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The supplementary material is organized as follows. We provide a proof for Proposition

1 in Section A, theory for PLFAM (including proofs of Theorems 1 and 2) in Section B,

additional simulation and data analysis results in Sections C and D, and the bootstrap

procedure for standard error estimation in Section E.

A Theory for mFPCA

Proof of Proposition 1 We use C as a generic notation for positive constant. For two

sequences {an} and {bn}, we use an . bn to denote that an is bounded by bn omitting

some negligible terms. Recall that ∆ = n1/2(Ĉ − C), and under Assumption 2 we have

E‖∆‖2
op <∞.

Asymptotic expansions for the empirical eigenfunctions and eigenvalues similar to (2.8)

and (2.9) in Hall and Hosseini-Nasab (2006) also hold for multivariate FPCA. For any k

such that δk > n−1/2‖∆‖op,

λ̂k − λk = n−1/2〈∆ψk,ψk〉X + Λnk × {1 + Op(1)},

ψ̂k(t)−ψk(t) =

{
n−1/2

∑
j 6=k

(λk − λj)−1ψj〈∆ψk,ψk〉X
}
× {1 +Op(n−1/2δ−1

k )}, (S.1)

S.1



where Λnk = n−1
∑

j 6=k(λk − λj)−1(〈∆ψj,ψk〉X)2 = n−1
∑

j 6=k(λk − λj)−1(n−1/2
∑n

i=1 ξijξik)
2.

It is easy to see that E|Λnk| ≤ (nδk)
−1
∑

j 6=k λjλk ≤ C(nδk)
−1λk for all k.

Since ξ̂ik = 〈xi,ψk〉X, by the expansion (S.1),

ξ̂ik − ξik = Aik × {1 + Op(1)} for all k ≤ Jn,

where Aik = n−1/2
∑

j 6=k(λk − λj)−1ξij〈∆ψk,ψj〉X =
∑

j 6=k(λk − λj)−1ξij(
1
n

∑n
i1=1 ξi1kξi1j).

Next, we calculate the order of Aik. Denote [x] as the integer part of x. By Assumption

1, λj − λj+1 ≥ C−1
λ j−α−1,

λj − λk ≥ C−1
λ

k−1∑
l=j

l−α−1 ≥ C−1
λ

∫ k

j

x−α−1dx ≥ 1

Cλα
(j−α − k−α) for j < k;

λk − λj ≥ C−1
λ

j−1∑
l=k

l−α−1 ≥ C−1
λ

∫ j

k

x−α−1dx ≥ 1

Cλα
(k−α − j−α) for j > k. (S.2)
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By Assumption 2 E( 1
n

∑n
i1=1 ξi1kξi1j)

2 ≤ Cλkλj/n for all k and j, and by (S.2)

E(A2
ik) .

C

n

∑
j 6=k

(λk − λj)−2λkλ
2
j

=
C

n
(
∑
j<k

+
∑
j>k

)(λk − λj)−2λkλ
2
j

≤ Cλk
n

{ [(1−a)k]∑
j=1

(
C2
λαj

−α

j−α − k−α

)2

+

( k−1∑
j=[(1−a)k]+1

+

[(1+b)k]∑
j=k+1

)
C2
λj
−2α

C−2
λ k−2α−2

+
∞∑

j=[(1+b)k]+1

(
C2
λαj

−α

k−α − j−α

)2}
(for some a, b ∈ (0, 1) )

.
Cλk
n

{ [(1−a)k]∑
j=1

(
1

1− (j/k)α

)2

+
∞∑

j=[(1+b)k]+1

(
1

(j/k)α − 1

)2

+ [(a+ b)k]k2

}

.
Ckλk
n

{∫ 1−a

0

(1− xα)−2dx+

∫ ∞
(1+b)

(xα − 1)−2dx

}
+ C(a+ b)k3−α/n

.
Ck1−α

n

{∫ (1−a)

0

(1− y)−2dy +

∫ ∞
(1+b)

(y − 1)−2dy

}
+ C(a+ b)k3−α/n

.
Ck1−α

n
{a−1 − 1 + b−1 + (a+ b)k2}.

We select a ∼ k−1 and b ∼ k−1, we get EA2
ik ≤ Ck2−α/n for all k. This implies ξ̂ik − ξik =

Op(n−1/2k1−α/2) uniformly for k ≤ Jn.

On the other hand, by (S.1) we can show

E
∣∣∣λ̂k − λk − n−1/2〈∆ψk,ψk〉

∣∣∣ . E|Λnk| ≤ Cn−1λkδ
−1
k ,

E(n−1/2〈∆ψk,ψk〉)2 = E
{

1

n

n∑
i=1

(ξ2
ik − λk)

}2

≤ Cλ2
kn
−1.

This also means λ̂k − λk = Op(n−1/2λk) uniformly for all k ≤ Jn. Since Φ(·) is differentiable
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transformation function, using the delta method

ζ̂ik ≈ Φ[(ξik + Aik){λ−1/2
k − (1/2)λ

−3/2
k (λ̂k − λk)}]

≈ ζik + Φ′(ξikλ
−1/2
ik ){λ−1/2

k Aik −
1

2
ξikλ

−3/2
k (λ̂k − λk)} (S.3)

= ζik +Op(n−1/2k).

By the assumption that |Φ′(x)| < C for all x and the mean-value theorem, one can verify

that E(ζ̂ik − ζik)2 ≤ Cn−1k2 uniformly for all k ≤ Jn.

B Theory for PLFAM

Throughout the theoretical development, we utilize the following representation of a generic

function m ∈M:

m(u, ζ) = uᵀν + h(u, ζ) = uᵀν +
∑s

k=1 hk(u, ζk),

where hk ∈ Hk = {hk ∈ I ⊕ F̄k :
∑n

i=1 hk(ui, ζ̂ik)uij = 0, j = 1 . . . , p + 1} for k = 1, . . . , s.

Note that the set Hk depends on {ui} and {ζ̂i} and thus is a random set with randomness

inherited from them. Write U = [uij]i=1,...,n,j=1,...,p+1. Given m(u, ζ) = uᵀθ +
∑s

k=1 fk(ζk),

where fk ∈ F̄k, one can transform it into the aforementioned representation by setting

ν = θ −
∑s

k=1ωk and hk(u, ζk) = uᵀωk + fk(ζk), where ωk fulfills

1

n
U ᵀUωk = − 1

n
U ᵀ(fk(ζ̂k1), . . . , fk(ζ̂kn))ᵀ.

Similarly, m0(u, ζ) = uᵀν0 + h0(u, ζ) = uᵀν0 +
∑s

k=1 h0k(u, ζk) and m̂(u, ζ) = uᵀν̂ +

ĥ(u, ζ) = uᵀν̂ +
∑s

k=1 ĥk(u, ζk). Moreover, write H =
∑s

k=1 Hk.

Similar to Pn, we write Pn,∗ as the empirical distributions of (Z, ζ̂). That is, Pn,∗ =
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∑n
i=1 δzi,ζ̂i/n. Moreover, we define the corresponding version of (squared) empirical norm

and inner product as

‖m1‖2
n,∗ =

∫
m2

1dPn,∗ and (m1,m2)n,∗ =

∫
m1m2dPn,∗, for any m1,m2 ∈M.

First, we prove the following proposition about the convergence with respect to the

empirical norm ‖ · ‖n,∗ rather than the intended ‖ · ‖n.

Proposition 2 Suppose s = Op(n1/{2(1+α)}) and E(ζ̂ik − ζik)2 ≤ Cn−1k2β uniformly for all

k ≤ s. Further, assume J(m0) <∞ and Σ is non-singular. If τ−1
n = Op(min{n2/5s−6/5, n1/2s−( 1

2
+β)}),

we have ‖m̂ − m0‖n,∗ = Op(τn) and J(m̂) = Op(1). If J(m0) = 0 and τn � n−1/4s3,

‖m̂−m0‖n,∗ = Op(n−1/2) and J(m̂) = Op(n−1/2s−6).

The proof of Proposition 2 is given in Section B.1. By Taylor expansion arguments and

convergence of ζ̂, the convergence results based on ‖·‖n (Theorem 1) is implied by those based

on ‖ · ‖n,∗ (Proposition 2). See Section B.2 for the proof of Theorem 1. With convergence

of m̂, we study the parametric part in details and obtain the optimal
√
n-consistency for γ̂.

The details is shown in Section B.3.

For ease of reading, we collect all other lemmas that are used throughout the subsequent

proofs here. Their proofs are deferred to Section B.4.

Lemma 2 For any f(ζ) =
∑s

k=1 fk(ζk) ∈
∑s

k=1 Fk, there exists C2 (independent of s) such

that

max
1≤k≤s

sup
ζk∈[0,1]

∣∣∣∣∂fk(ζk)∂ζk

∣∣∣∣/‖fk‖ ≤ C2. (S.4)

Lemma 3 (Entropy result) Assume Σ is non-singular. Then there exists constants C1

and C ′1 such that the events

lim inf
n

{
sup
δ>0

δ1/2H∞(δ, {hk ∈ Hk : J(hk) ≤ 1}) ≤ C1

}
,
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lim inf
n

{
sup
δ>0

δ1/2H∞(δ, {h ∈ H : J(h) ≤ 1}) ≤ C1s
3/2

}
and

lim inf
n

{
sup

h∈H:J(h)≤1

|h|∞ ≤ C ′1s

}
are of probability 1.

Lemma 4 Assume Σ is non-singular. We have

sup
h∈H

|(ε, h− h0)n,∗|
‖h− h0‖3/4

n,∗{J(h) + J(h0)}1/4
= Op(n−1/2s3/2),

where m0(u, ζ) = uᵀν0 + h0(u, ζ) with ν0 ∈ Rp+1 and h0 ∈ H.

B.1 Proof of Proposition 2

Proof of Proposition 2

Expanding the objective function, we have

`(m) =
1

n

n∑
i=1

{yi −m(ui, ζ̂i)}2 + τ 2
nJ(m)

=
1

n

n∑
i=1

{uᵀ
iν0 + h0(ui, ζi) + εi − uᵀ

iν − h(ui, ζ̂i)}2 + τ 2
nJ(h)

=
1

n

n∑
i=1

{uᵀ
i (ν0 − ν)}2 +

2

n

n∑
i=1

{uᵀ
i (ν0 − ν)}{h0(ui, ζi) + εi}

+
1

n

n∑
i=1

{h0(ui, ζi) + εi − h(ui, ζ̂i)}2 + τ 2
nJ(h).
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Minimizing ` is equivalent to the following two minimizations:

ν̂ = arg minν∈Rp+1

{
1

n

n∑
i=1

{uᵀ
i (ν0 − ν)}2 +

2

n

n∑
i=1

{uᵀ
i (ν0 − ν)}{h0(ui, ζi) + εi}

}
,

ĥ = arg minh∈H

{
1

n

n∑
i=1

{h0(ui, ζi) + εi − h(ui, ζ̂i)}2 + τ 2
nJ(h)

}
.

The first one leads to

1

n
U ᵀU(ν̂ − ν0) =

1

n
U ᵀ(h0 + ε),

where U = [uij]i=1,...,n,j=1,...,p+1, h0 = (h0(u1, ζ1), . . . , h0(un, ζn))ᵀ and ε = (ε1, . . . , εn)ᵀ. By

Taylor expansion of h0 with respect to ζ at ζ̂i and the fact that Dζh0 = Dζf0,

1

n

n∑
i=1

uijh0(ui, ζi) =
1

n

n∑
i=1

uijDζf0(ζ∗i )(ζi − ζ̂i) = J(f0)Op(n−1/2s
1
2

+β) (S.5)

where ζ∗i lies on the line segment joining ζi and ζ̂i; and the last equality follows from the

assumption E(ζ̂ik − ζik)2 ≤ Cn−1k2β, Lemma 2 and the following calculation

|Dζf0(ζ∗i )(ζi − ζ̂i)| =

∣∣∣∣ s∑
k=1

∂

∂ζk
f0k(ζ

∗
ik)(ζ̂ik − ζik)

∣∣∣∣
≤

{ s∑
k=1

∣∣∣∣ ∂∂ζk f0k(ζ
∗
ik)

∣∣∣∣2}1/2{ s∑
k=1

(ζ̂ik − ζik)2

)1/2

≤
( s∑

k=1

‖f0k‖2

}1/2

×
{
Op
( s∑

k=1

n−1k2β

)}1/2

= ‖f0‖ × Op(n−1/2sβ+ 1
2 ).

Moreover,

1

n

n∑
i=1

uijεi = Op(n−1/2).

Since U ᵀU/n → Σ almost surely (element-wisely) and Σ is non-singular, we have ‖ν̂ −

ν0‖E = Op(n−1/2s
1
2

+β). Note that if J(f0) = 0, we have U ᵀh0 = 0 and ‖ν̂ − ν0‖E =
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Op(n−1/2).

In sequel, we focus on the second optimization. Since ĥ is the minimizer,

1

n

n∑
i=1

{h0(ui, ζi) + εi − ĥ(ui, ζ̂i)}2 + τ 2
nJ(ĥ) ≤ 1

n

n∑
i=1

{h0(ui, ζi) + εi − h0(ui, ζ̂i)}2 + τ 2
nJ(h0),

which leads to

‖h0 − ĥ‖2
n,∗ + 2

n

∑n
i=1{h0(ui, ζi)− h0(ui, ζ̂i)}{h0(ui, ζ̂i)− ĥ(ui, ζ̂i)}+ τ 2

nJ(ĥ)

≤ (ε, ĥ− h0)n,∗ + τ 2
nJ(h0). (S.6)

Now, we utilize the previous Taylor expansions: For i = 1, . . . , n,

h0(ui, ζi) = h0(ui, ζ̂i) +Dζf0(ζ∗i )(ζi − ζ̂i).

Thus (B.1) becomes

‖ĥ−h0‖2
n,∗+

2

n

n∑
i=1

{ĥ(ui, ζ̂i)−h0(ui, ζ̂i)}{Dζf0(ζ∗i )(ζ̂i−ζi)}+τ 2
nJ(ĥ) ≤ 2(ε, ĥ−h0)n,∗+τ

2
nJ(h0).

(S.7)

Now we derive asymptotic order of the following two terms:∣∣∣∣∣ 2n
n∑
i=1

{ĥ(ui, ζ̂i)− h0(ui, ζ̂i)}{Dζf0(ζ∗i )(ζ̂i − ζi)}

∣∣∣∣∣
≤ 2‖ĥ− h0‖n,∗

 1

n

n∑
i=1

{
s∑

k=1

∂f0k(ζ
∗
ik)

∂ζik
(ζ̂ik − ζik)

}2
1/2

≤ J(h0)‖ĥ− h0‖n,∗Op(n−1/2s
1
2

+β);
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and by Lemma 4,

2(ε, ĥ− h0)n,∗ = Op(n−1/2s3/2)‖ĥ− h0‖3/4
n,∗{J(ĥ) + J(h0)}1/4.

Collecting the above results, (S.7) leads to

‖ĥ− h0‖2
n,∗ + τ 2

nJ(ĥ) ≤ Op(n−1/2s3/2)‖ĥ− h0‖3/4
n,∗{J(ĥ) + J(h0)}1/4 + τ 2

nJ(h0)

+J(h0)‖ĥ− h0‖n,∗Op(n−1/2s
1
2

+β).

Next, we investigate the following three scenarios where one particular term on the right

hand side dominates the other two.

(A) The term Op(n−1/2s3/2)‖ĥ− h0‖3/4
n,∗{J(ĥ) + J(h0)}1/4 is the largest: Thus

‖ĥ− h0‖2
n,∗ + τ 2

nJ(ĥ) ≤ Op(n−1/2s3/2)‖ĥ− h0‖3/4
n,∗{J(ĥ) + J(h0)}1/4.

If J(ĥ) ≥ J(h0), one can deduce that ‖ĥ − h0‖n,∗ = Op(n−2/3s2)τ
−2/3
n and J(ĥ) =

Op(n−4/3s4)τ
−10/3
n . As for J(ĥ) < J(h0), we have ‖ĥ − h0‖n,∗ = Op(n−2/5s6/5)J(h0)1/5 and

J(ĥ) = Op(1)J(h0).

(B) The term τ 2
nJ(h0) is the largest: Thus

‖ĥ− h0‖2
n,∗ + τ 2

nJ(ĥ) ≤ τ 2
nJ(h0)Op(1),

which leads to ‖ĥ− h0‖n,∗ = Op(τn)J1/2(h0) and J(ĥ) = Op(1)J(h0).

(C) The term J(h0)‖ĥ− h0‖n,∗Op(n−1/2s
1
2

+β) is the largest: Thus

‖ĥ− h0‖2
n,∗ + τ 2

nJ(ĥ) ≤ J(h0)‖ĥ− h0‖n,∗Op(n−1/2s
1
2

+β),

S.9



which leads to ‖ĥ− h0‖n,∗ ≤ J(h0)Op(n−1/2s
1
2

+β),

τ 2
nJ(ĥ) ≤ ‖ĥ− h0‖n,∗Op(n−1/2s

1
2

+β).

Thus ‖ĥ− h0‖n,∗ = Op(n−1/2s
1
2

+β)J(h0) and J(ĥ) = Op(n−1s(1+2β))τ−2
n J2(h0).

By carefully comparing the stochastic orders of terms arising from the above three cases,

if τ−1
n = Op(min{n2/5s−6/5, n1/2s−( 1

2
+β)}), we have ‖ĥ − h0‖n,∗ = Op(τn) and J(ĥ) = Op(1).

If J(h0) = 0 and τn � n−1/4s3, ‖ĥ− h0‖n,∗ = Op(n−1/2) and J(ĥ) = Op(n−1/2s−6).

B.2 Proof of Theorem 1

Proof of Theorem 1. Let q = m̂−m0. By Taylor expansion,

‖q‖2
n =

1

n

n∑
i=1

{q(ui, ζ̂i) +Dζq(ui, ζ̃i)(ζi − ζ̂i)}2

= ‖q‖2
n,∗ +

1

n

n∑
i=1

{Dζq(ui, ζ̃i)(ζi − ζ̂i)}2 +
1

n

n∑
i=1

2q(ζ̂i){Dζq(ui, ζ̃i)(ζi − ζ̂i)}

where ζ̃i lies in the line segment joining ζi and ζ̂i. By calculation similar to (S.5), we have

1
n

∑n
i=1{Dζq(ui, ζ̃i)(ζi − ζ̂i)}

2 = J(q)Op(n−1s(1+2β)),

1
n

∑n
i=12q(ζ̂i){Dq(ui, ζ̃i)(ζi − ζ̂i)} = ‖q‖n,∗J(q)Op(n−1/2s

1
2

+β).

By Proposition 2, if τ−1
n = Op(min{n2/5s−6/5, n1/2s−( 1

2
+β)}), J(m̂) = Op(1) and

‖q‖2
n = ‖q‖2

n,∗ +Op(n−1s(1+2β)) + ‖q‖n,∗Op(n−1/2s
1
2

+β) = Op(τ 2
n).

If J(m0) = 0 and τn � n−1/4s3, J(m̂) = Op(n−1/2s−6) from Proposition 2. Similarly as

the proof of Proposition 2, write m̂(u, ζ) = uᵀν̂ + ĥ(u, ζ). In its proof, we show that

‖ν̂ − ν0‖E = Op(n−1/2) and ‖h0‖n = 0 (due to U ᵀh0 = 0). By Lemma 3, we have |ĥ|∞ =
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J(ĥ)Op(1) = Op(n−1/2s−6) since J(ĥ) = J(m̂)Op(n−1/2s−6). Since u ∈ [0, 1]p+1, ‖q‖n ≤

‖ν̂ − ν0‖E + ‖ĥ‖n = Op(n−1/2).

B.3 Proof of Theorem 2

We first introduce a few Lemmas, the proof of which is relegated to Section B.4.

Lemma 5 Under the conditions of Theorem 2, ‖m̂−m0‖2 = Op(n
−1/4), where ‖·‖2 represents

the L2(P )-norm..

Lemma 6 For any k = 1, . . . , s and gk ∈ F̄k, we have

sup
gk∈F̄k

∣∣∣‖g(1)
k ‖2

n − ‖g
(1)
k ‖2

2

∣∣∣
‖gk‖2

= Op(1).

Lemma 7 Under the conditions of Theorem 2, ‖f̂ ′k − f ′0k‖2
n = Op(1) for all k = 1, . . . , s.

Proof of Theorem 2. Write m̂(u, ζ) = zᵀγ̂ + ĝ(ζ) and m0(u, ζ) = zᵀγ0 + g0(ζ) where

ĝ, g0 ∈
∑s

k=1 Fk and u = (1, zᵀ)ᵀ. We also write ĝk = Pkĝ ∈ F̄k and g0k = Pkg0 ∈ F̄k

for k = 1, . . . , s. Note that ĝ and
∑s

k=1 ĝk may differ by a constant. Similarly for g0 and∑s
k=1 g0k.

By expanding ‖m̂ − m0‖2
2 = ‖w̃ᵀ(γ̂ − γ0)‖2

2 + ‖wᵀ(γ̂ − γ0) + ĝ − g0‖2
2, we show that

‖w̃ᵀ(γ̂ − γ0)‖2
2 = Op(n

−1/4) using Lemma 5. By the condition that M is non-singular, we

have

‖γ̂ − γ0‖E = Op(n
−1/4) and ‖ĝ − g0‖2 = Op(n

−1/4). (S.8)

Recall that w̃(z, ζ) = z −w(ζ). We then define

m̂ρ(z, ζ) = m̂(u, ζ) + ρᵀw̃(z, ζ) = zᵀ(γ̂ + ρ) + {ĝ(ζ)− ρᵀw(ζ)},
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for ρ = (ρ1, . . . , ρp)
ᵀ ∈ Rp. Note that we assume that wj ∈

∑s
k=1 Fk and hence w̃j ∈

I +
∑s

k=1 Fk. Since m̂ρ ∈ I +
∑s

k=1 Fk, there exists a subgradient c = (c1, . . . , cp)
ᵀ of J(m̂ρ)

with respect to ρ at ρ = 0 such that

∂

∂ρ

[
1

n

n∑
i=1

{yi − m̂ρ(ui, ζ̂i)}2

]∣∣∣∣∣
ρ=0

+ τ 2
nc = 0. (S.9)

We first analyze the order of the subgradient c. Note that J(m̂ρ) =
∑s

k=1 ‖ĝk −∑p
j=1 ρjwjk‖ where wjk = Pkwj. Now we study two cases, ‖ĝk‖ > 0 and ‖ĝk‖ = 0, sep-

arately.

Suppose ‖ĝk‖ > 0. Then ‖ĝk −
∑p

j=1 ρjwjk‖ is differentiable at ρ = 0 and its partial

derivative with respect to ρl at ρ = 0 is

−
∫ 1

0
ĝk(t)dt

∫ 1

0
wlk(t)dt+

∫ 1

0
ĝ′k(t)dt

∫ 1

0
w′lk(t)dt+

∫ 1

0
ĝ′′k(t)w′′lk(t)dt

‖ĝk‖
,

for l = 1, . . . , p. The numerator is less than or equal to ‖ĝk‖‖wlk‖. Hence the absolute value

of this partial derivative is smaller than or equal to ‖wlk‖ < ∞ by the assumption that

J(wl) <∞.

Suppose ‖ĝk‖ = 0, which implies that ĝk = 0. Then

∥∥∥∥∥ĝk −
p∑
j=1

ρjwjk

∥∥∥∥∥
2

=
(∫ 1

0

∑p
j=1 ρjwjk(t)dt

)2

+
(∫ 1

0

∑p
j=1 ρjw

′
jk(t)dt

)2

+
∫ 1

0

(∑p
j=1 ρjw

′′
jk(t)

)2

dt

= ρᵀNkρ,

where Nk is a p × p matrix with (i, j)-entry being
∫
wik
∫
wjk +

∫
w′ik
∫
w′jk +

∫
w′′ikw

′′
jk.

Note that Nk is positive semi-definite. Using subgradient chain rule and the subgradient
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formulation of Euclidean norm, the subgradient of
√
ρᵀNkρ with respect to ρ is


Nkρ

‖N1/2
k ρ‖E

, if N
1/2
k ρ 6= 0;

∈ {N 1/2
k a : ‖a‖E ≤ 1}, otherwise.

Recall that we are interested in the case of ρ = 0. For any a = (a1, . . . , ap)
ᵀ such that

‖a‖E ≤ 1, ‖N 1/2
k a‖∞ ≤ ‖N 1/2

k a‖E = ‖
∑p

j=1 ajwjk‖ ≤
∑p

j=1 |aj|‖wjk‖ ≤
∑p

j=1 ‖wjk‖ < ∞,

where ‖ · ‖∞ is the max norm of a vector. Combining results from both cases, ‖ĝk‖ > 0 and

‖ĝk‖ = 0, we conclude that all entries of c are O(1).

Now, we go back to (S.9) and study the first term on the right hand side. For l = 1, . . . , p,

1

2

∂

∂ρl

[
1

n

n∑
i=1

{yi − m̂ρ(zi, ζ̂i)}2

]∣∣∣∣∣
ρ=0

= − 1

n

n∑
i=1

{yi − m̂(ui, ζ̂i)}w̃l(zi, ζ̂i)

= − 1

n

n∑
i=1

[
{yi −m(ui, ζi)}+ {m(ui, ζi)−m(ui, ζ̂i)}+ {m(ui, ζ̂i)− m̂(ui, ζ̂i)}

]
w̃l(zi, ζ̂i),

= −(ε, w̃l)n + ((γ̂ − γ0)ᵀw, w̃l)n + ((γ̂ − γ0)ᵀw̃, w̃l)n + (ĝ − g0, w̃l)n,∗

+
1

n

n∑
i=1

s∑
k=1

w̃l(zi, ζi)f
′
0k(ζik)(ζ̂ik − ζik) +Op(n−1)

= −I + II + III + IV + V +Op(n−1).

By the asymptotic expansions (S.1) and (S.3),

V =
1

n

n∑
i=1

s∑
k=1

w̃l(zi, ζi)f
′
0k(ζik)Φ

′(ζik)

{
n−1/2

∑
j 6=k

ζijλ
1/2
j

(λk − λj)λ1/2
k

〈∆ψk,ψj〉

−1

2
n−1/2ζikλ

−1
k 〈∆ψk,ψk〉

}
= n−1/2

s∑
k=1

〈∆ψk,$k,l〉 × {1 +Op(n−1/2)},
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where

$k,l =
∑
j 6=k

E{w̃l(z1, ζ1)f ′0k(ζ1k)Φ
′(ζ1k)ζ1j}λ1/2

j λ
−1/2
k (λk − λj)−1ψj

−1

2
E{w̃l(z1, ζ1)f ′0k(ζ1kΦ

′(ζ1k)ζ1k}λ−1
k ψk. (S.10)

Since ∆ converge weakly to a Gaussian random field, it is easy to see that V = Op(n−1/2)

and is asymptotically normal.

By (10), E{wj(ζ)w̃l(Z, ζ)} = 0,

II =

p∑
j=1

(γ̂j − γ0j)(wj, w̃l)n =

p∑
j=1

Op(n−1/2)(γ̂j − γ0j).

Similarly, by law of large numbers,

III =

p∑
j=1

(γ̂j − γ0j)(w̃j, w̃l)n =

p∑
j=1

(Mlj + Op(1))(γ̂j − γ0j).

Similarly as before, we can show that the event lim infn{|ĝ−g0|∞/(1+J(ĝ)+J(g0)) ≤ C1+1}

is of probability 1.

It is easy to see that

IV = (ĝ − g0, w̃l)n +
1

n

n∑
i=1

s∑
k=1

{f̂ ′k(ζik − f ′k0(ζik)}w̃l(ζik)(ζ̂ik − ζik) + Op(n
−1/2)

= (ĝ − g0, w̃l)n + Op(n
−1/2) ( by Lemma 7).

Next, we study the behavior of
√
n(g− g0, w̃l)n as a function of ‖(g− g0)w̃l‖2. We are going

to apply Theorem 2.4 of Mammen and van de Geer (1997). To prepare this, we first derive
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some entropy results. Let

K =

{
(g − g0)w̃l : J(g − g0) ≤ 1, g ∈

s∑
k=1

Fk

}
.

Since w̃l ∈M, write K6 = |w̃l|∞ <∞. Therefore

H∞(δ,K) ≤ H∞

(
δ

K6

, K̃
)

with K̃ =

{
g − g0 : J(g − g0) ≤ 1, g ∈

s∑
k=1

Fk

}
.

For any m ∈M, we can write it in two ways:

m(u, ζ)−m0(u, ζ) = zᵀ(γ − γ0) + g(ζ)− g0(ζ) = uᵀ(ν − ν0) + h(u, ζ)− h0(u, ζ).(S.11)

Note that J(m−m0) = J(g − g0) = J(h− h0). If J(m−m0) ≤ 1, we can represent g − g0

and h− h0 uniquely as follows:

g(ζ)− g0(ζ) = µ+
s∑

k=1

r̃k(ζk), (S.12)

h(u, ζ)− h0(u, ζ) =
s∑

k=1

h̃k(u, ζk) with h̃k(u, ζk) = uᵀω̃k + r̃k(ζk) ∈ Hk,

where r̃k ∈ F̄k such that
∑n

i=1 r̃k(ζik) = 0 and J(r̃k) ≤ 1. Plugging them into (S.11), we

show that µ is the first element of ν − ν0 +
∑s

k=1 ω̃k. Write µ̂ as µ in (S.12) for ĝ − g0.

Recall that the event lim inf{‖ν̂ − ν0‖E ≤ K1} is of probability 1. Moreover, from the proof

of Lemma 3, we have the event lim inf{maxk=1,...,s ‖ωk‖E ≤ L} is of probability 1. Thus

lim inf{|µ̂| ≤ K7} for some constant K7. Thus we focus on the set

K̄ =

{
g(ζ)− g0(ζ) = µ+

s∑
k=1

r̃k(ζk) : |µ| ≤ K7, J(g − g0) ≤ 1, g ∈
s∑

k=1

Fk

}
,

where, with probability 1, ĝ − g0 will eventually falls into. We use similar trick in (S.16)
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to derive the entropy result for K̃ by the decomposition (S.12). It suffices to obtain bound

for H∞(·, {g(ζ) = µ : |µ| ≤ K7}) and H∞(·, {
∑s

k=1 r̃k : uᵀω̃k + r̃k(ζk) ∈ Hk,
∑n

i=1 r̃k(ζik) =

0, J(r̃k) ≤ 1}). The bound for the first entropy is from Lemma 2.5 of van de Geer (2000),

while that for the second entropy is derived similarly in the proof of Lemma 3. For simplicity,

we skip those details. In the end, we get the event lim infn{supδ>0 δ
1/2H∞(δ, K̄) ≤ K8} is of

probability 1. Combining with the above results, we obtain an entropy bound for the set

K̂ =

{
(g − g0)w̃l

1 + J(g) + J(g0)
: g − g0 = µ+

s∑
k=1

r̃k, |µ| ≤ K7, g ∈
s∑

k=1

Fk

}
.

That is, the event lim infn{supδ>0 δ
1/2H∞(δ, K̂) ≤ K9} is of probability 1.

Note that E(g − g0, w̃l)n = 0 since E(g(ζ)w̃l(z, ζ)) = 0 for any g ∈
∑s

k=1 Fk. Applying

Theorem 2.4 of Mammen and van de Geer (1997) to K̂, we have

IV = Op(n
−1/2),

since J(ĝ) = Op(1) (Theorem 1) and ‖ĝ − g0‖2 = Op(1).

Also, it is simple to show that
∑n

i=1(yi− m̂(ui, ζ̂i))Op(n−1/2)/n = Op(n−1/2) since ‖m̂−

m0‖n = Op(τn) = Op(n−1/4). Collecting all the above results, we have, for l = 1, . . . , p,

−(ε, w̃l)n +

p∑
j=1

(Mlj + Op(1))(γ̂j − γ0j) + n−1/2

s∑
k=1

〈∆ψk,$k,l〉+ 2τ 2
ncl + Op(n

−1/2) = 0,

with cl = O(1). Since M is non-singular, we have

n1/2(γ̂ − γ0) = M−1(q1 + q2) + Op(1), (S.13)
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where qj = (qj1, . . . , qjp)
ᵀ, j = 1, 2, with q1l = n1/2(ε, w̃l)n, q2l = −

∑s
k=1 〈∆ψk,$k,l〉. Put

V1 = cov(q1) and V2 = cov(q2), (S.14)

by the central limit theorem q1 → Normal(000,V1) in distribution, and since ∆ converge

weakly to a Gaussian random field (Dauxois et al., 1982), q2 → Normal(000,V2) in distribu-

tion. It is easy to see that q1 and q2 are asymptotically independent because ε and ∆ are

independent. The results of the theorem follows from (S.13).

B.4 Proofs of Lemmas

Proof of Lemma 2. For fk ∈ Fk which is a RKHS with the reproducing kernel Rk(·, ·)

∣∣∣∣∂fk(ζk)∂ζk

∣∣∣∣ =

∣∣∣∣〈fk(·), ∂Rk(ζk, ·)
∂ζk

〉∣∣∣∣ ≤ ‖fk‖∥∥∥∥∂Rk(ζk, ·)
∂ζk

∥∥∥∥ .
The reproducing kernel of 2nd order Sobolev Hilbert spaces are Rk(s, t) = h1(s)h1(t) +

h2(s)h2(t)−h4(|s− t|) where h1(t) = t− 1/2, h2(t) = {h2
1(t)− 1/12}/2 and h4(t) = {h4

1(t)−

h2
1(t)/2 + 7/240}/24. Note that

∂2Rk(s, t)

∂s∂t
=

13

12
+

(
s− 1

2

)(
t− 1

2

)
− 1

2
|s− t|+ 1

2
(s− t)2. (S.15)

Now, for any k ≤ s,

sup
ζ∈[0,1]

∥∥∥∥∂Rk(ζ, ·)
∂ζ

∥∥∥∥2

= sup
ζ∈[0,1]

〈
∂Rk(ζ, ·)

∂ζ
,
∂Rk(ζ, ·)

∂ζ

〉
= sup

ζ∈[0,1]

∂2Rk(s, t)

∂s∂t

∣∣∣∣
s=t=ζ

≤ 4

3
.

Proof of Lemma 3. We will study the entropy result for H̃k := {hk ∈ Hk : J(hk) ≤ 1} first.

For hk ∈ H̃k, we can represent it uniquely as hk(u, ζ) = uᵀωk+rk(ζ), where
∑n

i=1 rk(ζik) = 0

and rk ∈ F̄k with J(rk) ≤ 1. Note that if S1 and S2 are two sets of functions, we can bound
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the uniform entropy of S1 + S2:

H∞(δ,S1 + S2) ≤ H∞(δ/2,S1) +H∞(δ/2,S2). (S.16)

Take

Sk,1 =

{
rk : hk(u, ζ) = uᵀωk + rk(ζ),

n∑
i=1

rk(ζik) = 0, hk ∈ H̃k

}
and

Sk,2 =

{
g(u) = uᵀω : hk(u, ζ) = uᵀωk + rk(ζ),

n∑
i=1

rk(ζik) = 0, hk ∈ H̃k

}
.

Note that H̃k ⊆ Sk,1 + Sk,2 and thus H∞(δ, H̃k) ≤ H∞(δ/2,Sk,1) + H∞(δ/2,Sk,2). By the

proof of Lemma A.1 in Lin and Zhang (2006), |rk|∞ ≤ 1 and there exists a constant A such

that H∞(δ,Sk,1) ≤ Aδ−1/2 for all δ > 0.

Now, it remains to obtain results about H∞(δ, Sk,2). The constraints of Hk can be written

as

1

n
U ᵀUωk = − 1

n
U ᵀ(rk(ζ̂k1), . . . , rk(ζ̂kn))ᵀ

where U = [uij]i=1,...,n,j=1,...,p+1. Note that U ᵀU/n → Σ almost surely (element-wisely)

and Σ is non-singular. Write the smallest eigenvalue of Σ as σ1. Let En be the event that

maxk=1,...,s ‖ωk‖E ≤ L = 2
√
p+ 1/σ1. Combining with |rk|∞ ≤ 1 and |uij| ≤ 1, we have

∥∥∥∥ 1

n
Σ−1U ᵀ(rk(ζk1), . . . , rk(ζkn))ᵀ

∥∥∥∥
E

≤ 1

σ1

∥∥∥∥ 1

n
U ᵀ(rk(ζk1), . . . , rk(ζkn))ᵀ

∥∥∥∥
E

≤
√
p+ 2

σ1

for all k. Therefore P (lim infn→∞ En) = 1. We note that this result hinges on the convergence

of U ᵀU/n, which does not depend on s, and thus still holds even s grows with n. Next, for

any u ∈ [0, 1]p+1 and ω,ω∗ ∈ Rp+1, |uᵀω − uᵀω∗| ≤
√
p+ 1‖ω − ω∗‖E. Therefore, on En,

H∞(δ,Sk,2) ≤ H(δ/
√
p+ 1, {ω : ‖ω‖E ≤ L}, ‖·‖E). From Lemma 2.5 of van de Geer (2000),

there exists a constant B such that H(δ/
√
p+ 1, {ω : ‖ω‖E ≤ L}, ‖ · ‖E) ≤ (p + 1) log(1 +
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4L
√
p+ 1/δ) ≤ Bδ−1/2. Thus H∞(δ, {hk ∈ Hk : J(hk) ≤ 1}) ≤ (A + B)

√
2δ−1/2 = C1δ

−1/2

where C1 = sqrt2(A+B). As a result, on En, H∞(δ, {δ, {h ∈ H : J(h) ≤ 1}}) ≤ C1s
3/2δ−1/2

since J(h) ≤ 1 implies J(hk) ≤ 1 for all k. Moreover, on En, sup{h∈H:J(h)≤1} |h|∞ < sC ′1 due

to |hk| ≤ C ′1 :=
√
p+ 1L+ 1 for all k.

Proof of Lemma 4. Suppose

H∞(δ, {h ∈ H : J(h) ≤ 1}) ≤ C1s
3/2δ−1/2, (S.17)

for all δ > 0, n ≥ 1 and some constant C1 > 0 not depending on n and s. Then,

H

(
δ,

{
h− h0

J(h) + J(h0)
: h ∈ H

}
, ‖ · ‖n,∗

)

has the same entropy bound (S.17). The rest follows from the proof of Lemma 8.4 in van de

Geer (2000) and Lemma 3 that (S.17) holds eventually with probability 1.

Proof of Lemma 5. By Theorem 1, we have ‖m̂ −m0‖n = Op(n
−1/4). We will show that

‖m̂−m0‖n and ‖m̂−m0‖2 have the same order.

Recall that, in the proof of Proposition 2, we write m̂(u, ζ) = uᵀν̂+ĥ(u, ζ) andm(u, ζ) =

uᵀν + h(u, ζ). In its proof, using strong laws of large number, we show that ‖ν̂ − ν0‖E

converges to zero almost surely and hence the event lim infn{‖ν̂−ν0‖E ≤ K1} is of probability

1 for some constant K1. Consider the set

J = {m−m0 : ‖ν − ν0‖E ≤ K1, J(h− h0) ≤ 1,m(u, ζ) = uᵀν + h(u, ζ) ∈M} .

We can use the similar trick in (S.16) to derive the entropy result for J by decomposing a

function in J : m−m0 = uᵀ(ν − ν0) + h− h0. Next, it suffices to derive uniform entropies

H∞(·, {uᵀ(ν − ν0) : ‖ν−ν0‖E ≤ K1,ν ∈ Rp}) and H∞(·, {h−h0 : J(h−h0) ≤ 1, h ∈ H}).
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The first one can be handled by Lemma 2.5 of van de Geer (2000) similary as in the proof

of Lemma 3 while the second one can be handled by Lemma 3. For simplicity, we skip those

details. In the end, we have lim infn{supδ>0 δ
1/2H∞(δ,J ) ≤ K2} is of probability 1 for some

constant K2. And this implies the entropy results for the set

J̃ =

{
m−m0

1 + J(m) + J(m0)
: ‖ν − ν0‖E ≤ K1,m(u, ζ) = uᵀν + h(u, ζ) ∈M

}
.

Namely, lim infn{supδ>0 δ
1/2H∞(δ, J̃ ) ≤ K3} is of probability 1 for some constant K3.

Using Lemma 3, we can show that the event lim infn{|ĥ−h0|∞/(1+J(ĥ)+J(h0)) ≤ K4}

is of probability 1 for some constant K4. (Note that s is assumed to be fixed and thus is

assimilated into the constant.) Combining with P(lim infn{‖ν̂ − ν0‖E ≤ K1}) = 1, we can

simply focus on the set

J̄ =

{
m−m0

1 + J(m) + J(m0)
: ‖ν − ν0‖E ≤ K1,

|ĥ− h0|∞
1 + J(ĥ) + J(h0)

≤ K4,m ∈M

}
, (S.18)

where, with probability 1, (m̂ −m0)/(1 + J(m̂) + J(m0)) will eventually fall into. Clearly,

we also have that lim infn{supδ>0 δ
1/2H∞(δ, J̄ ) ≤ K3} is of probability 1. It is also easy to

show that J̄ is uniformly bounded.

From Theorem 1, we have ‖m̂ − m‖n = Op(n−1/4). Hence, by applying Lemma 5.16

of van de Geer (2000) on J̄ , with δn = K5n
−2/5 for some constant K5, we can show that

‖m̂−m0‖n and ‖m̂−m0‖2 have the same order and thus ‖m̂−m0‖2 = Op(1).

Proof of Lemma 6.

Consider F̂′k = {f (1)/‖f‖ : f ∈ F̄k}. By Lemma 2, we have the uniform boundedness of

F̂′k: supf∈F̂′
k

supt∈[0,1] |f(t)| ≤ C2. Using Lemma 2.4 of van de Geer (2000), it is easy to show

that there exists a constant C3 such that supδ>0 δH∞(δ, F̂′k) ≤ C3. Owing to the uniform

boundedness of F̂′k, supδ>0 δH∞(δ, {f 2 : f ∈ F̂′k}) ≤ 2C2C3. The desired result then follows
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from Lemma 3.6 of van de Geer (2000).

Proof of Lemma 7. Put qk = f̂k−f0k, then f̂−f0 =
∑s

j=1 qj. Since qj ∈ F̄j,
∫ 1

0
qj(t)dt = 0,

and therefore ‖f̂ − f0‖2
L2[0,1]s =

∑s
j=1 ‖qj‖2

L2[0,1]. By (S.8), ‖ĝ − g0‖2 = Op(1). By the

assumption that ζ has non-degenerate, bounded joint density on [0, 1]s, ‖ · ‖2 and ‖ · ‖L2[0,1]s

are equivalent norms, and therefore ‖qj‖L2[0,1] = Op(1) for j = 1, . . . , s. By Gagliardo-

Nirenberg interpolation inequality (Nirenberg (1959) and Brezis (2010, pp. 313-314)), there

exists a constant C4 such that

‖q(1)
k ‖L2[0,1] ≤ C4‖qk‖1/2‖qk‖1/2

L2[0,1].

By Theorem 1, J(m̂) = Op(1) and therefore ‖qk‖ = Op(1). Therefore ‖q(1)
k ‖L2[0,1] = Op(1).

Again, because ‖ ·‖L2[0,1] and ‖ ·‖2 are equivalent norms, ‖q(1)
k ‖2 = Op(1). Finally, by Lemma

6 and ‖qk‖ = Op(1), we have ‖q(1)
k ‖2

n = ‖q(1)
k ‖2

2,k+‖q(1)
k ‖2

n−‖q
(1)
k ‖2

2,k = ‖q(1)
k ‖2

2,k+‖qk‖2Op(1) =

Op(1).

C Additional results for Section 5

Following the suggestion of a referee, we also provide results when s is set to recover 90%

of the total variation in {xi}, instead of 99.9%. The results are presented in Tables S.1-S.4,

which should be compared with Tables 1-4 in the main text. When such a smaller percentage

is used, the 4th component, which is related to Y , is near the cut-off point and often not

included in the model. As a result, f4 is often falsely excluded from the model (see Table

S.2), and there is a much lower chance for COSSO to select the correct model. We also see

much bigger prediction errors in Table S.4 than those in Table 4. Our conclusion is it is

best to include as many components as possible and let the model selection mechanism of

COSSO determine the size of the model.

S.21



D Additional Results for Section 6

In Figure S.1, we show 50 randomly selected trajectories for daily maximum and daily

minimum temperature. Since the two functional predictors in our real data are strongly

correlated, we also compare the prediction performance for models using only one functional

predictor. Recall that X1(t) and X2(t) are the daily maximum and daily minimum tempera-

ture trajectories respectively. We denote by X̄(t) = {X1(t) +X2(t)}/2 the mean trajectory.

In addition to the models presented in Section 6, we also compare the yield prediction per-

formance of the following 12 models, which use only one of X1(t), X2(t) and X̄(t) as the

functional predictor. In the prediction experiment described in Section 6.1, the prediction

errors of these 12 models are presented in Table S.5. As we can see, the models using only one

functional predictor or the average yield higher prediction errors than PLFAM(joint) which

jointly model both functional predictors.

1. PLFAM(max): PLFAM based on univariate FPCA scores from X1;

2. FAM(max): FAM based on univariate FPCA scores from X1;

3. FLM-Cov(max): FLM based on univariate FPCA scores from X1, with covariate effects;

4. FLM(max): FLM based on univariate FPCA scores from X1 (without Z);

5. PLFAM(min): PLFAM based on univariate FPCA scores from X2;

6. FAM(min): FAM based on univariate FPCA scores from X2;

7. FLM-Cov(min): FLM based on univariate FPCA scores from X2, with covariate effects;

8. FLM(min): FLM based on univariate FPCA scores from X2 (without Z);

9. PLFAM(mean): PLFAM based on univariate FPCA scores from X̄;
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10. FAM(mean): FAM based on univariate FPCA scores from X̄;

11. FLM-Cov(mean): FLM based on univariate FPCA scores from X̄, with covariate effects;

12. FLM(mean): FLM based on univariate FPCA scores from X̄ (without Z).

We also made the assumption that crop yields in different counties and years are con-

ditional independent given the local meteorology information. To check for possible spatial

dependency, we calculate the spatial variograms for each year based on the residuals from

the fitted yield prediction model; to check for possible temporal dependency, we also calcu-

late the autocorrelation function (ACF) for each county. Because of limited space, we show

the spatial variograms for the first 4 years in Figure S.2 and ACF for the first 4 counties in

Figure S.3. These plots are based on the residuals of the corn yield prediction model. Plots

for other years and counties and those based on the soybean prediction model are similar.

All variograms and ACF’s are contained in the confidence band based on the assumption of

no dependency, which supports the conditional independence assumption that we make.

E Standard Error Estimation by Bootstrap

To quantify the uncertainties in the estimated model, we estimate the standard errors of

both θ̂ and f̂(ζ) using bootstrap. In addition to the uncertainties in the regression step,

our bootstrap procedure also takes into account the variation in mFPCA. The bootstrap

samples are obtained by resampling residuals from both the observations on the functional

covariates and the response variables. The procedure is as follows.

1. (Resampling the functional covariates) Recall that the discrete noisy observations on

xi are

wijk = xij(tijk) + eijk, i = 1, . . . , n, j = 1, . . . , d, k = 1, . . . , Nij,
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and the recovered functions from the discrete observations are x̃ij(t). Let êijk = wijk−

x̃ij(tijk) and resample with replacement e∗ijk from {êijk : k = 1, . . . , Nij} to obtain a

bootstrap sample w∗ijk = x̃ij(tijk) + e∗ijk. Repeat for all i, j, k, to obtain the bootstrap

sample W∗ = {w∗ijk : i = 1, . . . , n, j = 1, . . . , d, k = 1, . . . , Nijk} for the functional

data.

2. (Resampling the response) Denote ŷi as the fitted value of yi from the original data

and define the residuals ε̂i = π
1/2
i (yi− ŷi). Sample with replacement ε∗i uniformly from

{ε̂i : i = 1, . . . , n} to obtain a bootstrap sample y∗i = ŷi + π
−1/2
i ε∗i of yi. Denote the

bootstrap sample as Y∗ = {y∗i : i = 1, . . . , n}.

3. Apply the mFPCA procedure on W∗ to obtained mFPC scores ζ∗, and then fit the

propose PLFAM to Y∗ using ζ∗ and the original Z. Denote the estimates from the

bootstrap sample as θ̂∗ and f̂ ∗(ζ).

4. Repeat Steps 1- 3 a large number of times and use the sample standard deviations of

θ̂∗ and f̂ ∗(ζ) as estimates of the standard errors for θ̂ and f̂(ζ).

Table S.1: Percentages of fitted model sizes.

Setting Model % for the following model sizes
1 2 3 4 5 6 7 8

{(i), (I)} FAM 1 40 58.5 0.5 0 0 0 0
PLFAM 1 40 58.5 0.5 0 0 0 0

{(ii), (I)} FAM 2.5 95.5 2 0 0 0 0 0
PLFAM 2.5 95.5 2 0 0 0 0 0

{(i), (II)} FAM 5.5 50 42 2.5 0 0 0 0
PLFAM 0 37.5 62.5 0 0 0 0 0

{(ii), (II)} FAM 15 84 1 0 0 0 0 0
PLFAM 2 97 1 0 0 0 0 0
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Table S.2: Percentages of selected components and, correct and super selection.

Setting Model % for the following component functions % correct % super

f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 f̂7 f̂8 set set

{(i), (I)} FAM 100 99 2.5 57 0 0 0 0 56.5 57
PLFAM 100 99 2.5 57 0 0 0 0 56.5 57

{(ii), (I)} FAM 100 97.5 2 0 0 0 0 0 0 0
PLFAM 100 97.5 2 0 0 0 0 0 0 0

{(i), (II)} FAM 100 81 3 57.5 0 0 0 0 41.5 44
PLFAM 100 100 2.5 60 0 0 0 0 60 60

{(ii), (II)} FAM 100 85 1 0 0 0 0 0 0 0
PLFAM 100 98 1 0 0 0 0 0 0 0

Table S.3: Averaged integrated squared errors.

Setting Model AISEs for the following component functions

f̂1 f̂2 f̂3 f̂4 f̂5 f̂6 f̂7 f̂8 f̂

{(i), (I)} FAM 0.0257 0.0903 0.0020 0.4682 0.0000 0.0000 0.0000 0.0000 0.5861
PLFAM 0.0258 0.0907 0.0018 0.4682 0.0000 0.0000 0.0000 0.0000 0.5865

{(ii), (I)} FAM 0.0321 0.1364 0.0026 0.9508 0.0000 0.0000 0.0000 0.0000 1.1219
PLFAM 0.0324 0.1352 0.0027 0.9508 0.0000 0.0000 0.0000 0.0000 1.1210

{(i), (II)} FAM 0.0439 0.2211 0.0056 0.4902 0.0000 0.0000 0.0000 0.0000 0.7609
PLFAM 0.0252 0.0855 0.0015 0.4348 0.0000 0.0000 0.0000 0.0000 0.5470

{(ii), (II)} FAM 0.0423 0.2158 0.0014 0.9508 0.0000 0.0000 0.0000 0.0000 1.2102
PLFAM 0.0278 0.1341 0.0009 0.9508 0.0000 0.0000 0.0000 0.0000 1.1136

Table S.4: Prediction errors and mean squared errors for FAM and PLFAM, using separate
univariate FPCA scores (columns labelled “separate”) or mFPCA scores (columns labelled
“joint”). For prediction errors, means are presented with corresponding standard deviations
in parentheses.

Setting Model Prediction error Mean squared errors
separate joint separate joint

θ̂1 θ̂2 θ̂3 θ̂1 θ̂2 θ̂3

{(i), (I)} FAM 1.68 (0.11) 1.68 (0.40) - - - - - -
PLFAM 1.69 (0.11) 1.70 (0.41) 0.0763 0.0975 0.1097 0.0756 0.1047 0.1095

{(ii), (I)} FAM 1.68 (0.10) 2.13 (0.12) - - - - - -
PLFAM 1.69 (0.10) 2.15 (0.13) 0.0667 0.1108 0.0858 0.0767 0.1388 0.1100

{(i), (II)} FAM 3.94 (0.24) 3.94 (0.36) - - - - - -
PLFAM 1.71 (0.11) 1.69 (0.39) 0.0688 0.1091 0.0973 0.0686 0.1181 0.0818

{(ii), (II)} FAM 3.91 (0.25) 4.29 (0.27) - - - - - -
PLFAM 1.71 (0.11) 2.13 (0.13) 0.0675 0.0897 0.1156 0.079 0.1332 0.1284



Table S.5: Average of 5-year overall prediction errors.

corn soybean

(a) functional additive models PLFAM(joint) 298.43 35.64
PLFAM(separate) 306.50 38.85

PLFAM(max) 324.27 38.22
PLFAM(min) 338.51 44.09

PLFAM(mean) 330.17 40.93
FAM(joint) 830.17 48.54

FAM(separate) 839.00 51.06
FAM(max) 898.12 51.92
FAM(min) 997.27 65.48

FAM(mean) 916.80 57.79
(b) functional linear models FLM-Cov(joint) 303.81 35.29

FLM-Cov(separate) 308.57 35.69
FLM-Cov(max) 317.83 37.52
FLM-Cov(min) 338.88 42.43

FLM-Cov(mean) 310.02 37.27
FLM(joint) 704.19 47.31

FLM(separate) 767.42 50.42
FLM(max) 779.56 51.49
FLM(min) 842.12 61.42

FLM(mean) 790.96 52.38

S.26



0 100 200 300

−
20

−
10

0
10

20
30

40

day

te
m

pe
ra

tu
re

0 100 200 300

−
20

−
10

0
10

20
30

40

day

te
m

pe
ra

tu
re

(a) X1(t) (b) X2(t)

Figure S.1: 50 randomly selected trajectories for daily maximum and daily minimum tem-
perature. The solid dark curve in each panel is the mean function.
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Figure S.2: Spatial variograms for each year from 2008 to 2011, based on the residuals from
the corn yield prediction model. The unit in the horizontal axis is degree (in longitude or
latitude). The dotted curves are confidence bands based on the assumption of no spatial
dependency.
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Figure S.3: The ACF plot for the first four counties, based on the residuals from the corn
yield prediction model. S.29
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