
Supplementary materials to “A Computationally Effi-

cient Projection-Based Approach for Spatial General-

ized Linear Mixed Models” by Guan and Haran

S.1 Eigencomponent Approximation Performance

Here we compare eigencomponent approximation performance for increasing smoothness

ν = 0.5, 1.5, 2.5 and increasing spatial dependence with effective range r = 0.1, 0.3, 0.5, 0.7.

Figure 1 shows the distance between the subspaces generated by the first 100 approximated

and true eigenvectors. Figure 2 shows the L2 distance between the first 100 approximated and

true eigenvalues. Our conclusion here is the same as in the manuscript. Introducing random

matrix Ω improves the approximation. Taking Φ to be KαΩ further improves approximation,

where in practice α = 1 appears to be a good choice.

S.2 Full Conditionals for Projection-Based Approaches

The joint posterior distribution for the full model with random projection is π(δ,β, σ2, φ |

Z) ∝ f (Z | δ,β, σ2, φ) × f(δ | σ2, φ) × π(β) × π(σ2) × π(φ). From this we derive the

full conditionals, shown below, which can be easily sampled using one-variable-at-a-time

Metropolis-Hasting algorithm.

β | β− ∝
n∏
i=1

f (Zi | β, Um, Dm, δ)× π(β),

σ2 | σ2
− ∝

(
σ2
)−m/2

exp

(
− 1

2σ2
δTδ

)
× π(σ2),

φ | φ− ∝
n∏
i=1

f (Zi | β, Um, Dm, δ)× exp

(
1

2σ2
δTδ

)
× π(φ),

δ | δ− ∝
n∏
i=1

f (Zi | β, Um, Dm, δ)× exp

(
− 1

2σ2
δTδ

)
.
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Figure 1: Distance between the subspaces generated by the fist 100 approximated and true
eigenvectors under different smoothness ν and effective range r. Introducing randomness in
Φ = KαΩ improves the Nystöm approximation to the eigenvectors. Letting Φ to be KαΩ
with small power α = 1, 2 further improves approximation.

2



●

●

Nystrom Ω K Ω K2 Ω

0
2

4
6

8
10

12

(a) ν=0.5, r=0.1

●

Nystrom Ω K Ω K2 Ω

0
2

4
6

8
10

12

(b) ν=1.5, r=0.1

●

Nystrom Ω K Ω K2 Ω

0
2

4
6

8
10

12

(c) ν=2.5, r=0.1

●

●

Nystrom Ω K Ω K2 Ω

0
2

4
6

8
10

(d) ν=0.5, r=0.3

●

●

●

●

Nystrom Ω K Ω K2 Ω

0
1

2
3

4
5

(e) ν=1.5, r=0.3

●

●

●

●

Nystrom Ω K Ω K2 Ω

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

(f) ν=2.5, r=0.3

●

●

Nystrom Ω K Ω K2 Ω

0
2

4
6

8

(g) ν=0.5, r=0.5

●

●

●

●

Nystrom Ω K Ω K2 Ω

0.
0

0.
5

1.
0

1.
5

2.
0

(h) ν=1.5, r=0.5

●

●

●

●

Nystrom Ω K Ω K2 Ω

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

(i) ν=2.5, r=0.5

●

●

●

Nystrom Ω K Ω K2 Ω

0
1

2
3

4
5

6

(j) ν=0.5, r=0.7

●

●

●

●

Nystrom Ω K Ω K2 Ω

0.
0

0.
2

0.
4

0.
6

0.
8

(k) ν=1.5, r=0.7
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Figure 2: L2 distance between the first 100 approximated and true eigenvalues under different
smoothness ν and effective range r. Introducing randomness in Φ = KαΩ improves the
Nystöm approximation. Letting Φ to be KαΩ with small power α = 1, 2 further improves
approximation
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The full conditionals for the restricted model with random projection is similar to the above

except that Um is replaced by P⊥[X]Um.

S.3 Simulation Study Results

For the linear case, we simulate 100 data sets from the spatial linear mixed model (confounded

simulation scheme) for data sizes of n = 400 and n = 1000. For the smaller data size, we

fit both of our projection-based approaches, the spatial linear mixed model and restricted

spatial regression model for overall comparisons. The distribution of β estimates all center

around the true value and are comparable among all four models (Figure 3); inference and

prediction provided by our projection-based approaches are similar to the original models

they approximate (Table 1). For the larger data size we fit both FRP and RRP with rank

m = 50, which is selected based on our heuristic described in the main text. Figure 4 shows

the estimated random effects at the training locations and the predicted observations at the

testing locations. We see that our projection-based approaches work well in recovering the

spatial patterns.

Table 1: Model comparisons for linear case with n = 400.
SLMM FRP RSR RRP A-RRP

β1 (coverage) 1.01 (0.99) 0.98 (0.97) 1.00 (0.07) 1.00 (0.07) 1.00 (0.97)
β1 mse 0.39 0.46 0.79 0.79 0.79

β2 (coverage) 1.02 (0.95) 1.01 (0.95) 1.02 (0.03) 1.02 (0.03) 1.02 (0.94)
β2 mse 0.60 0.59 1.06 1.06 1.06
φ 0.21 0.22 0.21 0.21 NA

φ mse 0.62 0.61 0.62 0.63 NA
σ2 1.25 1.34 1.24 1.20 NA

σ2 mse 1.32 1.54 1.26 1.18 NA
pmse 0.13 0.13 0.13 0.13 NA

For the Poisson case, we simulate 100 data sets from the spatial linear mixed model

(confounded scheme) and restricted spatial regression model (orthogonal schemes) for data

sizes of n = 1000. Under the confounded simulation scheme, FRP and RRP have similar

distributions for point estimates (Figure 5); however, the credible interval(CI) of RRP is
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Figure 3: Distribution of posterior mean estimates of β among four models and with ad-
justments. The distributions all center around the true value and are comparable. Random
projection models FRP and RRP with rank=50 produce results that are similar to the models
they approximate.

Figure 4: Linear case with n = 1000. First row shows the random effects estimate at training
locations. Second row shows the prediction on a 20×20 grid using random projection models.
Left column is simulated data, middle column shows the results from FRP, and right column
shows the results from RRP. Random projections approach works well in recovering the true
random effects.
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inappropriately narrow with length 0.246(0.166, 0.367) and a coverage of 14 % compared to

the FRP, the CI of which has length 3.123(1.664, 5.743) and a coverage of 91%. Under the

orthogonal simulation scheme, RRP performs much better than FRP; its point estimates

are closely centered around the true value (5)), its CI is 0.225(0.176, 0.299), much narrower

compared to 2.985(1.666, 4.995) of the FRP, and both RRP and FRP have coverages that

are comparable to the nominal rate. Under both simulation schemes, the adjusted inference

A-RRP provides similar results to FRP. Hence, we can fit only the RRP model in practice

for its computational efficiency, then apply the adjustment to recover inference results for

the full model.

S.4 A Comparison with an Existing Method for Areal Data

Here we compare our approach with an existing method for lattice/areal data (Hughes and

Haran, 2013). We simulate a count data set with n = 900, τ = 1 from:

g {E(Z | β)} = x1 + x2 +W ,

p(W | τ) ∝ τ rank(Q)/2 exp
(
−τ

2
W TQW

)
.

(1)

The ICAR model has improper prior, meaning its precision matrix is rank deficient; therefore,

direct simulation from (1) is not feasible. Hence, the spatial random effects is simulated using

the eigencomponents of the precision matirx Q. Let (λi, ei) denote the eigenpairs of Q, we

simulate δi ∼ N(0, λ
(−1)
i ) for λi 6= 0. Then W =

∑
i δiei has the desired distribution. To

reduce the dimension of W using RRP, we will first invert Q using generalized inverse, then

approximate Q−1 using Algorithm 1 from the main text. The full conditionals of RRP for

this reparameterized model can be easily derived. We then fit both RRP and HH to the

simulated data set for comparison. Figure 6 shows that the marginal posterior density plot

are similar from the two models.
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Figure 5: Poisson simulation study: distribution of β posterior mean estimates for RP models
and after adjustment. First row for the confounded case, and second row for the orthogonal
case. All distributions center around the true value. For the confounded case (top row),
FRP and RRP have similar results; while under the orthogonal case (bottom row), RRP
produce much tighter distribution.

Figure 6: Marginal posterior plots for HH and RRP models. Results from the two models
are comparable. RRP = restricted model with random projection
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S.5 A Comparison with Predictive Process for Point-Referenced

Data

To compare the performance of our projection-based approaches with the predictive process,

we simulate 100 Poisson data sets from the traditional SGLMM. We fit both FRP and RRP

with rank m = 50 to the datasets, and compare their results with the predictive process with

reference points on a 7 × 7 grid. In this simulation study, our projection-based approaches

provide comparable inference and smaller mean prediction square error (MPSE) (Figure 7).

S.6 SGLMMs with small-scale (nugget) spatial effect

For SGLMMs where inclusion of small scale, non-spatial heterogeneity is appropriate, the

model becomes,

g {E(Z(s) | β,W (s))} = X(s)β + w(s) + ε(s), (2)

where ε(s)
iid∼ N(0, τ 2). We provide implementations of our method for two cases: (1) when

Gibbs sampling of the latent variables is available, and (2) when it is not. Examples for case

(1) are the spatial binary model with probit link (considered by Berrett and Calder, 2016)

and spatial probit model for correlated ordinal data (Schliep and Hoeting, 2015); examples

for case (2) are already considered in this manuscript.

We begin by redefining some notation. Let W = (W1, . . . ,Wn)T denote the latent vari-

able, Z = (Z1, . . . , Zn)T the observed spatial binary data and X the n× p design matrix.

Case (1): We first consider the case where Gibbs sampling is available for the latent

variables, for example when using SGLMM with a probit link for binary data. The model is

defined as

Zi =


1, Yi ≥ 0

0, Yi < 0

(3)

where Yi = Xiβ + Wi + εi. W ∼ MVN(0, σ2Rφ) captures large-scale spatial variation and

εi
i.i.d∼ N(0, τ 2) captures small-scale variation. The conditional distribution for Y | β, σ2, φ, τ 2
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Figure 7: Poisson simulation study: compare projection-based models with predictive process
on gridded knots. The point estimate distributions for β1 are comparable (top left); while
the coverage for RRP is much lower than the others, however after adjustment, the coverage
for A-RRP is corrected and is comparable to FRP and PP (top right). Both FRP and RRP
have better prediction performance than PP (bottom left). The length of the CIs for FRP
and PP are comparable, while RRP produce much narrower CI; but after adjustment the
CI gets much wider (bottom right). FRP = full model with random projection, RRP =
restricted model with random projection, A-RRP = adjusted inference for RRP.
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is therefore multivariate normal with mean Xβ and variance σ2Rφ + τ 2I. Our method

can be used to facilitate model fitting in this case as follows: We approximate the

eigen-components of Rφ using random projections and obtain its first m eigenvectors Uφ =

[u1, . . . ,um] and eigenvalues Dφ = diag(λ1, . . . , λm). Let Mφ = UφD
1/2
φ be the projection

matrix, then we reduce the dimension of the latent variables by approximatingW with Mφδ.

For a specific value of φ, we can treat Mφ as fixed spatial covariates and δ the corresponding

coefficients. Write Xφ = [X,Mφ] and βφ = (βT , δT )T as the reparameterized design matrix

and coefficients, respectively, then Yi is approximated byXiβ+Mφ,iδ+εi and can be rewritten

as Xφ,iβφ + εi. We use a normal conjugate prior for β, inverse gamma conjugate priors for

σ2 and τ 2, and a uniform prior for φ. Then, fitting the reduced-rank Bayesian probit model

involves the following steps.

At the tth iteration of the algorithm,

Step 1: Gibbs update for latent variables. Sample Y (t) from Y |Z,β(t−1), σ2(t−1), φ(t−1), τ 2
(t−1)

(a) Compute projection matrix Mφ for φ(t−1). Form Xφ and βφ.

(b) For i = 1, . . . , n, draw Yi from

Yi|Z,Y−i,β, σ
2, φ, τ 2 ∼


TN(Xφ,iβφ, τ

2, 0,∞), if Zi = 1

TN(Xφ,iβφ, τ
2,−∞, 0), if Zi = 0,

where TN(µYi , σ
2
Yi
, 0,∞) is a truncated normal distribution with lower bound 0,

upper bound ∞, mean Xφ,iβφ and variance τ 2.

Step 2: Gibbs update for βφ.

Sample from βφ | Z,Y (t), σ2(t−1), φ(t−1), τ 2
(t−1) ∼ MVN

(
β̂φ, (

1

τ2(t−1)X
T
φXφ + Σ−1β )−1

)
,
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where β̂φ = ( 1

τ2(t−1)X
T
φXφ + Σ−1β )−1 1

τ2(t−1)X
T
φ Y

(t), and Σβ =

Σ0 0

0 σ2(t−1)Im×m


with Σ0 denotes the normal prior variance.

Step 3: Gibbs update for τ 2.

Step 4: Gibbs update for σ2.

Step 5: Metropolis-Hastings update for φ.

We have not provided details for steps 3-5 since they remain the same as when fitting

SGLMMs in general. Furthermore, techniques for dealing with non-identifiable parameters

(Berrett and Calder, 2012, 2016) can also be used.

Case (2): We now consider the case where Gibbs sampling from the latent variable

is not available. We first explain why the reparameterization for Case (1) is not suitable

here, and then provide an alternative strategy. In Case (1) above, W is reparameterized

with a low-rank representation, however, the dimension of latent variable Y remains high;

Y is approximated by Xβ + Mφδ + ε, and has a normal distribution with mean Xβ and

covariance σ2MφM
T
φ + τ 2I. Constructing efficient MCMC to sample Y from its full condi-

tional distribution is not easy due to its high dimensions. Hence, we propose an alternative:

reduce the dimension of Y by approximating W + ε with UθD
1/2
θ δ, where Uθ and Dθ are

eigenvectors and eigenvalues of σ2Rφ + τ 2I, respectively. Hence, the eigencomponents here

depend on all parameters θ = (σ2, φ, τ 2)T of the covariance function. In fact Uθ is identical

to Uφ from Case (1), and Dθ is identical to σ2Dφ + τ 2Im×m. This alternative reparameter-

ization provides some computational gains. The latent variable Y is now approximated by

Xβ + Mθδ = [X,Mθ](β
T , δT )T whose full conditional distribution has m + p dimensions.

Reducing the dimension of the posterior distribution allows for easier construction of efficient

MCMC.
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