability for some c′ > 0.

• Now under Assumption 2(ii), since g0 /∈ G2 and the evaluation points are reasonably

well spread across S (i.e. Assumption 2(ii)), for sufficiently large and fixed m, we can

always find some evaluation points where the imposed shape constraint is violated.

This means that

inf
g∈G2

‖g − g0‖n,m ≥ c

in probability for some c > 0. So we still have that

Tn = ‖ĝn − g̃n‖n,m ≥ ‖ĝn − g0‖n,m − ‖g̃n − g0‖n,m ≥ inf
g∈G2

‖g − g0‖n,m − op(1) ≥ c′

in probability for some c′ > 0.
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Second, it follows from the proof for the case of g0 = 0 that

Tnk = T ◦
nk + Tnk − T ◦

nk ≤ ‖g̃◦nk‖n,m + ‖g̃nk − g̃◦nk‖n,m = op(1).

Finally, write Wnk = 1{Tnk+∆n>c′/2}. We note that Wn1, . . . ,WnB are exchangeable.

Thus, for any α ∈ (0, 1), as n → ∞,

P (Do not reject H0) = P

(

1

B

B
∑

k=1

1{Tn≤Tnk+∆n} ≥ α

)

≤ P (Tn ≤ c′/2) + P

(

Tn > c′/2,
1

B

B
∑

k=1

1{Tn≤Tnk+∆n} ≥ α

)

≤ P (Tn ≤ c′/2) + P

(

1

B

B
∑

k=1

Wnk ≥ α

)

≤ P (Tn ≤ c′/2) +
E(Wn1)

α
→ 0,

where we used Markov’s inequality in the final line above. So the Type II error at the

alternative indeed converges to 0.

B.5 Proof of Propositions in Appendix A.3

B.5.1 Proof of Proposition A.1

Proof. In view of Assumption 1 (v), for any sufficiently small h, we have

K

(

Xj − xi

h

)

=











0 if xi 6= Xj,

K(0) if xi = Xj,
for ∀i, j.

Then, the objective function of (3) is equal to
∑n

j=1(yj − aj)
2K(0), and thus

argmin
a1,b1,...,an,bn

n
∑

j=1

(yj − aj)
2K(0) = argmin

a1,...,an

n
∑

j=1

(yj − aj)
2
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Writing aj = αj + β′
jXj and bj = βj for j = 1, . . . , n by definition. Then, quadratic

programming problem (3) can be rewritten as follows:

min
α,β

n
∑

j=1

(yj − (αj + β′
jXj))

2

subject to αj + β′
jXj ≤ αl + β′

lXj , j, l = 1, . . . , n

βj ≥ 0, j = 1, . . . , n

which is equivalent to the formulation of the CNLS estimator (A.5).

B.5.2 Proof of Proposition A.2

Proof. When mink=1,...,d hk → ∞, we have

K

(

Xj − xi

h

)

= K(0) for ∀i, j. (B.8)

By substituting (B.8) into the objective function of (3) converges to

m
∑

i=1

n
∑

j=1

(yj − ai − (Xj − xi)
′bi)

2K(0).

Next, we derive the minimum of the objective function in the limit. Let’s consider

argmin
a1,b1,...,am,bm

m
∑

i=1

n
∑

j=1

(yj − ai − (Xj − xi)
′bi)

2 (B.9)

subject to constraints. Rewrite ai + (Xj − xi)
′bi = αi + β′

iXj for i = 1, . . . , m and

j = 1, . . . , n. Then the objective function of (3) can be rewritten as follows with (B.9).

min
α1,β1,...,αm,βm

m
∑

i=1

n
∑

j=1

(yj − (αi + β′
iXj))

2

subject to αi + β′
ixi ≤ αl + β′

lxi i, l = 1, . . . , m

βi ≥ 0 i = 1, . . . , m

Here, since we do not impose any weight on the objective function, it is easy to see that
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α1 = · · · = αm and β1 = · · · = βm. Then the Afriat constraints become redundant,

resulting in

min
α,β

n
∑

j=1

(yj − (α + β′Xj))
2

subject to β ≥ 0.

B.5.3 Proof of Proposition A.3

Proof. In view of Assumption 1 (v), for any sufficiently small h, we have

K

(

Xj − xi

h

)

=











0 if xi 6= Xj,

K(0) if xi = Xj,
for ∀i, j.

Then, the objective function of the SCKLS estimator (3) is equal to
∑n

j=1(yj − aj)
2K(0),

and thus

argmin
a1,b1,...,an,bn

n
∑

j=1

(yj − aj)
2K(0) = argmin

a1,...,an

n
∑

j=1

(yj − aj)
2

Also consider Assumption A1 (i) from Du et al. (2013), we can say something similar

for CWB in y-space. For any sufficiently small h, we have

Aj(xi) =











0 if xi 6= Xj ,

n if xi = Xj ,
for ∀i, j.

and thus

ĝ(xi|p) =

n
∑

j=1

pjAj(Xi)yj = npiyi ∀i = 1, . . . , n. (B.10)

Then we can rewrite the CWB in y-space estimator as follows:

min
p

Dy(p) =
n
∑

i=1

(yi − npiyi)
2

subject to l(xi) ≤ ĝ(s)(xi|p) ≤ u(xi), i = 1, . . . , n.

(B.11)
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Recognize that if ĝn = npiyi is true, then SCKLS and CWB in y-space are equivalent.

Take ĝn as the solution to SCKLS estimator and let pi be a set of decision variables, we

see ĝn = npiyi is simply a system of n equations and n unknowns.

C Testing for affinity using SCKLS

C.1 The procedure

To further illustrate the usefulness of SCKLS for testing other shapes, we study the problem

of testing

H0 : g0 : S → R is affine against H1 : g0 : S → R is not affine.

The main idea of our test is motivated by Sen and Meyer (2017). The critical value of the

test can be easily computed using Monte Carlo or bootstrap methods.

To start of with, we define ĝVn , the SCKLS estimator with only a set of convexity

constraints as

min
ai,bi

m
∑

i=1

n
∑

j=1

(yj − ai − (Xj − xi)
′bi)

2K

(

Xj − xi

h

)

subject to ai − al ≤ b′i(xi − xl), i, l = 1, . . . , m

Furthermore, ĝΛn , the SCKLS estimator using only a set of concavity constraints is defined

as

min
ai,bi

m
∑

i=1

n
∑

j=1

(yj − ai − (Xj − xi)
′bi)

2K

(

Xj − xi

h

)

subject to ai − al ≥ b′i(xi − xl), i, l = 1, . . . , m

We now describe our testing procedure as follows.

1. First, we run linear regression on the response against the covariates and call the

least squares fit gLn . Next, we fit the data using SCKLS (with evaluation points at

x1, . . . ,xm and bandwidth hn). The resulting estimators are denoted by ĝVn and ĝΛn ,

where ĝVn is the SCKLS estimator using only a set of convexity constraints, while
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ĝΛn is the SCKLS estimator using only a set of concavity constraints, all based on

{Xj, yj}
n
j=1.We then define the test statistics to be

Tn = max

[

1

m

m
∑

i=1

{ĝVn (xi)− gLn (xi)}
2,

1

m

m
∑

i=1

{ĝΛn (xi)− gLn (xi)}
2

]

.

2. We simulate the distributional behavior of the test statistics B times under H0.

For k = 1, . . . , B, we set the observations to be {Xj , yjk}
n
j=1 (i.e. no change in the

values of the covariates), where ynk = (y1k, . . . , ynk)
′ is drawn using the wild bootstrap

procedure as described in Section 4.2 (or the ordinary bootstrap procedure if we know

that the errors are homogeneous). Then we run linear regression on ynk against the

covariates and denote the least squares fit by gLnk. Fitting the data using SCKLS

(with the same set of evaluation points and the same bandwidth as before) leads to

the resulting estimators ĝVnk and ĝΛnk, where ĝVnk is the SCKLS estimator using only

the convexity constraint, while ĝΛnk is the SCKLS estimator using only the concavity

constraint, all based on {Xj, yjk}
n
j=1. So

Tnk = max

[

1

m

m
∑

i=1

{ĝVnk(xi)− gLnk(xi)}
2,

1

m

m
∑

i=1

{ĝΛnk(xi)− gLnk(xi)}
2

]

.

3. The Monte Carlo p-value is defined as

pn =
1

B

B
∑

k=1

1{Tn≤Tnk}.

For a test of size α ∈ (0, 1), we reject H0 if pn < α.

The intuition of the test is as follows. First, an affine function is both convex and

concave. Therefore under H0, both SCKLS estimates, ĝVn and ĝΛn , should be close to the

linear fit gLn , so the value of Tn should be small. Second, a function is both convex and

concave only if it is affine. So given enough observations, we should be able to reject

the null hypothesis under H1. Third, we used the fact that Tn based on {Xj , yj}
n
j=1 and

{Xj, ǫj}
n
j=1 are exactly the same under H0 when simulating the distributional behavior of

Tn.
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Finally, we remark that in case we know that g0 is monotonically increasing a priori,

we could test H ′
0 : g0 is monotonically increasing and affine using essentially the same

procedure with only minor modifications described in the following: we instead run linear

regression with signed constraints in both Step 1 and Step 2, replace ĝVn by the SCKLS

with both the convexity and monotonicity constraints, and replace ĝΛn by the SCKLS with

both the concavity and monotonicity constraints.

C.2 A simulation study

We now examine the finite-sample performance of the affinity test using data generated

from the following DGP:

g0(x) =
1

d

d
∑

k=1

xp
k (C.1)

where x = (x1, . . . , xd)
′. With n observations, for each pair (Xj, yj), each component of the

input, Xjk, is randomly and independently drawn from uniform distribution unif [0, 1], and

the additive noise, ǫj , is randomly and independently sampled from a normal distribution,

N(0, 0.1).

We considered different sample sizes n ∈ {100, 300, 500} and vary the number of inputs

d ∈ {1, 2}, and perform 100 simulations to compute the rejection rate for each scenario.

We used the ordinary bootstrap method with B = 500.

In the scenarios we considered g0 is affine if p = 1.0, and is non-linear if p ∈ {0.2, 0.5, 2, 5}.

Table C.1 show the rejection rate for each scenario with one-input and two-input at

α = 0.05. We conclude that the proposed test works well with a moderate sample size.

D An algorithm for SCKLS computational performance

For a given number of evaluation points, m, SCKLS requiresm(m−1) concavity constraints.

Larger values ofm provide a more flexible functional estimate, but also increase the number

of constraints quadratically, thus, the amount of time needed to solve the quadratic program

also increases quadratically. Since one can select the number of evaluation points in SCKLS,

by selecting m the computational complexity can be potentially reduced relative to CNLS
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Table C.1. Rejection rate of the affinity test using SCKLS at α = 0.05

Sample size (n) Shape Parameter (p)
Power of the Test
d = 1 d = 2

100

0.2 0.99 0.74
0.5 0.97 0.79
1.0 0.05 0.02
2.0 1.00 1.00
5.0 1.00 1.00

300

0.2 1.00 1.00
0.5 1.00 0.99
1.0 0.05 0.01
2.0 1.00 1.00
5.0 1.00 1.00

500

0.2 1.00 1.00
0.5 1.00 1.00
1.0 0.08 0.01
2.0 1.00 1.00
5.0 1.00 1.00

or estimates on denser grids, i.e. with m(m− 1) ≪ n(n− 1).

Further, Dantzig et al. (1954, 1959) proposed an iterative approach that reduces the size

of large-scale problems by relaxing a subset of the constraints and solving the relaxed model

with only a subset V of constraints, checking which of the excluded constraints are violated,

and iteratively adding violated constraints to the relaxed model until an optimal solution

satisfies all constraints. Lee et al. (2013), who applied the approach to CNLS, found a

significant reduction in computational time. Computational performances also improves if

a subset of the constraints can be identified which are likely to be needed in the model.

Lee et al. (2013) find the concavity constraints corresponding to pairs of observations that

are close in terms of the ℓ2 norm measured over input vectors and more likely to be binding

than those corresponding to the distant observations. We use this insight to develop a

strategy for identifying constraints to include in the initial subset V , when solving SCKLS

as described below.

Given a grid to evaluate the constraints of the SCKLS estimator, we define the initial

subset of constraints V as those constraints constructed by adjacent grid points as shown
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in Figure D.1. Further, we summarize our implementation of the algorithm proposed in

Lee et al. (2013) below and label it as Algorithm 1.

x1

x2

point of evaluation
adjacent grid points

Figure D.1. Definition of adjacent grid in two-dimensional case.

Algorithm 1 Iterative approach for SCKLS computational speedup

t ⇐ 0
V ⇐ {(i, l) : xi and xl are adjacent, i < l}

Solve relaxed SCKLS with V to find initial solution {a
(0)
i , b

(0)
i }mi=1

while {a
(t)
i , b

(t)
i }mi=1 satisfies all constraints in (3) do

t ⇐ t+ 1
U ⇐ {(i, l) : xi and xl do not satisfy constraints in (3)}
V ⇐ V ∪ U

Solve relaxed SCKLS with V to find solution {a
(t)
i , b

(t)
i }mi=1

end while

return {a
(t)
i , b

(t)
i }mi=1
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E Comprehensive results of existing and additional

numerical experiments

We show the comprehensive results of experiments in Section 5 and additional experiments

to show the performance of the SCKLS estimator and its extensions. For the CWB esti-

mator, we use the convex optimization solver SeDuMi because quadprog was not able to

solve CWB6.

For CWB estimator, we use a local linear estimator to obtain the weighting matrix

Aj(x) in (A.6). The first partial derivative of ĝ(x|p) is obtained by approximating the

derivatives through numerical differentiation ĝ(1)(x|p) = ĝ(x+∆|p)−ĝ(x|p)
∆

, where ∆ is a small

positive constant7.

E.1 Uniform input – high signal-to-noise ratio (Experiment 1)

We compare the following seven estimators: SCKLS with fixed bandwidth, SCKLS with

variable bandwidth, CNLS, CWB in p-space and CWB in y-space, LL, and parametric

Cobb–Douglas function estimated via ordinary least squares (OLS). Table E.1 and Ta-

ble E.2 show the RMSE of Experiment 1 on observation points and evaluation points

respectively.

Table E.3 shows the computational time of Experiment 1 for each estimator.

We also conduct simulations with different bandwidths to analyze the sensitivity of each

estimator to bandwidths. We estimate SCKLS with fixed bandwidth, CWB in p-space and

local linear with bandwidth h ∈ [0, 10] with an increment by 0.01 for 1-input setting, and

we use bandwidth h ∈ [0, 5] × [0, 5] with an increment by 0.25 for 2-input setting. We

perform 100 simulations for each bandwidth, and compute the optimal bandwidth with

LOOCV for each simulation. Figure 1 displays the average RMSE of each estimator. The

distribution of bandwidths selected by LOOCV are shown in the histogram. The instances

6For CWB, SeDuMi provides a better solution than quadprog, while both SeDuMi and quadprog give
exactly the same solution for SCKLS.

7Du et al. (2013) proposes to use an analytical derivative for the first partial derivative of ĝ(x|p); how-
ever, the analytical derivative performs similarly to numerical differentiation as shown in Racine (2016).
We propose two alternative methods to compute the first partial derivative, and compared them in Ap-
pendix A.2.2.
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Table E.1. RMSE on observation points for Experiment 1

Average of RMSE on observation points
Number of observations 100 200 300 400 500

2-input

SCKLS fixed bandwidth 0.193 0.171 0.141 0.132 0.118
SCKLS variable bandwidth 0.183 0.158 0.116 0.118 0.098

CNLS 0.229 0.163 0.137 0.138 0.116
CWB in p-space 0.189 0.167 0.158 0.140 0.129
CWB in y-space 0.205 0.136 0.173 0.141 0.120
LL 0.212 0.166 0.149 0.152 0.140

Cobb–Douglas 0.078 0.075 0.048 0.039 0.043

3-input

SCKLS fixed bandwidth 0.230 0.187 0.183 0.152 0.165
SCKLS variable bandwidth 0.216 0.183 0.175 0.143 0.142

CNLS 0.294 0.202 0.189 0.173 0.168
CWB in p-space 0.228 0.221 0.210 0.183 0.172
CWB in y-space 0.209 0.362 0.218 0.154 0.160
LL 0.250 0.230 0.235 0.203 0.181

Cobb–Douglas 0.104 0.089 0.070 0.047 0.041

4-input

SCKLS fixed bandwidth 0.225 0.248 0.228 0.203 0.198
SCKLS variable bandwidth 0.217 0.219 0.210 0.180 0.179

CNLS 0.315 0.294 0.246 0.235 0.214
CWB in p-space 0.238 0.262 0.231 0.234 0.198
CWB in y-space 0.222 0.240 0.248 0.303 0.332
LL 0.256 0.297 0.252 0.240 0.226

Cobb–Douglas 0.120 0.073 0.091 0.067 0.063

when SCKLS, CWB-p, and local linear provide the lowest RMSE are shown in light gray,

gray and dark gray respectively on the histogram. For one-input scenario, the SCKLS

and CWB estimator perform similar for bandwidth between 0.25 - 2.25 as shown by the

closeness of the light gray and gray curves in (a). In contrast, for two-input scenario,

the SCKLS estimator performs better for most of the LOOCV values as shown by the

majority of the histogram colored in light gray. This indicates that LOOCV calculate for

unconstrained estimator provide bandwidths that work well for the SCKLS estimator.
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Table E.2. RMSE on evaluation points for Experiment 1

Average of RMSE on evaluation points
Number of observations 100 200 300 400 500

2-input

SCKLS fixed bandwidth 0.219 0.189 0.150 0.147 0.128
SCKLS variable bandwidth 0.212 0.176 0.125 0.132 0.103

CNLS 0.350 0.299 0.260 0.284 0.265
CWB in p-space 0.206 0.186 0.174 0.154 0.143
CWB in y-space 0.259 0.228 0.228 0.172 0.167
LL 0.247 0.182 0.167 0.171 0.156

Cobb–Douglas 0.076 0.076 0.049 0.040 0.043

3-input

SCKLS fixed bandwidth 0.283 0.231 0.238 0.213 0.215
SCKLS variable bandwidth 0.292 0.237 0.235 0.196 0.187

CNLS 0.529 0.587 0.540 0.589 0.598
CWB in p-space 0.291 0.289 0.269 0.252 0.233
CWB in y-space 0.314 0.474 0.265 0.346 0.261
LL 0.336 0.340 0.360 0.326 0.264

Cobb–Douglas 0.116 0.098 0.080 0.052 0.046

4-input

SCKLS fixed bandwidth 0.321 0.357 0.329 0.308 0.290

SCKLS variable bandwidth 0.378 0.348 0.363 0.320 0.301
CNLS 0.845 0.873 0.901 0.827 0.792
CWB in p-space 0.360 0.385 0.358 0.361 0.325
CWB in y-space 0.355 0.470 0.338 0.410 0.602
LL 0.482 0.527 0.483 0.495 0.445

Cobb–Douglas 0.146 0.091 0.115 0.081 0.080

(a) One-input (b) Two-input

Figure E.1. The histogram shows the distribution of bandwidths selected by LOOCV. The
curves show the relative performance of each estimator.
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Table E.3. Computational time for Experiment 1

Average of computational time in seconds;

(percentage of Afriat constraints included

in the final optimization problem)
Number of observations 100 200 300 400 500

2-input

SCKLS fixed bandwidth
14.1 13.3 42.2 34.7 77.4

(6.14%) (5.28%) (8.86%) (7.80%) (8.31%)

SCKLS variable bandwidth
16.4 33.9 27.6 36.0 50.6

(3.47%) (3.44%) (3.34%) (3.22%) (3.53%)

CNLS
2.0 6.1 16.5 26.5 55.3

(100%) (100%) (100%) (100%) (100%)

CWB in p-space
24.1 33.2 76.6 82.3 130

(2.39%) (2.35%) (2.35%) (2.35%) (2.35%)

CWB in y-space
39.3 92.7 111 190 233

(2.35%) (2.35%) (2.35%) (2.35%) (2.36%)

3-input

SCKLS fixed bandwidth
26.9 40.4 45.5 67.3 136

(16.0%) (16.6%) (16.3%) (16.4%) (16.2%)

SCKLS variable bandwidth
20.0 42.0 37.4 47.1 58.2

(15.7%) (15.9%) (15.8%) (15.8%) (15.9%)

CNLS
3.8 16.4 37.0 82.9 161

(100%) (100%) (100%) (100%) (100%)

CWB in p-space
47.6 71.5 100 202 255

(15.5%) (15.5%) (15.5%) (15.5%) (15.5%)

CWB in y-space
120 357 443 529 424

(15.5%) (15.5%) (15.5%) (15.5%) (15.5%)

4-input

SCKLS fixed bandwidth
47.5 71.6 77.4 166 235

(40.1%) (39.9%) (39.9%) (40.0%) (39.8%)

SCKLS variable bandwidth
26.8 45.6 46.8 60.5 74.8

(39.9%) (40.0%) (39.8%) (39.9%) (39.8%)

CNLS
5.8 22.4 79.1 139.8 287.8

(100%) (100%) (100%) (100%) (100%)

CWB in p-space
68.8 136 196 327 442

(39.8%) (39.8%) (39.8%) (39.8%) (39.8%)

CWB in y-space
91.3 175 195 535 545

(39.8%) (39.8%) (39.8%) (39.8%) (39.8%)
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E.2 Uniform input – low signal-to-noise ratio

We consider a Cobb–Douglas production function with d-inputs and one-output,

g0(x1, . . . , xd) =

d
∏

k=1

x
0.8
d

k .

For each pair (Xj , yj), each component of the input, Xjk, is randomly and independently

drawn from uniform distribution unif [1, 10], and the additive noise, ǫj , is randomly and

independently sampled from a normal distribution, N(0, 1.32). We consider 15 different

scenarios with different numbers of observations (100, 200, 300, 400 and 500) and input

dimension (2, 3 and 4). The number of evaluation points is fixed at 400, and set as a

uniform grid. This experiment has a higher noise level in the data generation process

relative to Experiment 1.

We compare following seven estimators: SCKLS with fixed bandwidth, SCKLS with

variable bandwidth, CNLS, CWB in p-space, CWB in y-space, LL, and parametric Cobb–

Douglas function estimated via ordinary least squares (OLS). Table E.4 and Table E.5 show

the RMSE of this experiment on observation points and evaluation points respectively.
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Table E.4. RMSE on observation points for Experiment: uniform input with low signal-
to-noise ratio

Average of RMSE on observation points
Number of observations 100 200 300 400 500

2-input

SCKLS fixed bandwidth 0.239 0.203 0.203 0.155 0.140
SCKLS variable bandwidth 0.240 0.185 0.168 0.139 0.119

CNLS 0.279 0.231 0.194 0.168 0.151
CWB in p-space 0.314 0.215 0.237 0.275 0.151
CWB in y-space 0.241 0.229 0.173 0.178 0.206
LL 0.287 0.244 0.230 0.214 0.161

Cobb–Douglas 0.109 0.108 0.081 0.042 0.048

3-input

SCKLS fixed bandwidth 0.292 0.263 0.221 0.204 0.184
SCKLS variable bandwidth 0.281 0.242 0.198 0.180 0.175

CNLS 0.379 0.303 0.275 0.224 0.214
CWB in p-space 0.318 0.306 0.308 0.244 0.214
CWB in y-space 0.281 0.273 0.225 0.320 0.271
LL 0.333 0.306 0.288 0.259 0.214

Cobb–Douglas 0.176 0.118 0.101 0.084 0.072

4-input

SCKLS fixed bandwidth 0.317 0.291 0.249 0.241 0.254
SCKLS variable bandwidth 0.290 0.254 0.236 0.222 0.215

CNLS 0.491 0.356 0.311 0.293 0.313
CWB in p-space 0.400 0.318 0.273 0.260 0.289
CWB in y-space 0.312 0.338 0.262 0.365 0.453
LL 0.335 0.342 0.257 0.274 0.283

Cobb–Douglas 0.157 0.150 0.112 0.075 0.077
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Table E.5. RMSE on evaluation points for Experiment: uniform input with low signal-to-
noise ratio

Average of RMSE on evaluation points
Number of observations 100 200 300 400 500

2-input

SCKLS fixed bandwidth 0.253 0.225 0.222 0.172 0.160
SCKLS variable bandwidth 0.255 0.205 0.179 0.149 0.135

CNLS 0.319 0.355 0.334 0.255 0.267
CWB in p-space 0.329 0.239 0.262 0.305 0.177
CWB in y-space 0.263 0.241 0.198 0.228 0.180
LL 0.330 0.272 0.257 0.239 0.194

Cobb–Douglas 0.112 0.112 0.083 0.044 0.049

3-input

SCKLS fixed bandwidth 0.367 0.339 0.302 0.268 0.231
SCKLS variable bandwidth 0.364 0.303 0.256 0.230 0.224

CNLS 0.743 0.778 0.744 0.696 0.620
CWB in p-space 0.398 0.392 0.434 0.336 0.274
CWB in y-space 0.401 0.473 0.385 0.450 0.525
LL 0.452 0.444 0.438 0.398 0.302

Cobb–Douglas 0.202 0.130 0.110 0.093 0.079

4-input

SCKLS fixed bandwidth 0.405 0.460 0.349 0.350 0.347
SCKLS variable bandwidth 0.419 0.434 0.375 0.354 0.315

CNLS 1.019 0.950 0.985 1.043 1.106
CWB in p-space 0.514 0.520 0.393 0.390 0.452
CWB in y-space 0.514 0.513 0.425 0.501 0.708
LL 0.524 0.626 0.451 0.491 0.550

Cobb–Douglas 0.187 0.194 0.134 0.092 0.091
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E.3 Different numbers of evaluation points (Experiment 2)

We compare following four estimators: SCKLS with fixed bandwidth, SCKLS with vari-

able bandwidth, CWB in p-space and CWB in y-space. Table E.6 and Table E.7 show

the RMSEs of Experiment 2 on observation points and evaluation points respectively. In

addition, Table E.8 shows the computational time of Experiment 2 for each estimator.

Table E.6. RMSE on observation points for Experiment 2

Average of RMSE on observation points
Number of evaluation points 100 300 500

2-input

SCKLS fixed bandwidth 0.142 0.141 0.141
SCKLS variable bandwidth 0.113 0.112 0.112

CWB in p-space 0.149 0.151 0.156
CWB in y-space 0.225 0.122 0.129

3-input

SCKLS fixed bandwidth 0.198 0.203 0.197
SCKLS variable bandwidth 0.169 0.167 0.166

CWB in p-space 0.218 0.234 0.231
CWB in y-space 0.345 0.241 0.222

4-input

SCKLS fixed bandwidth 0.239 0.207 0.206
SCKLS variable bandwidth 0.195 0.192 0.191

CWB in p-space 0.219 0.227 0.296
CWB in y-space 0.466 0.290 0.292

Table E.7. RMSE on evaluation points for Experiment 2

Average of RMSE on evaluation points
Number of evaluation points 100 300 500

2-input

SCKLS fixed bandwidth 0.181 0.164 0.158
SCKLS variable bandwidth 0.140 0.128 0.124

CWB in p-space 0.195 0.180 0.179
CWB in y-space 0.262 0.162 0.169

3-input

SCKLS fixed bandwidth 0.304 0.267 0.257
SCKLS variable bandwidth 0.242 0.213 0.205

CWB in p-space 0.332 0.329 0.302
CWB in y-space 0.792 0.582 0.559

4-input

SCKLS fixed bandwidth 0.383 0.296 0.270
SCKLS variable bandwidth 0.386 0.304 0.265

CWB in p-space 0.403 0.359 0.415
CWB in y-space 1.040 0.352 0.381
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Table E.8. Computational time for Experiment 2

Average of computational time in seconds;

(percentage of Afriat constraints included

in the final optimization)
Number of evaluation points 100 300 500

2-input

SCKLS fixed bandwidth
26.6 28.3 34

(11.7%) (6.6%) (5.4%)

SCKLS variable bandwidth
21.3 21.6 24.9

(9.9%) (4.4%) (3.2%)

CWB in p-space
41 56.5 74.2

(8.8%) (3.2%) (2.0%)

CWB in y-space
52.8 103 146

(8.8%) (3.2%) (2.0%)

3-input

SCKLS fixed bandwidth
84.8 112 134

(29.1%) (16.7%) (13.3%)

SCKLS variable bandwidth
21.1 37.2 59.1

(28.5%) (15.8%) (12.4%)

CWB in p-space
121 221 310

(28.2%) (15.5%) (12.2%)

CWB in y-space
181 625 948

(28.2%) (15.5%) (12.2%)

4-input

SCKLS fixed bandwidth
149 170 597

(62.3%) (40.0%) (27.7%)

SCKLS variable bandwidth
24.6 52.7 468

(62.1%) (39.9%) (27.5%)

CWB in p-space
175 275 729

(61.9%) (39.8%) (27.4%)

CWB in y-space
189 288 579

(61.9%) (39.8%) (27.4%)
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E.4 Non-uniform input

Experiment 4. We consider a Cobb–Douglas production function with d-inputs and one-

output,

g0(x1, . . . , xd) =

d
∏

k=1

x
0.8
d

k .

For each pair (Xj , yj), each component of the input, Xjk, is randomly and independently

drawn from a truncated exponential distribution with density function

f(x) =
3

e−3 − e−30
e−3x1{x∈[1,10]},

and the additive noise, ǫj , is randomly sampled from a normal distribution, N(0, 0.72). We

consider 15 different scenarios with different numbers of observations (100, 200, 300, 400

and 500) and input dimension (2, 3 and 4). The number of evaluation point is fixed at 400.

Note that this experiment only differs from Experiment 1 in that the distribution of inputs

is skewed and thus non-uniform.

We compare following seven estimators: SCKLS with fixed bandwidth with uniform/non-

uniform grid, SCKLS with variable bandwidth with uniform/non-uniform grid, CNLS,

CWB in p-space with uniform/non-uniform grid. These extension of SCKLS were presented

in detail in Appendix A.1. Table E.9 and Table E.10 show the RMSEs of Experiment 4 on

observation points and evaluation points respectively. A uniform grid is used like in Exper-

iment 1. As the dimension of input space and the number of observations increase, SCKLS

with variable bandwidth performs better than the fixed bandwidth estimator. SCKLS with

non-uniform grid performs better than SCKLS with uniform grid for almost all scenarios,

largely due to the fact that the DGP has non-uniform input. Consequently, we conclude

that variable bandwidth methods, such as k-NN approach, and non-uniform grid could be

useful to handle skewed input data which is a common feature of census manufacturing

data which is the type of data we considered in the application of the main manuscript.
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Table E.9. RMSE on observation points for Experiment: non-uniform input

Average of RMSE on observation points
Number of observations 100 200 300 400 500

2-input

SCKLS fixed/uniform 0.179 0.151 0.144 0.121 0.108
SCKLS fixed/non-uniform 0.185 0.153 0.159 0.123 0.107
SCKLS variable/uniform 0.183 0.156 0.142 0.125 0.104
SCKLS variable/non-uniform 0.176 0.144 0.132 0.114 0.093

CNLS 0.193 0.160 0.140 0.130 0.117
CWB p-space/uniform 0.256 0.162 0.180 0.139 0.125
CWB p-space/non-uniform 0.243 0.160 0.174 0.135 0.125

3-input

SCKLS fixed/uniform 0.197 0.184 0.172 0.164 0.167
SCKLS fixed/non-uniform 0.200 0.181 0.173 0.161 0.172
SCKLS variable/uniform 0.212 0.187 0.170 0.175 0.170
SCKLS variable/non-uniform 0.210 0.180 0.162 0.160 0.155

CNLS 0.303 0.246 0.201 0.185 0.166
CWB p-space/uniform 0.243 0.436 0.173 0.174 0.184
CWB p-space/non-uniform 0.233 0.194 0.176 0.165 0.173

4-input

SCKLS fixed/uniform 0.219 0.211 0.196 0.209 0.187
SCKLS fixed/non-uniform 0.210 0.206 0.181 0.197 0.180
SCKLS variable/uniform 0.208 0.193 0.167 0.171 0.170
SCKLS variable/non-uniform 0.206 0.193 0.164 0.169 0.168

CNLS 0.347 0.292 0.250 0.228 0.218
CWB p-space/uniform 0.219 0.205 0.205 0.184 0.218
CWB p-space/non-uniform 0.221 0.205 0.182 0.170 0.170
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Table E.10. RMSE on evaluation points for Experiment: non-uniform input

Average of RMSE on evaluation points
Number of observations 100 200 300 400 500

2-input

SCKLS fixed/uniform 0.262 0.220 0.244 0.157 0.196
SCKLS fixed/non-uniform 0.212 0.174 0.195 0.138 0.131
SCKLS variable/uniform 0.246 0.204 0.192 0.142 0.136
SCKLS variable/non-uniform 0.193 0.160 0.145 0.120 0.100

CNLS 0.435 0.402 0.404 0.379 0.381
CWB p-space/uniform 0.422 0.287 0.376 0.246 0.264
CWB p-space/non-uniform 0.283 0.186 0.215 0.159 0.162

3-input

SCKLS fixed/uniform 0.323 0.308 0.311 0.286 0.293
SCKLS fixed/non-uniform 0.268 0.254 0.259 0.235 0.249
SCKLS variable/uniform 0.335 0.303 0.281 0.262 0.254
SCKLS variable/non-uniform 0.278 0.243 0.219 0.212 0.196

CNLS 0.828 0.824 0.828 0.786 0.782
CWB p-space/uniform 0.438 0.684 0.357 0.363 0.350
CWB p-space/non-uniform 0.315 0.265 0.257 0.235 0.242

4-input

SCKLS fixed/uniform 0.406 0.398 0.397 0.404 0.400
SCKLS fixed/non-uniform 0.339 0.343 0.333 0.371 0.331
SCKLS variable/uniform 0.417 0.423 0.368 0.364 0.356
SCKLS variable/non-uniform 0.359 0.359 0.313 0.302 0.280
CNLS 1.129 1.107 1.220 1.196 1.223
CWB p-space/uniform 0.421 0.442 0.435 0.418 0.487
CWB p-space/non-uniform 0.354 0.344 0.308 0.286 0.280
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E.5 Estimation with a misspecified shape

We use the DGP proposed by Olesen and Ruggiero (2014) that is consistent with the

regular ultra passum law (Frisch, 1964), which appears to have an “S”-shape.

g0(x1, x2) = F (h(x1, x2))

where the scaling function is: F (w) = 15
1+e−5 log(w) , and the linear homogeneous core function

is

h(x1, x2) =
(

βx
σ−1
σ

1 + (1− β)x
σ−1
σ

2

)
σ

σ−1

with β = 0.45 and σ = 1.51. For j = 1, . . . , n, input, Xj = (Xj1, Xj2)
′, is generated in

polar coordinates with angles η and modulus ω independently uniformly distributed on

[0.05, π/2 − 0.05] and [0, 2.5], respectively. The additive noise, ǫj , is randomly sampled

from N(0, 0.72).

Note that this DGP is not concave. Here we run this experiment to assess the perfor-

mance of each estimator in case of shape misspecification. Table E.11 and Table E.12 show

the RMSEs of this experiment on observation points and evaluation points. Figure E.2

shows the estimation results with 1-input S-shape function from a typical run of SCKLS.

The figure shows that the SCKLS estimator results in a linear estimates for areas where

concavity is violated. Here the CWB estimator performs slightly worse when the function

is misspecified.We speculate that the main reason for this is that the optimization problem

becomes too complicated to solve since intuitively there are many binding constraints when

the data is generated by the misspecified functional form, and thus, it becomes hard for

the solver to find a feasible solution and an improving direction.

Table E.11. RMSE on observation points for Experiment: misspecified shape

Average of RMSE on observation points
Number of observations 100 200 300 400 500

SCKLS fixed bandwidth 1.424 1.435 1.405 1.392 1.421
CNLS 1.326 1.346 1.337 1.316 1.353

CWB in p-space 6.310 6.731 6.602 5.909 6.110
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Table E.12. RMSE on evaluation points for Experiment: misspecified shape

Average of RMSE on evaluation points
Number of observations 100 200 300 400 500

SCKLS fixed bandwidth 1.337 1.162 1.149 1.140 1.123

CNLS 1.375 1.424 1.404 1.403 1.385
CWB in p-space 9.100 9.483 9.599 8.435 8.719
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Figure E.2. A typical run of SCKLS when the truth is S-shaped.
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F Semiparametric partially linear model

F.1 The procedure

We develop a semiparametric partially linear model including the SCKLS estimator and a

linear function of contextual variables. The partially linear model is often used in practice.

The model estimated is represented as follows:

yj = Z ′
jγ + g0(Xj) + ǫj

where Zj = (Zj1, Zj2, . . . , Zjl)
′ denotes contextual variables and γ = (γ1, γ2, . . . , γl)

′ is the

coefficient of contextual variables, see Johnson and Kuosmanen (2011, 2012). Then, we

estimate the coefficient of contextual variable:

γ̂ =

(

n
∑

j=1

Z̃jZ̃
′
j

)−1( n
∑

j=1

Z̃j ỹj

)

where Z̃j = Zj − Ê[Zj|Xj ] and ỹj = yj − Ê[yj|Xj ] respectively, and each conditional

expectation is estimated by kernel estimation method such as local linear. Finally, we

apply the SCKLS estimator to the data {Xj, yj−Z ′
jγ̂}

n
j=1. Robinson (1988) proved that γ̂

is n1/2-consistent for γ and asymptotically normal under regularity conditions. For details

of the partially linear model, see Li and Racine (2007).

F.2 A simulation study

We show the effect of adding contextual variables Zj to the estimation performance by

comparing SCKLS with and without contextual variables. We use two different Cobb–

Douglas production functions as the true DGP:

g0(x, z) =

d
∏

k=1

x
0.8
d

k + zγ, (F.1)
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g0(x) =

d
∏

k=1

x
0.8
d

k , (F.2)

where for each (Xj , Zj, yj), the contextual variable Zj is a scalar value independent of

Xj drawn randomly and independently from uinf [0, 1], the coefficient of the contextual

variable γ = 5, and other parameters follow DGP from Experiment 1. We apply SCKLS

with and without contextual variables to the data generated by the true production function

(F.1) and (F.2), respectively.

Table F.1 and Table F.2 show the RMSEs of this experiment on observation points

and evaluation points respectively. The RMSE is obtained by comparing estimates of

production function and the true production function. We see that having extra contextual

variables does not deteriorate the performance of SCKLS significantly, especially when

the input dimension is small and the number of observations is large. Our findings are

consistent with the work of Robinson (1988). Since our application data in Section 6

has only two-input, we expect that SCKLS with Z-variables tends not to deteriorate the

estimator performance in our application.

Table F.1. RMSE on observation points for experiments with/without Z-variable

Average of RMSE on observation points
Number of observations 100 200 300 400 500

2-input SCKLS-Z 0.224 0.212 0.239 0.160 0.146
SCKLS 0.210 0.188 0.170 0.139 0.140

3-input SCKLS-Z 0.404 0.235 0.261 0.197 0.196
SCKLS 0.242 0.206 0.215 0.202 0.188

4-input SCKLS-Z 0.462 0.376 0.332 0.217 0.239
SCKLS 0.247 0.231 0.202 0.202 0.198
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Table F.2. RMSE on evaluation points for experiments with/without Z-variable

Average of RMSE on evaluation points
Number of observations 100 200 300 400 500

2-input SCKLS-Z 0.245 0.234 0.256 0.172 0.166
SCKLS 0.230 0.205 0.194 0.154 0.157

3-input SCKLS-Z 0.496 0.348 0.377 0.271 0.286
SCKLS 0.316 0.296 0.309 0.271 0.261

4-input SCKLS-Z 0.648 0.599 0.498 0.397 0.435
SCKLS 0.385 0.381 0.341 0.350 0.336

G Details on the application to the Chilean manufac-

turing data

In section 6, we applied the SCKLS estimator to the Chilean manufacturing data to estimate

a production function for plastic (2520) and wood (2010) industries. Here we provide the

detailed specification of the SCKLS estimator applied to the real data. Since the application

data is skewed as shown in Table 6, we use non-uniform grid of evaluation points and limit

evaluation points to be inside the convex hull of {Xj}
n
j=1. Figure G.1 and Figure G.2

show how we set the evaluation points in our application. Originally we set the number of

evaluation points is m = 400, but after deleting ones which lie outside of the convex hull

of {Xj}
n
j=1, the number is m ≈ 270 for both industries.
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Figure G.1. Proposed evaluation points with Plastic industry (2520)
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Figure G.2. Proposed evaluation points with Wood industry (2010)
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