
Figure A.1: Partition of the spatial grid for the first simulation case.

Appendices

A Computing the CPOD expansion

The driving idea behind CPOD is that a common spatial domain is needed to extract

common instabilities over multiple injector geometries, since each simulation run has different

geometries and varying grid points. We first describe a physically justifiable method for

obtaining such a common domain, and then use this to compute the CPOD expansion.

A.1 Common grid

1. Identify the densest grid (i.e., with the most grid points) among the n simulation

runs, and set this as the common reference grid.

2. For each simulation, partition the grid into the following four parts: (a) from injector

head-end to the inlet, (b) from the inlet to the nozzle exit, (c) the top portion of

the downstream region and (d) the bottom portion of the downstream region (see

Figure A.1 for an illustration). This splits the flow in such a way that the linearity

assumption can be physically justified.

1

3. Linearly rescale each part of the partition to the common grid by the corresponding

geometry parameters L, Rn and ∆L (see Figure A.1).

4. For each simulation, interpolate the original flow data onto the spatial grid of the

common geometry. This step ensures the flow is realized over a common set of grid

points for all n simulations. In our implementation, the inverse distance weighting

interpolation method (Shepard, 1968) is used with 10 nearest neighbours.

A.2 POD expansion

After flows from each simulation have been rescaled onto the common grid, the original POD

expansion can be used to extract common flow instabilities. Let {xj}Jj=1 and {tm}Tm=1 denote

the set of common grid points and simulated time-steps, respectively, and let Ỹ (x, t; ci) be

an interpolated flow variable for geometric setting ci, i = 1, · · · , n (for brevity, assume a

single flow variable, e.g., x-velocity, for the exposition below). The CPOD expansion can

be computed using the following three steps.

1. For notational convenience, we combine all combinations of geometries and time-steps

into a single index. Set N = nT and let l = 1, · · · , N index all combinations of n

design settings and T time-steps, and let Ỹl(x) ≡ Ỹ (x, (t, c)l). Define Q ∈ RN×N as

the following inner-product matrix:

Ql,m =
J∑
j=1

Ỹl(xj)Ỹm(xj).

Such an inner-product is possible because all n simulated flows are observed on a set

of common gridpoints set.

First, compute the eigenvectors ak ∈ RN satisfying:

Qak = λkak,

2

where λk is the k-th largest eigenvalue of Q. Since a full eigendecomposition requires

O(N3) work, this step may be intractible to perform when the temporal resolution is

dense. To this end, we employed a variant of the implicitly restarted Arnoldi method

(Lehoucq et al., 1998), which can efficiently approximate leading eigenvalues and

eigenvectors.

2. Compute the k-th mode φk(x) as:
φk(x1)

φk(x2)
...

φk(xJ)

 =


Ỹ1(x1) · · · ỸN(x1)

...
. . .

...

Ỹ1(xJ) · · · ỸN(xJ)

 ak.

To ensure orthonormality, apply the following normalization:

φk(xj) :=
φk(xj)

‖φk(x)‖
, ‖φk(x)‖ =

√√√√ J∑
j=1

φk(xj)2

3. Lastly, derive the CPOD coefficients (βl,1, · · · , βl,N)T for the snapshot at index l (i.e.,

with design setting and time-step (c, t)l) as:
βl,1

βl,2
...

βl,N

 =


φ1(x1) · · · φ1(xJ)

...
. . .

...

φN(x1) · · · φN(xJ)



Ỹl(x1)

Ỹl(x2)
...

Ỹl(xJ)

 .

Using these coefficients and a truncation at Kr < N modes, it is easy to show the

following decomposition of the flow at the design setting ci and time-step tm indexed

3

by l:

Y (xj, tm; ci) ≈
Kr∑
k=1

βl,kMi{φk(xj)}, j = 1, · · · , J,

as asserted in (3).

B Proof of Theorem 2

Define the map A : RK ×RK×K ×Rp → RK ×RK×K ×Rp as a single-loop of the graphical

LASSO operator for optimizing T with µ and τ fixed, and define B : RK × RK×K × Rp →

RK×RK×K×Rp as the L-BFGS map for a single line-search when optimizing µ and τ with

T fixed. Each BCD cycle in Algorithm 1 then follows the map composition S = AM ◦BN ,

where M <∞ and N <∞ are the iteration count for the graphical LASSO operator and

number of line-searches, respectively. The parameter estimates at iteration m of the BCD

cycle can then be given by:

Θm+1 = S(Θm), where Θm = (µm,Tm, τm).

Define the set of stationary solutions as Γ = {Θ : ∇lλ(Θ) = 0}, where ∇lλ is the

gradient of the negative log-likelihood lλ. Using the Global Convergence Theorem (see

Section 7.7 of Luenberger and Ye, 2008), we can prove stationary convergence:

lim
m→∞

Θm = Θ∗ ∈ Γ,

if the following three conditions hold:

(i) {Θm}∞m=1 is contained within a compact subset of RK × RK×K × Rp,

(ii) lλ is a continuous descent function on Γ under map S,

(iii) S is closed for points outside of Γ.

4

We will verify these conditions below.

(i) This is easily verified by the fact that |µm| ≤
(

maxi,r,k |β(r)
k (ci)|

)
1K , 0 � Tm �(

maxk,r s
2{β(r)

k (ci)}ni=1

)
IK and τm ∈ [0, 1]p, where s2{·} returns the sample standard

deviation for a set of scalars.

(ii) To prove that S is a descent function, we need to show that if Θ ∈ Γ, then lλ{S(Θ)} =

lλ{Θ}, and if Θ /∈ Γ, then lλ{S(Θ)} < lλ{Θ}. The first condition is trivial, since

M = 0 and N = 0 when Θ is stationary. The second condition follows from the

fact that the maps A and B incur a strict decrease in lλ whenever T and (µ, τ) are

non-stationary, respectively.

(iii) Note that AM is a continuous map (since the graphical LASSO map is a continuous

operator) and the line-search map BN is also continuous. Since S = AM ◦BN , it must

be continuous as well, from which the closedness of S follows.

C Proof of Theorem 3

Fix some spatial coordinate x and time-step t, and let:

y = (Y (u)(x, t; cnew), Y (v)(x, t; cnew), Y (w)(x, t; cnew))T

be the true simulated flows for x-, y- and circumferential velocities at the new setting cnew,

ŷ = (Ŷ (u)(x, t; cnew), Ŷ (v)(x, t; cnew), Ŷ (w)(x, t; cnew))T

be its corresponding prediction from (9), and

ȳ = (Ȳ (u)(x; cnew), Ȳ (v)(x; cnew), Ȳ (w)(x; cnew))T

5

be its time-averaged flow. It is easy to verify that, given the simulation data D =

{Y (r)(x, t; ci)}, the conditional distribution of y|D is N (ŷ,Φ(x, t)), where:

Φ(x, t) ≡


m(u) 0 0

0 m(v) 0

0 0 m(w)

 [V{β(t; cnew)|{β(t; ci)}ni=1}]uvw


m(u) 0 0

0 m(v) 0

0 0 m(w)


T

,

(C.1)

with:

m(r) =
[
Mnew{φ(r)

1 (x)}, Mnew{φ(r)
2 (x)}, · · · Mnew{φ(r)

Kr
(x)}

]
, r = u, v, w.

Letting Φ(t) = UΛUT be the eigendecomposition of Φ(t), with Λ = diag{λj}, it follows

that Λ−1/2UT (y − ȳ)|D d
= N (µ, IK), where µ = Λ−1/2UT (ŷ − ȳ) and K = Ku +Kv +Kw.

Denoting a = Λ−1/2UT (y − ȳ), the TKE expression in (13) can be rewritten as:

κ(x, t) =
1

2
(y − ȳ)T (y − ȳ) =

1

2
(UΛ1/2a)T (UΛ1/2a)

=
1

2
(aTΛ1/2UTUΛ1/2a)

=
1

2
aTΛa =

1

2

K∑
j=1

λja
2
j .

(C.2)

Since a ∼ N (µ, IK), a2j has a non-central chi-square distribution with one degree-of-freedom

and non-centrality parameter µ2
j (we denote this as χ2

1(µ
2
j)). κ(x, t) then becomes:

K∑
j=1

λj
2
χ2
1(µ

2
j), (C.3)

which is a sum of weighted non-central chi-squared distributions. The computation of the

distribution function for such a random variable has been studied extensively, see, e.g.,

Imhof (1961), Davies (1973, 1980), Castaño-Mart́ınez and López-Blázquez (2005), and

6

Liu et al. (2009), and we appeal to these methods for computing the pointwise confidence

interval of κ(x, t) in Section 4. Specifically, we employ the method of Liu et al. (2009)

through the R (R Core Team, 2015) package CompQuadForm (Duchesne and de Micheaux,

2010).

References

Castaño-Mart́ınez, A. and López-Blázquez, F. (2005). Distribution of a sum of weighted

noncentral chi-square variables. TEST, 14(2):397–415.

Davies, R. B. (1973). Numerical inversion of a characteristic function. Biometrika, 60(2):415–

417.

Davies, R. B. (1980). Algorithm AS 155: The distribution of a linear combination of χ2

random variables. Journal of the Royal Statistical Society. Series C, 29(3):323–333.

Duchesne, P. and de Micheaux, P. L. (2010). Computing the distribution of quadratic forms:

Further comparisons between the Liu-Tang-Zhang approximation and exact methods.

Computational Statistics and Data Analysis, 54(4):858–862.

Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal variables.

Biometrika, 48(3/4):419–426.

Lehoucq, R. B., Sorensen, D. C., and Yang, C. (1998). ARPACK Users’ Guide: Solution of

Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, volume 6.

SIAM, Philadelphia.

Liu, H., Tang, Y., and Zhang, H. H. (2009). A new chi-square approximation to the

distribution of non-negative definite quadratic forms in non-central normal variables.

Computational Statistics and Data Analysis, 53(4):853–856.

Luenberger, D. G. and Ye, Y. (2008). Linear and Nonlinear Programming, volume 116.

Springer, US.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

7

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data.

Proceedings of the 23rd ACM National Conference. 517–524.

8

