
Supplementary Material
for “Information-Based Optimal Subdata Selection for

Big Data Linear Regression”

HaiYing Wang, Min Yang, and John Stufken ∗

November 17, 2017

We present additional numerical results about the performance of the IBOSS method.

S.1 Predictive performance

In this section, we investigate the performance of IBOSS in predicting the mean response

for a given setting of covariates. We focus on the mean squared prediction error (MSPE),

MSPE = E[{E(ynew)− ŷnew}2] = E[{xT
new(β̂ − β)}2]. (S.1)

Note that the mean squared prediction error for predicting a future response is

E{(ynew − ŷnew)2} = E[{ynew − E(ynew)}2] + E[{E(ynew)− ŷnew}2] = σ2 + MSPE, (S.2)

and the variance of ynew, σ2, cannot be reduced by choosing a better subdata or a larger

subdata sample size k. Thus it is reasonable to focus on the MSPE in (S.1) to evaluate the

performance of IBOSS. For prediction, the estimation of β0 is also important, so we use

β̂Da
0 = ȳ − z̄Tβ̂

D

1 as indicated in the paper.

We use the same five cases considered in the paper to generate full data sets. In

addition, we consider another case, Case 6, in which the covariates are from a multivariate
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t distribution with degrees of freedom ν = 1. This is a case often used in evaluating the

performance of the LEV method.

Case 6. zi’s have a multivariate t distribution with degrees of freedom ν = 1, i.e., zi ∼

t1(0,Σ).

For each case, we implement different methods to obtain parameter estimates, and then

generate a new sample of size 5,000 to calculate the MSPEs. The simulation is repeated

1,000 times and empirical MSPEs are calculated. Figure S.1 presents plots of the log10 of

the MSPEs against log10(n). For prediction, the relative performance of IBOSS compared

with other methods are similar to that of parameter estimation. That is, the D-OPT

IBOSS method uniformly dominates the subsampling-based methods UNI and LEV, and its

advantage is more significant if the tail of the covariate distribution is heavier. Specifically

for Case 6, it is seen that the performance of D-OPT IBOSS is almost identical to that of

the full data approach, and LEV significantly outperforms the UNI.

S.2 Column permutation

In this section, we provide numerical results accessing the effect of column permutation on

the IBOSS method. To differentiate the effect of each column in the covariate matrix, we

change the covariance matrix Σ such that Σij = 0.5|i−j| if i 6= j, and Σij = 1 + 3(i− 1)/p

if i = j, i, j = 1, ..., 50. With this setup, the correlation structure for the covariates is

unexchangeable and variances for different columns are different. Using this covariance

matrix, we generate covariates zi’s according to Case 5 in Section 5.1 of the paper. The

IBOSS method is applied with the original order of covariate columns as well as with a

single random permutation of covariate columns. Results are presented in Figure S.2. It is

seen that the performances of IBOSS for the two approaches are very similar. This agrees

with the theoretical results.
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(a) Case 1: zi’s are normal.
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(b) Case 2: zi’s are lognormal.
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(c) Case 3: zi’s are t2.
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(d) Case 4: zi’s are a mixture.
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(e) Case 5: zi’s include interaction terms.
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(f) Case 6: zi’s are t1.

Figure S.1: MSPEs for predicting mean responses for six different distributions of the

covariates zi. The subdata size k is fixed at k = 1000 and the full data size n changes.

Logarithm with base 10 is taken of n and MSPEs for better presentation of the figures.
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(a) Original order, slope parameter
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(b) Shuffled order, slope parameter
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(c) Original order, intercept parameter
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(d) Shuffled order, intercept parameter

Figure S.2: MSEs for estimating the slope parameter (top panel) and the intercept param-

eter (bottom panel) with different orders of the covariate columns. The left panel presents

results with the original order of covariate columns and the right panel presents results with

the randomly shuffled order of covariate columns. The subdata size k is fixed at k = 1000

and the full data size n changes. Logarithm with base 10 is taken of n and MSEs for better

presentation of the figures.
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S.3 Interaction model

In this section, we consider a case that the true model contains all the main effects and

all the pairwise interaction terms. However, only the main effects are used in selecting

subdata. Data are generated from the following linear model,

yi = β0 +
10∑
j=1

zijβj +
10∑

j1 6=j2

zij1zij2βj1j2 + εi, i = 1, ..., n, (S.3)

where the true value of regression coefficients are βj = βj1j2 = 1 for j, j1, j2 = 1, ..., 10, and

εi’s are i.i.d. N(0, 9). Two different distributions are considered to generate covariates zi’s:

one is a multivariate normal distribution zi ∼ N(0,Σ10×10) and the other is a multivariate

lognormal distribution zi ∼ LN(0,Σ10×10), where Σ10×10 is a 10 by 10 covariance matrix

with Σij = 0.5I(i 6=j), for i, j = 1, ..., 10. In selecting subdata, only the main effects are

used. The interaction terms are not used in subdata selection but are used in parameter

estimation.

Figure S.3 presents the MSEs for estimating the slope parameters, which are calculated

from 1000 iterations of the simulation. It is seen that IBOSS is still the most efficient

method among subdata-based methods for both of the distributions.
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(a) Case 1: zi’s are normal.
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(b) Case 2: zi’s are lognormal.

Figure S.3: MSEs for estimating the slope parameter for two different distributions of the

covariates zi. The subdata size k is fixed at k = 1000 and the full data size n changes.

Logarithm with base 10 is taken of n and MSEs for better presentation of the figures.
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S.4 Nonlinear relationships

In this section, we consider the scenario that true relationships between the response and

the covariates are nonlinear, and transformations cannot linearize the relationships, i.e., a

finite-dimensional linear model cannot be correct. We consider the following two models

yi = β0 +

p−1∑
j=1

zijβj +
3ez

(t)
ip

1 + ez
(t)
ip

+ εi, i = 1, ..., n, (WM1)

yi = β0 +

p−1∑
j=1

zijβj + 30 log
(

1 + ez
(t)
ip

)
+ εi, i = 1, ..., n, (WM2)

where z
(t)
ip = zipI(zip ≤ 100) + 100I(zip > 100). Covariates and parameter setups are the

same as those of Case 4 for the mixture distribution. Although full data are generated

from nonlinear model (WM1) or (WM2), the linear main effects model is used for subdata

selection and analysis.

Figure S.4 presents plots of the log10 of the MSEs of estimating the slope parameter and

the intercept parameter against log10(n), and plots of the log10 of the MSPEs of predicting

the mean response. It is seen that, including the full data approach, no method dominates

others and larger sample sizes do not necessarily mean more accurate results. When the

underlying model is incorrect, the problem is very complicated and there is no simple answer

to which method will produce satisfactory results. We present the numerical studies here

to show that IBOSS does not always produce the worst results for this scenario, but we

have no intention to state that the IBOSS works better than other methods.
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(a) Model (WM1), slope parameter
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(b) Model (WM2), slope parameter
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(c) Model (WM1), intercept parameter
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(d) Model (WM2), intercept parameter
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(e) Model (WM1), prediction
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(f) Model (WM2), prediction

Figure S.4: MSEs for estimating the slope parameter (top row), MSEs for estimating the

intercept parameter (middle row), and MSPEs for predicting the mean response (bottom

row) when true models are nonlinear. The left column is for model (WM1) and the right

column is for model (WM2). The subdata size k is fixed at k = 1000 and the full data size

n changes. Logarithm with base 10 is taken of n and MSEs for better presentation of the

figures.
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S.5 Accuracy-cost tradeoff of the IBOSS method

In this section, we provide additional results showing the accuracy-cost tradeoff of the

IBOSS method. Full data of size n = 5× 106 are generated using the same setup of Case

1. The IBOSS method is implemented with subdata sample sizes of k = 102, 103, 104, 105

and 106, and the average CPU times and MSEs are calculated from 100 repetitions of the

simulation. Results are reported in Figure S.5. It is seen that as the required CPU time

increases, the MSE decreases, which indicates a clear tradeoff between computational cost

and estimation accuracy for the IBOSS method. However, as the CPU time increases,

the MSE can drop sharply. For example, when the CPU time increases from 6.4976 sec-

onds (corresponding to k = 102) to 7.0839 seconds, the MSE decreases from 13.57091 to

0.00786855. Thus the IBOSS has the advantage to significantly increase the estimation

accuracy with little increase in computational cost.
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Figure S.5: Average CPU times and MSEs for different subdata sample size k when the

covariates are from a multivariate normal distribution. The full data size is set to n = 5×106

with a dimension p = 50.
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We perform additional experiments to further investigate the accuracy-cost tradeoff

of the IBOSS for both large n and large p, and draw comparisons with the performance

of repeating the UNI method. Full data are generated with n = 5 × 105 and p = 500,

and subdata of sizes k = 103, 5 × 103, 104, 5 × 104, and 105 are taken using the IBOSS

method or the UNI method. For the UNI method, it is repeated multiple times so that

it consumes similar CPU times to the IBOSS method, and the average of the estimates

from all repetitions are used as the final estimate. Figure S.6 presents the results when

the covariates are from the multivariate normal distribution (Case 1) and the mixture

distribution (Case 4) described in Section 5 of the main paper. The average CPU times

and MSEs for the slope parameters are calculated from 100 repetitions of the simulation.

For Case 1 with multivariate normal covariates, the repeated UNI method may produce

smaller MSEs compared with the IBOSS method using similar CPU times. However, the

differences are not very significant compared with the advantage of the IBOSS method for

Case 4, in which the covariate distribution has a heaver tail.
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(a) Case 1: zi’s are normal.
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(b) Case 4: zi’s are a mixture.

Figure S.6: MSEs for different CPU times when the covariates are from a multivariate

normal distribution (a) and a mixture distribution (b). The full data size is set to n = 5×105

with dimension p = 500. Subdata sample size are k = 103, 5× 103, 104, 5× 104, and 105.
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S.6 Comparison with the divide-and-conquer method

In this section, we provide numerical results comparing the IBOSS method and the divide-

and-conquer (DC) method proposed in Section 4.3 of Battey et al. (2015). The DC method

divide the full data into S subdata sets (The notation k is used in Battey et al. (2015); we

use S here because k is used to denote the subdata size.), and the ordinary least squares

estimate, say β̂s, is calculated for each subdata. The DC estimate is the average of β̂s’s,

i.e., β̄ = S−1
∑S

s=1 β̂s. We choose S = bn1/4c. In our implementation, if n/S is not an

integer, the last subdata will have a sample size of n− bn/Sc ∗ (S − 1).

Figure S.7 gives the average CPU times and MSEs for the slope parameters with di-

mension p = 50 and different full data size n, with choices of 5 × 103, 104, 105, and 106.

The average CPU times and MSEs are calculated from 100 repetitions of the simulation. It

is seen that the relative performances of estimation efficiency between the IBOSS D-OPT

method and the DC method depend on the covariate distribution. The DC method is better

when covariates are normally distributed; the IBOSS D-OPT method and the DC method

perform similarly when the covariate has a mixture distribution; the IBOSS D-OPT domi-

nates the DC method when the covariate has a t1 distribution. In terms of computational

cost in Figure S.7 (d), the IBOSS D-OPT is more efficient than the DC method especially

for large values of n. Note that the CPU times for either the DC method or the IBOSS

D-OPT method do not depend on the covariate distribution.
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(a) Case 1: zi’s are normal.
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(b) Case 4: zi’s are a mixture.
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(c) Case 6: zi’s are t1.
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(d) CPU times.

Figure S.7: MSEs and CPU times for estimating the slope parameter: (a)-(c) give results

for MSEs and (d) gives results for CPU times. The subdata size k is fixed at k = 1000 and

the full data size n changes with fix dimension p = 50. Logarithm with base 10 is taken of

n and MSEs for better presentation of the figures.

To further compare the IBOSS D-OPT method and the DC method with a larger p, we

increase the dimension to be p = 500. Figure S.8 gives the average CPU times and MSEs

for the slope parameters. Full data are generated with sample sizes n = 5 × 103, 104, 105,

and 5 × 105. Subdata sample size for the IBOSS method is k = 1000. It is seen that the

relative performances of estimation efficiency between the IBOSS D-OPT method and the

DC method depend on the covariate distribution are similar to those with p = 50. In terms

of computational cost in Figure S.8 (d), the advantage of the IBOSS D-OPT method is

more significant compared with the DC method.
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(a) Case 1: zi’s are normal.
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(b) Case 4: zi’s are a mixture.
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(c) Case 6: zi’s are t1.
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Figure S.8: MSEs and CPU times for estimating the slope parameter: (a)-(c) give results

for MSEs and (d) gives results for CPU times. The subdata size k is fixed at k = 1000 and

the full data size n changes with fixed dimension p = 500. Logarithm with base 10 is taken

of n and MSEs for better presentation of the figures.

S.7 Performance of IBOSS with regularization method

In this section, we provide numerical results to evaluate the performance of the IBOSS

method in application to regularization methods. We use the IBOSS method to select

subdata, and then feed it to the elastic net regularization(Zou and Hastie, 2005) method.

Full data with dimension p = 60 are generated for sample sizes n, with choices of 5 ×

103, 104, 105, and 106. The intercept is set to β0 = 1, while the slope parameter β1 has

a sparse structure with the first 10 element being 0.1 and the rest 50 element being 0.
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The elastic net method is implemented using the glmnet R package (Friedman et al.,

2010). Tuning parameters are selected using the cross validation method provided in the

R package.

We calculate the MSPEs based on 100 repetitions of the simulation. In each repetition,

we implement different methods to obtain a subdata set of k = 1000, apply the elastic net

to the subdata set to estimate a model, and then use the model to calculate the MSPEs

based on a new sample of size 5,000. Figure S.9 presents the results of the simulation. It

is seen that the relative performance of IBOSS compared with other methods are similar

to that of parameter estimation in the main paper. That is, the D-OPT IBOSS method

uniformly dominates the subsampling-based methods UNI and LEV, and its advantage is

more significant if the tail of the covariate distribution is heavier.

We also implement the ridge regression method. The results are similar so we omit

them.
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(a) Case 1: zi’s are normal.
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(b) Case 2: zi’s are lognormal.
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(c) Case 3: zi’s are t2.
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(d) Case 4: zi’s are a mixture.

Figure S.9: MSPEs for predicting mean responses using the elastic net method with the

subdata of size k = 1000 selected from the full data. Logarithm with base 10 is taken of

the full data sample size n and MSPEs for better presentation of the figures.

S.8 Unequal variance

In this section, we provide a simple numerical study to evaluate the performance of the

IBOSS method when the error term in the linear model is heteroscedastic. We use same

setup in the main paper to generate the full data except that the standard deviations of

the error terms are different and are generated from the exponential distribution with rate

parameter 1, i.e., the variance for each error term is randomly generated from a squared

exponential random variable. Figure S.10 presents MSE for estimating the slope parameter.

It is seen that the relative performance of IBOSS compared with other methods are similar
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to that of parameter estimation in the main paper. That is, the D-OPT IBOSS method

uniformly dominates the subsampling-based methods UNI and LEV, and its advantage is

more significant if the tail of the covariate distribution is heavier. Note that when the error

terms have unequal variances, transformations are often used to stabilize the variances or

weighted least squares are often used instead of the ordinal least squares. These questions

are beyond the scope of this paper and we will investigate them in another project.
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(a) Case 1: zi’s are normal.
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(b) Case 2: zi’s are lognormal.
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(c) Case 3: zi’s are t2.

4.0 4.5 5.0 5.5 6.0

-4
.0

-3
.0

-2
.0

-1
.0

re
c.
p
lo
t[
1,

]

log10(n)

lo
g 1

0
(M

S
P
E
)

D-OPT
UNI
LEV
FULL

(d) Case 4: zi’s are a mixture.

Figure S.10: MSEs for estimating the slope parameter when the error terms are het-

eroscedastic. The subdata size k is fixed at k = 1000 and the full data size n changes.

Logarithm with base 10 is taken of n and MSEs for better presentation of the figures.

15



References

Battey, H., Fan, J., Liu, H., Lu, J., and Zhu, Z. (2015). Distributed estimation and inference

with statistical guarantees. arXiv preprint arXiv:1509.05457 .

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized

linear models via coordinate descent. Journal of Statistical Software 33, 1, 1–22.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net.

Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67, 2, 301–

320.

16


	Predictive performance
	Column permutation
	Interaction model
	Nonlinear relationships
	Accuracy-cost tradeoff of the IBOSS method
	Comparison with the divide-and-conquer method
	Performance of IBOSS with regularization method
	Unequal variance

