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The Supplementary Materials present an efficient Gibbs sampler to draw sam-
ples from the posterior, detailed derivations of the auxiliary variable sampler used to
update the prior parameters and hyper-parameters are also included. The Supplemen-
tary Materials also discuss some theoretical aspects of our model; present additional
figures summarizing the results for the real and simulated data sets described in Sec-
tions 5 and 6 in the main paper; present MCMC diagnostics for analysis of the real
data set; and discuss the contrasting features of generalized linear mixed model based
approaches with our proposed approach in additional detail, highlighting the latter’s
many important advantages over the former.
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S.1 Posterior Inference

S.1.1 Prior Hyper-parameters and MCMC Initializations

In all our examples, real or synthetic, we set α00 = 1 and λ00(yt) =
∑

s,t 1{ys,t =
yt}/

∑
s Ts, the overall proportion of syllables among all songs. We set each αj at

the value for which p0(H0j) = p0(kj = 1) = 1/2. For j = 1, . . . , p, we initialize µj
at (1/dj, . . . , 1/dj)

T. We initialize each zj,h at h for h = 1, . . . , dj. Each level of xj
thus initially forms its own cluster. The associated λh1,...,hp(yt | yt−1) are initialized
at
∑

s,t 1{ys,t = yt, ys,t−1 = yt−1, xs,j = hj, j = 1, . . . , p}/
∑

s,t 1{ys,t−1 = yt−1, xs,j =

hj, j = 1, . . . , p}. Likewise, λ(i)(yt | yt−1) are initialized at
∑

s,t 1{ys,t = yt, ys,t−1 =
yt−1, is = i}/

∑
s,t 1{ys,t−1 = yt−1, is = i}. For each yt−1, {π0(yt−1), π1(yt−1)} is ini-

tialized at (0.8, 0.2). The vs,t’s are initialized by sampling from Bernoulli distribution
with parameter π0(ys,t−1). The parameters α0 and α(0) are both initialized at 1. For
the remaining fixed hyper-parameters, we set a = b = a0 = bα0 = a(0) = b(0) = 1.
Extensive experiments suggested the results to be highly robust to these choices.

S.1.2 Posterior Computation

Samples are drawn from the posterior using a Gibbs sampler that exploits the con-
ditional independence relationships depicted in Figure 4 in the main paper. In what
follows, ζ denotes a generic variable that collects all other variables not explicitly
mentioned, including the data points. The sampler comprises the following steps.

1. Sample each zj,` according to its multinomial full conditional

p(zj,` = hj | zj′,` = hj′ , j
′ 6= j, ζ) ∝ π

(j)
hj
×

∏

yt−1

∏

(h1,...,hp)

β{α0λ0(1 | yt−1) + nh1,...,hp(1 | yt−1), . . . , α0λ0(d0 | yt−1) + nh1,...,hp(d0 | yt−1)}
β{α0λ0(1 | yt−1), . . . , α0λ0(d0 | yt−1)}

,

where nh1,...,hp(yt | yt−1) =
∑

s,t 1{ys,t = yt, ys,t−1 = yt−1, vs,t = 0, z1,xs,1 =
h1, . . . , zp,xs,p = hp}.

2. Sample each µj according to its Dirichlet full conditional

{µj(1), . . . , µj(dj)} | ζ ∼ Dir[αj + nj(1), . . . , αj + nj(dj)],

where nj(h) =
∑dj

`=1 1{zj,` = h}.

3. Sample each vs,t according to its Bernoulli full conditional

p(vs,t = v | ζ) ∝ πv(ys,t−1)× λ̃v(ys,t | ys,t−1),
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where λ̃0(· | yt−1) = λh1,...,hp(· | yt−1) with (z1,xs,1 , . . . , zp,xs,p) = (h1, . . . , hp), and

λ̃1(· | yt−1) = λ(i)(· | yt−1).

4. Sample π = {π0(yt−1), π1(yt−1)}T according to its Beta full conditional

{π0(yt−1), π1(yt−1)} | ζ ∼ Beta{a0 + n0(yt−1), a1 + n1(yt−1)},

where nv(yt−1) =
∑

s,t 1{vs,t = v, ys,t−1 = yt−1}.

5. Sample each λ(i)(· | yt−1)’s according to its Dirichlet full conditional

{λ(i)(1 | yt−1), . . . , λ(i)(d0 | yt−1)} | ζ ∼
Dir[α(0)λ0(1 | yt−1) + n(i)(1 | yt−1), . . . , α(0)λ0(d0 | yt−1) + n(i)(d0 | yt−1)],

where n(i)(yt | yt−1) =
∑

s,t 1{ys,t = yt, ys,t−1 = yt−1, vs,t = 1, is = i}.

6. Sample each λh1,...,hp(· | yt−1) according to its Dirichlet full conditional

{λh1,...,hp(1 | yt−1), . . . , λh1,...,hp(d0 | yt−1)} | ζ ∼
Dir[α0λ0(1 | yt−1) + nh1,...,hp(1 | yt−1), . . . , α0λ0(d0 | yt−1) + nh1,...,hp(d0 | yt−1)].

7. For ` = nh1,...,hp(yt | yt−1), sample auxiliary variables v`,h1,...,hp(yt | yt−1)

v`,h1,...,hp(yt | yt−1) | ζ ∼ Bernoulli

{
α0λ0(yt | yt−1)

`− 1 + α0λ0(yt | yt−1)

}
.

Set vh1,...,hp(yt | yt−1) =
∑

` v`,h1,...,hp(yt | yt−1). Likewise, for ` = 1, . . . , n(i)(yt | yt−1),

sample auxiliary variables v
(i)
` (yt | yt−1) as

v
(i)
` (yt | yt−1) | ζ ∼ Bernoulli

{
α(0)λ0(yt | yt−1)

`− 1 + α(0)λ0(yt | yt−1)

}
.

Set v(i)(yt | yt−1) =
∑

` v
(i)
` (yt | yt−1). Additionally, sample auxiliary variables

rh1,...,hp(yt−1) | ζ ∼ Beta{α0 + 1, nh1,...,hp(yt−1)},

sh1,...,hp(yt−1) | ζ ∼ Bernoulli

{
nh1,...,hp(yt−1)

nh1,...,hp(yt−1) + α0

}
,

r(i)(yt−1) | ζ ∼ Beta{α(0) + 1, n(i)(yt−1)},

s(i)(yt−1) | ζ ∼ Bernoulli

{
n(i)(yt−1)

n(i)(yt−1) + α(0)

}
,
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where nh1,...,hp(yt−1) =
∑

yt
nh1,...,hp(yt | yt−1) and n(i)(yt−1) =

∑
yt
n(i)(yt | yt−1).

Set v(yt | yt−1) =
∑

h1,...,hp
vh1,...,hp(yt | yt−1) +

∑
i v

(i)(yt | yt−1). Also, set

v0 =
∑

yt

∑
yt−1

∑
h1,...,hp

vh1,...,hp(yt | yt−1), v(0) =
∑

yt

∑
yt−1

∑
i v

(i)(yt | yt−1),

log r0 =
∑

yt−1

∑
h1,...,hp

log rh1,...,hp(yt−1), s0 =
∑

yt−1

∑
h1,...,hp

sh1,...,hp(yt−1), log r(0) =∑
yt−1

∑
i log r(i)(yt−1), and s(0) =

∑
yt−1

∑
i s

(i)(yt−1).

8. Sample α0 and α(0) according to their Gamma full conditionals

α0 | ζ ∼ Ga(a0 + v0 − s0, bα0 − log r0),

α(0) | ζ ∼ Ga(a(0) + v(0) − s(0), b(0) − log r(0)).

9. Finally, sample λ0 according to its Dirichlet full conditional

{λ0(1 | yt−1), . . . , λ0(d0 | yt−1)} | ζ ∼
Dir[α00λ00(1) + v(1 | yt−1), . . . , α00λ00(d0) + v(d0 | yt−1)].

The steps to update the hyper-parameters α0, α(0) and the global transition distri-
butions λ0 were adapted from the auxiliary variable sampler of West (1992) and Teh
et al. (2006). Details are deferred to Section S.1.3 of the Supplementary Materials.

In all our examples, 5, 000 MCMC iterations with the initial 2, 000 discarded
as burn-in and the remaining samples thinned by an interval of 5 produced very
stable estimates of the individual and population level parameters of interest. MCMC
diagnostic checks were not indicative of any convergence or mixing issues. See Section
S.4 in the Supplementary Materials. Our implementation is fully automated, taking
in only a single matrix argument - concatenated sequences ys,t with the associated
values of the exogenous predictors xs,j and the subject labels repeated Ts times for
each sequence s and included as additional columns. For the Foxp2 data set, this
required feeding a 148778×4 dimensional data matrix to the codes and 5, 000 MCMC
iterations required approximately two hours to run on an ordinary laptop. These
codes are available as part of the Supplementary Materials.

S.1.3 Sampling Prior Parameters and Hyper-parameters

In this section, we detail the sampling of λ0, α0, α
(0) from the posterior using auxiliary

variables. We utilize culinary analogies that parallel the Chinese restaurant franchise
(CRF) discussed in Teh et al. (2006).

In what follows, the notation λ ∼ GEM(α) signifies that λ is a random probability
distribution admitting a stick-breaking construction (Sethuraman, 1994) as

λ(k) = π(k)
∏k−1

`=1{1− π(`)}, π(`) ∼ Beta(1, α), k, ` = 1, . . . ,∞.
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Following convention, the law x ∼ G =
∑∞

k=1 λ(k)δk may sometimes be denoted
simply as x ∼ λ. Also, when the support {1, . . . , d} is easily understood, the law
x = {x1, . . . , xd}T ∼ Dir[αλ(1), . . . , αλ(d)] may be denoted simply as x ∼ Dir(αλ).

S.1.3.1 A Modified CRF

Let there be J groups, each with Nj observations {yj,`}
Nj
`=1 with yj,` ∈ {1, . . . , d0}.

Consider a generative model for yj,` as

λ0j | α00,λ00 ∼ Dir(α00λ00),

λj | α0,λ0j ∼ Dir(α0λ0j),

yj,` | λj ∼ Mult[λj(1), . . . , λj(d0)].

The model may be reformulated as

λ0j | α00,λ00 ∼ Dir(α00λ00),

Gj =
∑d0

k=1 λj(k)δk, λj | α0,λ0j ∼ Dir(α0λ0j),

yj,` | Gj ∼ Gj.

Another representation is given by

G0j =
∑d0

k=1 λ0j(k)δk, λ0j | α00,λ00 ∼ Dir(α00λ00),

Gj =
∑∞

τ=1 λ̃j(τ)δψj,τ , λ̃j ∼ GEM(α0), ψj,τ ∼ G0j,

yj,` | Gj ∼ Gj.

A modified CRF arising from this generative model is as follows. Corresponding
to the J groups, we imagine J restaurants, each with infinitely many tables but
finitely many dishes Y = {1, . . . , d0} on their globally shared menu. A customer
belonging to the jth group enters restaurant j, sits at a table, and is served a dish.
While the restaurant assignments are predetermined by group memberships, the table
assignment for the `th customer in restaurant j is chosen as τj,` ∼ λ̃j, and each table
τ is assigned a dish via ψj,τ ∼ λ0j. Customers sitting at the same table thus eat
the same dish. Multiple tables may, however, be served the same dish, allowing two
customers enjoying the same dish to be seated at different tables.

Let nj,τ denote the number of customers in restaurant j at table τ , nj(ψ) denote
the number of customers in restaurant j eating the dish ψ, and nj denote the total
number of customers in restaurant j. Also, let nj,τ (ψ) denote the number of customers
in restaurant j at table τ eating dish ψ. Clearly, nj,τ (ψ) > 0 only when dish ψ is
served at an occupied table τ . Finally, let vj(ψ) be the number of tables in restaurant
j serving dish ψ, and vj be the total number of occupied tables in restaurant j.

Given a posterior sample (τ ,ψ) of the table and the dish assignments from the
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Figure S.1: The modified Chinese restaurant franchise.

modified CRF, we can obtain a draw from the posterior of λ0j by noting that a-priori
(λ0j | α00,λ00) ∼ Dir(α00λ00) and that ψj,τ for each τ is a draw from λ0j. The
number of different ψj,τ ’s that are associated with a specific dish ψ is precisely the
number of tables in the restaurant j that served the dish ψ, that is, vj(ψ). See Figure
S.1. Using Dirichlet-Multinomial conjugacy, we then have

(λ0j | τ ,ψ, α00,λ00, ζ) ∼ Dir[α00λ00(1) + vj(1), . . . , α00λ00(d0) + vj(d0)].

Given a data point yj,` and the corresponding table assignment τj,`, the dish ψj,τj,`
assigned to that table is known to be yj,` and hence need not be sampled.

The table assignments τ are, however, latent. To sample τ from the posterior, we
first marginalize out their prior λ̃j ∼ GEM(α0) to obtain

(τj,` | α0, τ
−`
j ) ∼

∑
τ∈S−`j,τ

n−`j,τ
nj−1+α0

δτ + α0

nj−1+α0
δτnew ,

where n−`j,τ denotes the number of customers sitting at table τ in restaurant j ex-

cluding the `th customer, S−`j,τ denotes the set of unique values in τ−`j = {τj,m : m =

1, . . . , nj,m 6= `} and τnew is a generic for any new value of τ not in S−`j,τ . The distri-

bution of the table assignment τj,` given τ−`j and the dish assignments ψ may then
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be obtained as

p(τj,` = τ | ψj,τ = ψ, α0,ψ
−`
j , τ

−`
j ,λ0j) ∝ n−`j,τδτ if τ ∈ S−`j,τ ,

p(τj,` = τnew | ψj,τnew = ψ, α0,ψ
−`
j , τ

−`
j ,λ0j) ∝ α0λ0j(ψ) if τnew /∈ S−`j,τ ,

where ψ−`j = {ψj,τj,m : m = 1, . . . , nj,m 6= `}. Since these assignments are restricted
only to tables serving the dish ψ, the distribution reduces to

(τj,` | ψj,τj,` = ψ, α0,ψ
−`
j , τ

−`
j ,λ0j) ∼

∑
τ∈S−`j,τ (ψ)

n−`j,τ (ψ)

nj(ψ)−1+α0λ0j(ψ)
δτ +

α0λ0j(ψ)

nj(ψ)−1+α0λ0j(ψ)
δτnew ,

where S−`j,τ (ψ) denotes the set of unique values in τ−`j (ψ) = {τj,m : m = 1, . . . , nj,m 6=
`, ψj,τj,m = ψ}, n−`j,τ (ψ) denotes the number of customers sitting at table τ in restaurant
j and enjoying the dish ψ excluding the `th customer, and τnew is a generic for any
new value of τ not in S−`j,τ (ψ). This distribution can be identified with a marginalized
conditional distribution of assignments of nj(ψ) observations to different components
in a GEM{αλ0j(ψ)}. The full conditional for λ0j given (ψ, τ ) depends on the table
assignments only via vj(ψ) which can be obtained from the table assignments τ j.

Alternatively, for each of the nj(ψ) customers in restaurant j enjoying the dish ψ,
let vj,`(ψ) = 0 if the `th customer sits at an already occupied table, and vj,`(ψ) = 1 if

the `th customer goes to a new table. Then, vj(ψ) =
∑nj(ψ)

`=1 vj,`(ψ). Using properties
of a GEM{αλ0j(ψ)} distribution, we then have

{vj,`(ψ) | v`−1
j (ψ), α0,λ0j} ∼ `−1

`−1+α0λ0j(ψ)
δ0 +

α0λ0j(ψ)

`−1+α0λ0j(ψ)
δ1,

where v`−1
j (ψ) = {vj,m(ψ) : m = 1, . . . , `− 1}. We can then sample the vj,`(ψ)’s from

the posterior by sequentially sampling them as

[{vj,`(ψ)}nj(ψ)
`=1 | α0,λ0j] ∼

∏nj(ψ)
`=1 Bernoulli

{
α0λ0j(ψ)

`−1+α0λ0j(ψ)

}
.

Next, we derive the full conditional for the hyper-parameter α0, assuming a
Ga(a, b) prior and adapting to West (1992). Following Antoniak (1974), integrat-
ing out λ0j, we have p(vj | α0, nj) = α

vj
0 s

?(nj, vj)Γ(α0)/Γ(α0 +nj), where s?(n, v) are
Stirling numbers of the first kind. Letting n = {nj}Jj=1, v = {vj}Jj=1 with v =

∑J
j=1 vj,

and the restaurants being conditionally independent, we then have

p(α0 | v,n, ζ) ∝ p0(α0 | a, b) p(v | α0,n) ∝ exp(−α0b)(α0)a−1
∏J

j=1

{
(α0)vj Γ(α0)

Γ(α0+nj)

}

∝ exp(−α0b)(α0)a+v−1
∏J

j=1

{
(α0+nj) Beta(α0+1,nj)

α0 Γ(nj)

}

∝ exp(−α0b)(α0)a+v−1
∏J

j=1

{(
1 +

nj
α0

) ∫
rα0
j (1− rj)nj−1drj

}
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∝ exp(−α0b)(α0)a+v−1
∏J

j=1

{∑1
sj=0

(
nj
α0

)sj ∫
rα0
j (1− rj)nj−1drj

}
.

Treating r = {rj}Jj=1, s = {sj}Jj=1 as auxiliary variables, we have

p(α0, r, s | ζ) ∝ exp(−α0b)(α0)a+v−1
∏

j

{(
nj
α0

)sj
rα0
j (1− rj)nj−1

}
.

The full conditionals for α0, rj and sj are then obtained in closed forms as

(α0 | ζ) ∼ Ga(a+ v − s, b− log r), (rj | ζ) ∼ Beta(α0 + 1, nj), (sj | ζ) ∼ Bernoulli
(

nj
nj+α0

)
,

where log r =
∑J

j=1 log rj, and s =
∑J

j=1 sj.

S.1.3.2 Mixed Effects CRF

In our mixed effects Markov chain setting, when vs,t = 1, is = i, ys,t−1 = yt−1,
the customer (s, t) enters the j ≡ (i, yt−1)th restaurant, whereas when vs,t =
0, (z1,xs,1 , . . . , zp,xs,p) = (h1, . . . , hp), ys,t−1 = yt−1, the customer enters the j ≡
(h1, . . . , hp, yt−1)th restaurant.

We first focus on the case vs,t = 1, leading the customer (s, t) to the (i, yt−1)th

restaurant. The total number of customers entering the (i, yt−1)th restaurant is
n(i)(yt−1) =

∑
s,t 1{ys,t−1 = yt−1, vs,t = 1, is = i}. Among them, the number of

customers eating the dish yt is n(i)(yt | yt−1) =
∑

s,t 1{ys,t = yt, ys,t−1 = yt−1, vs,t =

1, is = i}. We define, for each ` = 1, . . . , n(i)(yt | yt−1), v
(i)
` (yt | yt−1) = 0 if the `th

customer sits at an already occupied table and v
(i)
` (yt | yt−1) = 1 if the `th customer

goes to a new table. We can then sample {v(i)
` (yt | yt−1)}n

(i)(yt|yt−1)
`=1 from the posterior

by sampling them sequentially from

{v(i)
` (yt | yt−1)}n

(i)(yt|yt−1)
`=1 | ζ ∼

∏n(i)(yt|yt−1)
`=1 Bernoulli

{
α(0)λ0(yt|yt−1)

`−1+α(0)λ0(yt|yt−1)

}
.

Then, v(i)(yt | yt−1) =
∑n(i)(yt|yt−1)

`=1 v
(i)
` (yt | yt−1) gives the number of occupied tables

serving the dish yt in the (i, yt−1)th restaurant.
The case vs,t = 0, leading customer (s, t) to the j ≡ (h1, . . . , hp, yt−1)th restaurant

can be similarly handled. For instance, if, for each customer ` = 1, . . . , nh1,...,hp(yt |
yt−1) eating dish yt in restaurant (h1, . . . , hp, yt−1), we define v`,h1,...,hp(yt | yt−1) = 0
if the customer sits at an already occupied table and v`,h1,...,hp(yt | yt−1) = 1 if the

customer goes to a new table. Then, we can sample {v`,h1,...,hp(yt | yt−1)}nh1,...,hp (yt|yt−1)

`=1
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from the posterior by sampling them sequentially from

{v`,h1,...,hp(yt | yt−1)}nh1,...,hp (yt|yt−1)

`=1 | ζ ∼
∏nh1,...,hp (yt|yt−1)

`=1 Bernoulli
{

α0λ0(yt|yt−1)
`−1+α0λ0(yt|yt−1)

}
.

Then, vh1,...,hp(yt | yt−1) =
∑nh1,...,hp (yt|yt−1)

`=1 v`,h1,...,hp(yt | yt−1) gives the number of
occupied tables serving the dish yt in the (h1, . . . , hp, yt−1)th restaurant.

The table assignments in restaurants (i, yt−1) and (h1, . . . , hp, yt−1) with a common
subscript yt−1 follow λ0(· | yt−1). Letting v(yt | yt−1) =

∑
h1,...,hp

vh1,...,hp(yt | yt−1) +∑
i v

(i)(yt | yt−1) denote the total number of tables serving dish yt across all such
restaurants, we can update λ0(· | yt−1) using Dirichlet-Multinomial conjugacy as

λ0(· | yt−1) | ζ ∼ Dir {α00λ00(1) + v(1 | yt−1), . . . , α00λ00(d0) + v(d0 | yt−1)} .

To sample the hyper-parameter α(0), we mimic the developments in the modified
CRF and introduce auxiliary variables r(i)(yt−1) and s(i)(yt−1) for each (i, yt−1). Let
n(0) = {n(i)(yt−1) : i ∈ I0, yt−1 ∈ Y}; v(0), r(0), s(0) are similarly defined, I0 is the set
of individuals associated with the sequences. It can then be easily derived that

α(0) | ζ ∼ Ga(a(0) + v(0) − s(0), b(0) − log r(0)),

r(i)(yt−1) | ζ ∼ Beta{α(0) + 1, n(i)(yt−1)},

s(i)(yt−1) | ζ ∼ Bernoulli

{
n(i)(yt−1)

n(i)(yt−1) + α(0)

}
,

where v(0) =
∑

yt

∑
yt−1

∑
i v

(i)(yt | yt−1), log r(0) =
∑

yt−1

∑
i log r(i)(yt−1), and

s(0) =
∑

yt−1

∑
i s

(i)(yt−1).
Likewise, the hyper-parameter α0 and the associated auxiliary variables rh1,...,hp(yt−1)

and sh1,...,hp(yt−1) can be sampled from the posterior as

α0 | ζ ∼ Ga(a0 + v0 − s0, bα0 − log r0),

rh1,...,hp(yt−1) | ζ ∼ Beta{α0 + 1, nh1,...,hp(yt−1)},

sh1,...,hp(yt−1) | ζ ∼ Bernoulli

{
nh1,...,hp(yt−1)

nh1,...,hp(yt−1) + α0

}
,

where v0 =
∑

yt

∑
yt−1

∑
h1,...,hp

vh1,...,hp(yt | yt−1), log r0 =
∑

yt−1

∑
h1,...,hp

log rh1,...,hp(yt−1),
and s0 =

∑
yt−1

∑
h1,...,hp

sh1,...,hp(yt−1).



SUPPLEMENTARY MATERIALS S.10

Figure S.2: Estimated posterior densities (green) of the hyper-parameters α0 and α(0)

superimposed over their Gamma(1,1) priors (blue).

S.2 Theoretical Properties

In this section, we discuss some theoretical aspects of our proposed model. We follow
the notations and definitions of the main paper.

For Markov sequences with exogenous predictors (MSEPs), the values of the ex-
ogenous predictors remain fixed for the entire lengths of the sequences. The notions
of ergodicity, stationarity etc for predictor free ordinary Markov sequences thus ex-
tend naturally to MSEPs. Let P0 = {P (i)

0,x1,...,xp
(yt | yt−1) : P

(i)
0,x1,...,xp

(yt | yt−1) =

π0,0(yt−1)λ0,x1,...,xp(yt | yt−1) + π0,1(yt−1)λ
(i)
0 (yt | yt−1)} ⊂ P denote the class of

transition probability distributions that admit representations similar to our pro-
posed formulation. It is straightforward to check that any P

(i)
0,x1,...,xp

(· | yt−1) ∈ P0

will be ergodic if at least one of the component transition distributions is also
so and the associated mixture probability is strictly positive. In particular, if
λ0,x1,...,xp(· | yt−1) and λ

(i)
0 (· | yt−1) are both ergodic with stationary distribu-

tions π0,x1,...,xp = {π0,x1,...,xp(1), . . . , π0,x1,...,xp(d0)}T and π
(i)
0 = {π(i)

0 (1), . . . , π
(i)
0 (d0)}T,

respectively, then the stationary distribution of P
(i)
0,x1,...,xp

(· | yt−1), denoted by

π
(i)
0,x1,...,xp

= {π(i)
0,x1,...,xp

(1), . . . , π
(i)
0,x1,...,xp

(d0)}T, has a representation π
(i)
0,x1,...,xp

(yt) =

π0(yt)π0,x1,...,xp(yt) + π1(yt)π
(i)
0 (yt). Conversely, if π0(yt−1) ∈ (0, 1), P

(i)
0,x1,...,xp

(· | yt−1)
can be ergodic even when neither of the two component distributions are so. This
can be seen by constructing an example with binary state space {1, 2} where one of
the component transition distributions only allows self transitions (1 → 1, 2 → 2)
and the other only transitions to the other state (1 → 2, 2 → 1). These results all
follow from basic definitions of stationarity and also extend naturally to population
level transition distributions P0,x1,...,xp(· | yt−1).

We now discuss model flexibility, prior support and posterior consistency. The
proposed mixed effect Markov model assumes additivity of predictor effects and indi-
vidual effects directly on the probability scale. The model assumes an implicit upper
bound π1(yt−1) on how far the individual effects π1(yt−1)λ(i)(yt | yt−1) can stretch
the effects due to the exogenous predictors π0(yt−1)λh1,...,hp(yt | yt−1) in modeling

P
(i)
h1,...,hp

(yt | yt−1). This bound can be easily relaxed by allowing the π1(yt−1)’s to also
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be individual-specific, assigning additional priors to the parameters of their distribu-
tion. We have not pursued such generalizations in this article in favor of simplicity
and parsimony. Being based on the partition model for MSEPs introduced in Section
3.1 in the main paper, the model for the population level mean transition probabilities
Ph1,...,hp(· | yt−1), on the other hand, is fully nonparametric, taking into account all
order interactions between the exogenous and the local predictors. The class P0, de-
fined above, thus denotes a fairly large class of individual-specific exogenous predictor
dependent transition distributions.

It is easy to check that our assumed priors, referred to collectively as Π, as-
sign positive probability on any arbitrarily close L1 neighborhood of any P0 =
{P (is)

0,xs,1,...,xs,p
(yt | yt−1)}s0s=1 ∈ P0. More formally, with d(P

(i)
x1,...,xp , P

(i)
0,x1,...,xp

) =
∑d0

yt−1=1

∑d0
yt=1

∣∣∣P (i)
x1,...,xp(yt | yt−1)− P (i)

0,x1,...,xp
(yt | yt−1)

∣∣∣, we have Π{Bδ(P0)} > 0 for

any P0 ∈ P0 and any δ > 0, where Bδ(P0) = {P (is)
xs,1,...,xs,p : d(P

(is)
xs,1,...,xs,p , P

(is)
0,xs,1,...,xs,p

) ≤
δ, s = 1, . . . , s0}.

Let P00 ⊂ P0 be the class of ergodic transition probability distributions P0

with associated stationary distributions π
(i)
0,x1,...,xp

(yt), where π
(i)
0,x1,...,xp

(yt) > 0 for

all yt ∈ Y . Assuming {ys,t}s0,Tss=1,t=1 to be ergodic with the true transition dynam-
ics characterized by some P0 ∈ P00, it then follows, using strong law of large
numbers for ergodic Markov sequences (Eichelsbacher and Ganesh, 2002), that
the posterior Π[· | {xs,j, ys,t}s0,Ts,ps=1,t=1,j=1] concentrates almost surely in arbitrarily
small neighborhoods of the true data generating parameters P0 as mins Ts → ∞
(Ghosh and Ramamoorthi, 2003). Formally, for any δ > 0 and any P0 ∈ P00,
Π[Bδ(P0) | {xs,j, ys,t}s0,Ts,ps=1,t=1,j=1]→ 1 almost surely P0 as mins Ts →∞.

Asymptotic regimes for classical mixed effects models typically assume the number
of subjects to approach infinity while the number of observations for each subject
remains fixed. The criteria considered here, on the contrary, assumes the number
of subjects to remain fixed but assumes the length of each sequence to approach
infinity. This is a more realistic scenario for animal vocalization experiments, since it
is practically impossible to study more than a small to moderate number of mice from
each genotype. The recording times of the songs, however, can be easily increased.

S.3 Additional Figures

This section presents additional figures summarizing results for the Foxp2 data set
and the simulation experiments from Sections 5 and 6 in the main paper, respectively.
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Figure S.3: Results for the Foxp2 data set. Estimated posterior standard deviation
of transition probabilities Px1,x2(yt | yt−1) for syllables yt, yt−1 ∈ {d,m, s, u, x} for
different combinations of genotype x1 ∈ {F,W} and social contexts x2 ∈ {U,L,A}.

Figure S.4: Results for the simulation scenario D described in Section 6 of the main
paper. Estimated posterior standard deviation of transition probabilities Px1,x2(yt |
yt−1) for syllables yt, yt−1 ∈ {d,m, s, u, x} for different combinations of genotype x1 ∈
{F,W} and social contexts x2 ∈ {U,L,A}.
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Figure S.5: Results for the Foxp2 data set. Estimated posterior standard devia-
tion of the random effects parameters π1(yt−1)λ(i)(yt | yt−1) for syllables yt, yt−1 ∈
{d,m, s, u, x}.

Figure S.6: Results for the simulation scenario D described in Section 6 of the main
paper. Estimated posterior standard deviation of the random effects parameters
π1(yt−1)λ(i)(yt | yt−1) for syllables yt, yt−1 ∈ {d,m, s, u, x}.
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Figure S.7: Results for the simulation scenario F described in Section 6 in the
main paper, but for a different random seed. The top row shows the true val-
ues of |∆P·,x2(yt | yt−1)| = |P1,x2(yt | yt−1)− P2,x2(yt | yt−1)| for syllables yt, yt−1 ∈
{d,m, s, u, x} and social contexts x2 ∈ {U,L,A}. Positive differences are high-
lighted in black. The middle row shows the estimated posterior probabilities of
H0,yt|yt−1,x2 : |∆P·,x2(yt | yt−1)| ≤ 0.02. The bottom row shows Benjamini-Hochberg
adjusted p-values obtained using the method of Chabout et al. (2016). Posterior
probabilities smaller than 0.1 are considered significant and are highlighted in black
and orange. Posterior probabilities greater than 0.1 are presented in white and red.
Likewise, p-values smaller than 0.1 are considered significant and are highlighted in
black and orange. P-values greater than 0.1 are presented in white and red. White
and black cells represent correct decisions, orange cells mark rejections of true H0,`

(false positives), and red cells mark failures to reject false H0,` (false negatives).



SUPPLEMENTARY MATERIALS S.15

S.4 MCMC Diagnostic Plots for Foxp2 Data Set

This section presents some MCMC diagnostics for samples drawn by the Gibbs sam-
pler described in Section S.1.2 of the Supplementary Materials. The results presented
here are for the Foxp2 data set discussed in Section 5 of the main paper. Diagnostics
for the simulation experiments were similar and hence not included.

Figure S.8 shows the trace plots of the sampled values of the population level
transition probabilities Px1,x2(yt | yt−1) and is not indicative of any serious convergence
or mixing issues. Figure S.9 indicates reasonably fast decays in autocorrelations up
lag 20 in thinned samples of Px1,x2(yt | yt−1).

Assuming an AR(1) model, the Monte Carlo uncertainty in estimating the tran-
sition probabilities Px1,x2(yt | yt−1) using NMC,thinned = 600 thinned samples drawn
using the Gibbs sampler is given by

σ̂MC,x1,x2(yt | yt−1) =
σ̂x1,x2(yt | yt−1)√

NMC,thinned

√
1 + ρ1

1− ρ1

.

Here, σ̂x1,x2(yt | yt−1) is the estimated posterior standard deviation of Px1,x2(yt | yt−1)
shown in Figure S.3 in the main paper, and ρ1 is the lag 1 autocorrelation in thinned
samples of Px1,x2(yt | yt−1). Figure S.10 shows the values of 102 × σ̂MC,x1,x2(yt | yt−1)
for different values of yt, yt−1, x1, x2. If we want to estimate the posterior means of
Px1,x2(yt | yt−1) with a specified tolerance level tol, we need σ̂MC,x1,x2(yt | yt−1) ≤ tol.
In this article, the desired accuracy in estimating the posterior means of Px1,x2(yt |
yt−1) is assumed to be tol = 0.005. In Figure 5, these estimates are thus presented
up to two places after the decimal point. As Figure S.10 shows, the maximum value
of σ̂MC,x1,x2(yt | yt−1) is 0.0025. So the tolerance conditions are all well satisfied.
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Figure S.8: Results for the Foxp2 data set. Trace plot of sampled values of transi-
tion probabilities Px1,x2(yt | yt−1) for syllables yt, yt−1 ∈ {d,m, s, u, x} for different
combinations of genotype x1 ∈ {F,W} and social contexts x2 ∈ {U,L,A}. In each
panel, the preceding syllables yt−1 are presented in different horizontal sub-panels.
Within each sub-panel, the range of the y-axis is [0, 1] and different syllables yt are
distinguished by different colors.
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Figure S.9: Results for the Foxp2 data set. Autocorrelation plots of thinned samples
of transition probabilities Px1,x2(yt | yt−1) for syllables yt, yt−1 ∈ {d,m, s, u, x} for
different combinations of genotype x1 ∈ {F,W} and social contexts x2 ∈ {U,L,A}.
In each panel, the preceding syllables yt−1 are presented in different horizontal sub-
panels. Within each sub-panel, the range of the y-axis is [−1, 1] and different syllables
yt are distinguished by different colors.
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Figure S.10: Results for the Foxp2 data set. The panels show 102×σ̂MC,x1,x2(yt | yt−1)
for syllables yt, yt−1 ∈ {d,m, s, u, x} for different combinations of genotype x1 ∈
{F,W} and social contexts x2 ∈ {U,L,A}. Here, σ̂MC,x1,x2(yt | yt−1) is the estimated
Monte Carlo uncertainty in estimating the posterior expectation of the transition
probabilities Px1,x2(yt | yt−1), reported in Figure 5, using thinned MCMC samples.
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S.5 Comparison with GLM Based Approaches

In this section, we revisit GLM based approaches to mixed effects Markov sequences.
Adapting to Altman (2007), without any interaction among the local predictor yt−1

and the exogenous predictors xj, j = 1, . . . , p, using the logit link, we are now required
to formulate d0 − 1 models, one for each yt = 1, . . . , d0 − 1, of the form

log

{
P

(is)
xs,1,...,xs,p(ys,t = yt | ys,t−1)

P
(is)
xs,1,...,xs,p(d0 | ys,t−1)

}
= β0,yt +

d0−1∑

yt−1=1

βyt,yt−11{ys,t−1 = yt−1}

+

p∑

j=1

dj−1∑

xj=1

βj,yt,xj1{xs,j = xj}+

d0−1∑

yt−1=1

u(is)
yt,yt−1

1{ys,t−1 = yt−1},

where u(i) = {u(i)
yt,yt−1}d0−1,d0

yt=1,yt−1=1 are random effects to due to the ith individual. Ex-
cept for the restrictive special case of binary sequences, estimation of the model pa-
rameters becomes prohibitively complex, especially in presence of multiple exogenous
predictors. Incorporating only second order interactions would require an additional
Nint =

∑p
j1=0

∑p
j2=0,j1 6=j2(dj1 − 1)(dj2 − 1) terms for each of the d0− 1 models, signif-

icantly increasing model complexities. For the Foxp2 application, for instance, this
would require Nint = 14 additional terms in each of the 4 models. We have thus
ignored interactions among the exogenous and the local predictors here.

The population average probabilities implied by the model can be obtained by
integrating out the random effects as

Px1,...,xp(yt | yt−1) =

∫
P (i)
x1,...,xp

(yt | yt−1)f(u(i)
yt−1

)du(i)
yt−1

=

∫ exp
(
β0,yt + βyt,yt−1 +

∑p
j=1 βj,yt,xj + u

(i)
yt,yt−1

)

∑d0
h=1 exp

(
β0,h + βh,yt−1 +

∑p
j=1 βj,h,xj + u

(i)
h,yt−1

)f(u(i)
yt−1

)du(i)
yt−1

,

where β0,d0 = 0, βd0,yt−1 = β1,d0,yt−1 = · · · = βp,d0,yt−1 = u
(i)
d0,yt−1

= 0 for all yt−1, u
(i)
yt−1 =

(u
(i)
1,yt−1

, . . . , u
(i)
d0−1,yt−1

)T, and f(u
(i)
yt−1) is the random effects distribution. Typically

it is assumed that f(u
(i)
yt−1) = MVNd0−1(0,Σu), where MVNq(µ,Σ) denotes a q-

dimensional multivariate normal distribution with mean vector µ and covariance
matrix Σ. Often such models are further simplified by assuming u

(i)
yt−1 = u(i) for

all yt−1 (Altman, 2007) and the components of uyt to be distributed independently
with Σu = diag(σ2

u,1, . . . , σ
2
u,d0−1).

Even with such restrictive simplifying assumptions, the population level transi-
tion probabilities Px1,...,xp(yt | yt−1) do not have closed form expressions. Assuming
Px1,...,xp(yt | yt−1) to arise from the same multinomial logit functional form

Px1,...,xp(yt | yt−1) =
exp

(
β?0,yt + β?yt,yt−1

+
∑p

j=1 β
?
j,yt,xj

)

∑d0
h=1 exp

(
β?0,h + β?h,yt−1

+
∑p

j=1 β
?
j,h,xj

) ,
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an approximation yields β?0,yt ≈ β0,yt/(1 + c2σ2
u,yt)

1/2, β?yt,yt−1
≈ βyt,yt−1/(1 + c2σ2

u,yt)
1/2

and so on, where c = (16
√

3)/(15π) (Zeger et al., 1988). Individual and population
level fixed effects parameters are thus different and have to be differently interpreted.
Specifically, population level probabilities depend on individual heterogeneity - two
populations with different individual heterogeneity will have different population level
probabilities even if they have the same individual level fixed effects parameters.

Testing scientific hypotheses related to influences of the predictors using such
GLM based models is also complicated. For instance, the global null H0j of no effect
of the jth exogenous predictor xj, when translated in terms of the model parameters,
becomes a complicated composite hypothesis H0j : βj,yt,xj = 0 for all yt = 1, . . . , d0−1
and all xj = 1, . . . , dj − 1.

Similar exact functional forms for both the marginal and the individual level mixed
models can be guaranteed by ‘bridge’ distributed random effects (Wang and Louis,
2003). Focusing on the simplest binary cases, for any link function H with h = H ′,
the ‘bridge’ distribution g is given by

g(u) =
1

2π

∫
exp{ι(k/ϕ− u)}Fh(v/ϕ)

Fh(v)
dv,

such that
∫
H(u + βTx)g(u)du = H(k + ϕβTx), where Fh is the characteristic

function of h and ϕ ∈ (0, 1] is an attenuating scale factor. For the logistic link
H(x) = exp(x){1 + exp(x)}−1, for example, the bridge distribution is given by

g(u) =
1

2π

sin(ϕπ)

{cosh(ϕu) + cos(ϕπ)}
,

a symmetric distribution with variance π2(ϕ2−1)/3. For the probit link H(x) = Φ(x),
the bridge distribution is also Gaussian with rescaling factor ϕ = (1+σ2

b )
−1/2, where σ2

b

is the variance of the bridge distribution Normal(0, σ2
b ). Multivariate generalizations

are, however, not straightforward. Additionally, although such bridge distributed
random effects allow the population and the individual level models to have the same
functional forms, other limitations of GLM based approaches, as described above,
still remain, making such methods prohibitively complex in settings like ours.

In comparison, our model is highly flexible, parsimoniously accommodating in-
teractions of all orders between the exogenous and the local predictors, while also
completely avoiding to have to choose any link function. The random effects in our
model for the individual level transition probabilities can be easily integrated out to
obtain closed form expressions of the population level transition probabilities. The
fixed effects components remain the same in both individual and population level
probabilities and hence can be interpreted in the same way. Finally, testing scientific
hypotheses related to global influences of the predictors is very straightforward using
our approach as they can be translated in terms of a single model parameter.

We implemented the multinomial logit based mixed effects Markov model de-
scribed above using the MCMCglmm package in R (Hadfield, 2010). Maximum like-
lihood estimation of the model parameters using other R packages did not produce
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realistic results. Figure S.11 shows the estimated posterior means of the popula-
tion level transition probabilities based on 12, 000 samples drawn from the posterior,
thinned by an interval of 10 after the initial 2, 000 were discarded as burnin. Compar-
ison with estimates produced by our method, summarized in Figure 5 in the main pa-
per, suggests overall agreement. For reasons detailed above, global significance of the
exogenous predictors could not be straightforwardly assessed. We could, however, as-
sess the significance of each β parameter from the MCMC output using the minimum
of the proportion of samples in which β is on one side or the other of zero, referred to
as pMCMC in MCMCglmm. For the Foxp2 data set, the four β parameters associ-
ated with genotype, namely β1,1,1, β1,2,1, β1,3,1, β1,4,1, had pMCMC values 0.446, 0.436,
0.368 and 0.106, indicating none of them to be marginally significant. To assess local
differences in transition probabilities between the two genotypes, we employed the
approach developed in Section 4 of the main paper. Figure S.12 summarizes the pos-
terior probabilities of the local null hypotheses H0,yt|yt−1,x2 : |∆P·,x2(yt | yt−1)| ≤ 0.02
estimated from the MCMC output of the GLM based model. Unlike the results pro-
duced by our approach, summarized in Figure 6 in the main paper, no local difference
was found to be significant at the 0.10 posterior probability level.

To further assess how the multinomial logit based mixed effects Markov model
compares with our proposed approach in detecting local differences in transition prob-
abilities between the two genotypes, we compared the results produced by the two
methods for data sets simulated under scenario F described in Section 6 in the main
paper. The posterior means of the population level transition probabilities estimated
by the GLM based approach (not shown here) were quite different from the truth.
Figures S.13 and S.14 summarize the estimated posterior probabilities of the local
null hypotheses H0,yt|yt−1,x2 : |∆P·,x2(yt | yt−1)| ≤ 0.02 for two different simulated
data sets. Compared to the results produced by our approach, summarized in Figure
10 and Figure S.7, there were many more false decisions.

Another possible approach to syntax analysis could be to transform the sample
transition proportions and fit a generalized linear mixed effects model to those trans-
formed values. Such an approach would inherit the limitations of summary statistics
based approaches, such as the method of Chabout et al. (2016) discussed in Section
2 of the main paper, as well as those of the GLM based approaches discussed above.
Yet another possibility is to assume an independent Dirichlet model for each mouse
under each experimental experimental condition. In experiments with such models,
we found the results to be numerically very unstable and highly sensitive to the choice
of the hyper-parameters. These issues provided motivation for developing the more
structured approach presented in the paper.
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Figure S.11: Results for the Foxp2 data set for the GLM based approach described
in Section S.5 in the Supplementary Materials. Estimated approximate posterior
mean transition probabilities Px1,x2(yt | yt−1) for syllables yt, yt−1 ∈ {d,m, s, u, x} for
different combinations of genotype x1 ∈ {F,W} and social contexts x2 ∈ {U,L,A}.

Figure S.12: Results for the Foxp2 data set for the GLM based approach described
in Section S.5 in the Supplementary Materials. The estimated posterior probability
of H0,yt|yt−1,x2 : |∆P·,x2(yt | yt−1)| = |P1,x2(yt | yt−1)− P2,x2(yt | yt−1)| ≤ 0.02.
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Figure S.13: Results for the simulation scenario F described in Section 6 in the
main paper. These results were produced by the GLM based approach described in
Section S.5 in the Supplementary Materials. The results show the estimated posterior
probabilities of H0,yt|yt−1,x2 : |∆P·,x2(yt | yt−1)| ≤ 0.02. Posterior probabilities smaller
than 0.1 are considered significant and are highlighted in black and orange. Posterior
probabilities greater than 0.1 are presented in white and red. White and black cells
represent correct decisions, orange cells mark rejections of true H0,` (false positives),
and red cells mark failures to reject false H0,` (false negatives). Compare with Figure
10 in the main paper.

Figure S.14: Results for the simulation scenario F described in Section 6 in the main
paper, but for a different random seed. These results were produced by the GLM
based approach described in Section S.5 in the Supplementary Materials. The results
show the estimated posterior probabilities of H0,yt|yt−1,x2 : |∆P·,x2(yt | yt−1)| ≤ 0.02.
Posterior probabilities smaller than 0.1 are considered significant and are highlighted
in black and orange. Posterior probabilities greater than 0.1 are presented in white
and red. White and black cells represent correct decisions, orange cells mark rejections
of true H0,` (false positives), and red cells mark failures to reject false H0,` (false
negatives). Compare with Figure S.7 in the Supplementary Materials.
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