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1 Notations

We consider a functional ACE model as follows:

Yij(v) = ;8(v) + ri;(v), (1)
rij(v) = \/@1(DZ)aij(v) + [1(MZ) + \/ﬁl(DZ)]@i(v) +ci(v) + e (v),

where B(v) = (B1(v), ..., B,(v))T is a p x 1 vector of coefficient functions and v is a grid
point in Vj = {vy, va, ..., N, }, which is a set of grid points in a common compact space,
denoted by V. Furthermore, a;;(v) and a;(v) are introduced to represent within-curve and
between-curve functional additive genetic effects on the i-th twin pair. ¢;(v) represents

the common environmental effects. It is also assumed that

eij(v) = eija(v) + ey n(v), (2)
where e;; 1,(v) are measurement errors representing local variability and e;; () are stochas-
tic processes representing unique functional environmental effects.

The functional ACE model reduces to standard ACE model at each grid point. We

denote the density of observations at tract vy € Vj as

F O (ya; o (vr), B(wr)) = fD(*(vr), Bvk); yi),



where v, = (yi1(vr), Yiz(ve))T for MZ and DZ twin pairs, y;, = v;1(vx) for singletons and

o%(v) = (062(v),0%(v), 02(v)). Furthermore, we denote the log-likelihood function and its

i

corresponding first order and second order derivatives with respect to 6 as ¢, and

Zég), respectively. Superscript T € {M, D, I} denotes a particular type of twin pairs,
including MZ, DZ, and singleton.
Let @; = (241, 712)" and 0;(v) = (11(v), ni2(v))", where

1i;(v) = V0.51(DZ)a; (v) + [L(MZ) + V0.51(DZ)]a;(v) 4 ¢i(v)

for 1 <i <ny+ng. Let @; = (x;1) and n;(v) = (9 (v)) for ng +ny + 1 < i < n. Denote
o?(v) = o%(v) + 02(v) + 0%(v), 02 (v) = 02(v) + 02(v) and 03 (v) = 0.50%(v) + 02(v).

We first introduce the following notation related to the log-likelihood function:
£,(0:Y2) = L0(0:Y2) + L (0:Yi) + LI)(0: 7). (3)
T.(0.(00): %) = = [VATD (6. () V) + VT 0. (0): Y0

+ VL (0.(ur): V)]
Z.(0.(vx); Yz) = % [nlz,(flw)(@*(vk); Y.) + ”217(1]23)(9*(%)? Y;)
+ 3T (0. (vr); Y2

where E%]:/[)(O; Y,) = > (0 (0; y;,) and

1 = o
TIM@,(03): V) = — S 686, (v); yin),
(04 (vr); Ya) \/n—lge((k)yk)

1 &
Z8D(0.(vr); ) = y ZEéM)(O*(Uk); yir) .
=1

Similarly, we can define the corresponding terms for (D) and (7).

Then, we consider a quadratic expansion of the log-likelihood function as follows:
L,,(8(vr); Yi) = Ln(04(vk); Yi) — 0.5Qn (vV1(0(vg) — 0.(vr)))
+0.5Z,(8:(v8); Yi) Lo (0. (v1); Yi) Zn (6. (0n): Y
+ Ry (6(vk), 0. (vr)), (4)
where
Z(04(01); Yie) = Lo(0.(vi); Ya) ™' Tn(0.(vr); Vi),
Qn(A) = (A = Zn(0.(vr); Yi)) Lo (0 (vr); Yi) (X — Z,(0.(vr); Vi),



and R, (0(vg), 0.(v)) will be shown to be uniformly negligible in Lemma 2.8.

We introduce more notation related to the weighted log-likelihood function as follows:

Lok (0*(v);R) = L) (0 (v); R) + LI (0(v); R) + L) (6*(v); R),  (5)

2 . _ 1 M D .
T2 R) =~ [ VT, a(02(0); R) + VT, (02(0); R)
VT (@2 (0); R)|
L(o?(0); B) = - [m I (02 (0): R) + mI (0 (0): R)
+ T (2 (0): )]

where

ni Na
1
L@ (W) R) = 3 5 > (00 W) Ko (v — ),
k=1

i1 G

T\ (02 (v); R) = Z Z (D (2 (0); 70) K, (05 — ),

Lokl R) = — Z Ze 0); 1) 2K, (05 — ).
=1

Similarly, we can define the correspondlng terms for (D) and (7).

We consider a quadratic expansion of the weighted log-likelihood function given by

Lo i (02(0); R) = L, k(02 (v); R) = 0.5Q, x(vn(0? (v) — a2(v))) (6)
+0.5Z,(02(0); V) T, 1 (02(v); Y) Zy e (02 (1) Y)
+ Ry (02 (v), 02 (v)),
where

Z i (02(0);Y) =T,k (02(0); Y) ' Tuxc (02 (v); Y), (7)
Qi) = (A = Zyx (02(W); Y )L, 1 (02(0); Y)(A = Z,, 1 (02(v); Y)),

and the remainder term R, x(o?(v),o%(v)) will be shown to be uniformly negligible in

Lemma 2.11.
We will use C' and K to denote some universal constants and use K, to denote constant
depending only on «, which is a parameter. In both cases, the values of constants may

change from line to line. We will also use the classical definition of Orlicz norms.
Definition 1.1. For a > 0, define the function v, = exp(x®) — 1 with x > 0. For a
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random variable X, define the Orlicz norm
[ Xy, = inf {A >0 Eo(|X|/A) < 1}.
REMARK. For a < 1, it is widely accepted in literature to change the function 1,
near zero ((0,[(1 — «)/a]”*)) via a lincar interpolation to make it convex. We still use

1, to denote the interpolated function. It is easy to show that || X]||,, < oo if and only
if E{¢(|X]|/C)} < oo for at least a finite constant C.

Definition 1.2. For x € R®, define ||z|| as the la norm of z, i.e., ||z|| = \/>;_, 22. For
matriz X € R**®, define || X|| as its element-wise sup norm, i.e. || X|| = n%aX|Xij]. For a
sequence of matrices Xy, ..., X,,, we define infi<y<,, Xp > 0 if and only ifir;élgkgm Amin (Xg) >
0 where Anin(X) denotes the minimum eigenvalue of X. Similarly, we define sup;<y<,, Xp <

0 if and only if SUP|<p<p Amax(Xx) < 0 where Amax(X) denotes the mazimum eigenvalue

of X.

Definition 1.3. The set 2 C R?® is approzximated at 6y by a cone with vertex at 6y, Cq,
if

inf 2 — yl| = o(ly — ol}) for all y € O

zeCq
and

inf ||z —y|| = o(||z — Oo||) for all x € Q.
yeN

Recall that a cone with vertex at 6y, C, is a set of points such that if x € C then

a(x — 0y) + 0y € C, where a is any real, non-negative number.

2 Proof of Theorems

We first introduce several lemmas that we are going to use in the sequel.

Lemma 2.1. For a random variable X with 0 < ||.X ||y, < oo, we have, fort >0,

P(X| > ) < 2exp (— (W)) |

Proof. This is a simple result from Chebyshev’s inequality, and thus we omit its proof. [



Lemma 2.2. Let ¢ be a convex, nondecreasing, nonzero function with 1(0) =0 and

lirzljgop V()Y (y)/¢(ery) < oo
for some constant c. Then, for any random variables X1, ..., X,
| max Xilly < Ko~ (m) max | Xily.,
for some constant K depending only on .

Proof. This is the Lemma 2.2.2 of van der Vaart and Wellner (1996). [

Lemma 2.3. Let X4,..., X, be independent random variables, such that E(X;) =0 and
for some o € (0,1], || X;||g, < o00. Let Z =1>"7" | X;|, then we have,

12060 < K (1211 + 1| max | Xillly,

Proof. This is a direct result of Theorem 5 of Adamczak (2007) when we take F as a

class with only the identity function. m

Lemma 2.4. Suppose Y;,i = 1,2,...,n are independent and identically distributed ran-
dom variables such that E(Y;) = 0, E(Y?) = 1 and ||Yi]|y. < ¢ where 0 < a < 1, and

| - |y denotes the Orlicz norm for v, (x) = exp(x®) — 1. Define

1 n
Wn = = Yvia
then we have ||Wy, ||y, < C for all n where C only depends on ¢ and o.
Proof. Let X = maxj<i<, |Yi], Yii = Yil{X < p} and Yi» = YV;1{X > p} where the
truncation level p = 8E(X). We have, W,, = W,,; + W5 where
I 1 ©
Wi =—=) [Yu—EYu)], Waa=—=) [Yio — E(Y2)].

Next, we try to control the Orlicz norm of W,,; and W, separately. We first control

Wo1. Since |Y;; — E(Yi)| < 2p and E(|Y;; — E(Yi1)[?) < E(Y;?) = 1, Bernstein inequality

t
P(|Wpi| > t) < 2exp <—01 min <t2, {_n))
)

where ¢; is a universal constant. Furthermore, Lemma 2.2 indicates that || X, <

indicates that

clog"*(1 4 n). Therefore,

P([Wo| > £) < 2exp <—cl min (t2 v/t )) .

"2¢log'*(1 +n)




Finally, by Fubini theorem,

E [do(| Wit | /w)] = / TP W] > sYw) exp(s)ds.

Thus, it is easy to show that as long as

1/a
meaX<2 4clog (1+n)>7

\/a7 Cl\/ﬁ
we have E [1),(|Wai1|/w)] < 2e for all n. Therefore, for all n, ||Wyi|ly, < Ci for some
constant C; where C depends only on ¢ and a.

Then, we control W,5. By Chebyshev inequality,
maX|ZYzQ| >0)<P(X >p)<1/8

and thus by Hoffman-Jorgensen mequahty (see e.g. Proposition 6.8, Chapter 6, Ledoux
and Talagrand (2013)), we obtain

E| Y Yol <SE[X].
i=1
In consequence

E| Z iz~ ) < 16E [X] < Kol X[

We then have, by Lemma 2.3

uz B, < K. (E@ BV |+an%)

< K| X ||y, < Kaclog*(1+n).
Therefore, [|[Whally, < Kaclog?(1 4+ n)//n < Cy for some constant Cy where Cy only

depends on ¢ and «a. The result now follows by triangle inequality.

Lemma 2.5. For 1 <k <m, {Zy, 1 <i<n} are independent random variables such

that for some constants ¢ > 0, || Zig||y, < c. Let

1 — i
W, = [5;|Zik|

we then have the following result

sup |Wi| =0, < log(1 —i—m)) :

1<k<m

1/s
,s>0




Proof. For a given w > 0,

E [1ho (W} /w)] = /000 P(W,, > wt'/?) exp(t)dt, (8)
where

P(Wy > wt'/?) = PO)_ | Zu|* > nwt*/?). (9)
i=1
Since || Zig ||y, < ¢, we have ||| Z|*||y, < ¢, as arvesult, || D1 | Zik|* ||, < nc®. Then, by
Lemma 2.1 and (9)

nwsts/Q

2/s
P(W, > wt'/?) < 2exp (— { } ) = 2exp (—tw?/c?) . (10)

Thus, as long as w > v/3c, E [th(Wy/w)] < 1, which indicates ||[Wg|y, < v/3e. We then

ncs

have, by Lemma 2.2,

sup (Wil = O,(v/log(1 + m)).

1<k<m

2.1 Proof of Theorem 1

We first show several lemmas used to prove Theorem 1.

Lemma 2.6. Under Assumptions C1-C38 and C7a, we have

1 Ly ..
sup || S [M% + 50| (0. (0n): ) | = O, 1082 (1 + Ne) /), (11)
1<k<Ng ||T1

1 Mmoo ;
sup || — > [egm@mg?] (0. (vr); yar) || = Op(log®(1 + Ng)/v/n), (12)
1<k<Ng || T2 P

1 - . ..
ap [£ 3 [ ] 0. - oo+ om0
L<k<Ne (|3 4, s+
sup || 7n(6x(vi); Yi) || = Op(log(1 + Ng)), (14)
1<k<Ng
S |1Z,.(6.(vr); Yi) — E [Z,,(0.(vr); Ya)] | = Op(log®(1 + Ne)/v/n). (15)
SRXIVG

Proof. The proofs of (11)-(15) are quite similar to each other. Let’s consider (11) as an
example. Based on formulas (44)-(46) and (50)-(52) in Section (4), the expression in the
norm can be written as the sum of several empirical processes. Lemma 2.4 can be used
to control the Orlicz norm of each empirical process for each k. Then we can use Lemma
2.2 to control the Orlicz norm of the supreme of each empirical process over 1 < k < Ng.

Thus, (11) follows directly. We omit the trivial details.
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Lemma 2.7. Under Assumptions C1-C4 and C7a, the mazimum likelihood estimator

a(vk) satisfies

sup [[6(vx) — 0.(vi)| = 0p(1).

1<k<Ng
Proof. The proof of Lemma 2.7 consists of two steps. The first step is to show that
log-likelihood function under model (1) converges uniformly to its expectation over Vj.
The second step is to show that its expecation has well-separated maximum uniformly

over V. We first consider the log-likelihood corresponding to MZ twin pairs given by

2 n

o
57(1114)(99 Yi) = 51— Z [(yiur — 218)? + (Yiok — .CEZ;,@)Q]
2(0y — 03) —1
2 m
o
T ot _2051 Z [(yilk’ — 2},8) (Yiok — Z2,3)] - — log( —03).

i=1
The uniform convergence property can be similarly shown for every term in 55?14)(9; Y:),

therefore we only present the proof of the following one:

ni

- Z Yilk — 11/8 11 ZT’?I(’Uk) + [,8 (Uk {nl Z Ti1Ti Uk }

=1
+ [Bu(vx) — {Th szlﬂle} vg) — B .-
Assumptions C2-C3 indicates that
72 () — E(r7 (vp) |lpy < C, [|zara(vi) |y, < C, for some universal constant C.

From Lemmas 2.2 and 2.4, and Assumption C7a, it follows that we have

sup nilz [Tizl(vk) - E(T%(Uk))] =0p (M#NGO = 0p(1), (16)

1<k<Ng
log'/?(1 + Ng)
su — riuria(vg)| = O =0,(1). 17
1Sk§€\fc 711; wra(vs) p( Vn o) 47




Thus, ESY)(B; Y})/ny converges uniformly over Vj to its expectation given by

L4D(6:6..(vr))

otot.(ve) o305 (v) L. 4 4

- ot — o5 + ot — ol _§log(01 —03)
2 | o
_ m [ﬁ*(vk> - /B]T {n_l ;(lewzl + ngxz;)} [ﬁ*('vk) — ﬁ]
2 _
+ gt 8.0 — 8 {n_l S (rart + HT>} S

Since the log-likelihood can be written as the sum of log-likelihood corresponding to
MZ, DZ and singleton twins, the uniform convergence property of the log-likelihood
corresponding to DZ and singleton twins can be shown similarly as above. As a result,

the log-likelihood L,,(0; Y})/n converges uniformly to
L£(6;0,(v) = a1 £2(0; 0, (vy,)) + 2 LD)(0: 0, (vy,)) + asLD(; 0, ().
Some algebraic calculations and Assumption C4 indicate that

L£(0.(v4);0.(v)) =0, sup L(8.(vy);0.(vy)) < 0.

1<k<Ng

Thus, £(60;0.(v;)) has a well-separated maximum 6, (vy), i.e.

sup sup L(0;0,(vy)) <0 for all € > 0.
1<k<Ng 0e®NB(0+(vy),c)¢

Finally, the uniform consisteny of 5(vk) is a direct result of argmax theorem (van der

Vaart, 2000; van der Vaart and Wellner, 1996).

Lemma 2.8. Let Z(vy) be the limit of E [Z,(0.(vy); Yi)], then for some random variable
J(vg) ~ N(0,Z(vy)), we have, under Assumptions C1-C4 and C7a,

Tn(0:(vi); Yi) —a T (02), (18)
L0 (0 (vk); Yi) —=p Z(0r), (19)

and as vy, — 0,
sup sup | B (6(vr), 0. (ve))| = 0p(1). (20)

1<k<Ng 6(v)€®:||0(vi)—0+(vi)||<7n
Proof. The (18) and (19) can be shown by using central limit theorem and law of large

numbers. For (20), we first consider Taylor expansion on the log-likelihood function of



all MZ twin pairs
LI (O(v); Yi) = L0, (v0); Vi) + [0(vr) — 0.(vn)]" > €5 (0.(vi); yr)
=1

1 L2
5 [0(00) = 0. (ue)]" D g (O(vr): wie) [B(vr) — 0. (v1)].
i=1
where 8(uv;) is between (vy,) and 6, (v;). From the explicit formulas (50-52) in Section
4, we know that > "', é’ﬁ,ﬁf’ (6(v); yii) can be written as the sum of several empirical

processes, of which one is given as follows,

A= nil > () = nil > A (ve) — 2(B(vr) — ﬁ*(vk))Tnil > wari (k) (21)
=1 =1 i=1

+ (B(ve) — B, ()" [nil Z 3%1-’17?1] (B(ve) — B, (vr)),

where 7 (vg) = yi(vg) — xﬁﬁ(vk) Since ||Z3(vk) — B. ()| < Y, from (16) and (17), it
follows that

1 & log(1 + Ng)
A=FE|— E 7 =/
(nl p rzl(vk>> + OILVO ( /—nl )

logl/Q(l -+ NG)
Vi

~E (ni > <vk>> + o (D). 3

=1

+ f)/nOp,Vo < ) + Viop,vo(l) (22)

Other involved empirical processes have similar results, therefore we have, for any 6(vy) €

O such that sup ||@(vg) — 0. (ve)]| < v — 0,

Lo(0(00); Vi) = L (0.(00); Vi) + [VA(0(vx) = 0.(v0)] " To(0.(v4); Vi)
— 5 [VO(e) — 6.()]” (Z(we) + 0,00 (1) [VAOW) ~ 0.w))] . (20
Thus, following the proof of Theorem 1 in Andrews (1999) and (14) in Lemma 2.6, we
have
Sup V7 (8(ve) = 0.(vr)) [| = O (log(1 + Ne)) . (25)

Then, we can safely change v, to log(1+4 Ng)/y/n in (22) to obtain a better rate, that is

A=E (nil Z@l(”@) + Opvi (W) ’ (26)
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and further
La(0(wr); Vi) = L(0.(04); Vi) + [Vi(0(vy) — 0. (0x))] " Tu(6.(vs); Vi)

Lo - 0.w))]” (Z(vk) O, (W» [Vi(0(ve) — 60.(u))] -
(27)

2

Combining (15), (25), and (27), we have

L(0(w0); Vi) = L£(0.(04); Vi) + [Vi(0(v) — 0. (0x))] " Tu(.(vr); Vi)

2 [Va(O() — 0.(00)] Z.(8.(v): Yi) [Vi((ve) — 6.(0))]

2
10g4(1 — N(;)
+Op,V0 <T 5
which indicates that R,(8(vy), 0.(vk)) = Oy, (log*(1+ Ng)/v/1) = 0p14(1). Thus, the

proof is now completed.

Proof of Theorem 1.
We have shown the uniform consistency and convergence rate of /O\(Uk) over v € Vp in
Lemmas 2.7 and 2.8. Now, we show that asymptotic distribution of related estimators.
We first introduce some notation as follows:

Z(vi) = Z(v) ™" T (vp),

QA) = (A= Z(v))"Z(0.(vi)) (A = Z(vr),

Vn(©® — 0.(v)) == {A € RY: X = /n(0 — 0.(v;)) for some 6 € O},

A(vg) := [0,00) x RP™? := Ay (vp) x Ag(vy) where

A1 (vy) = [0,00) and Ay(vy,) = RPT?

Qu(An(t) = inf Qu(A) and QA()) = inf Q(A).

)\EA(vk )\EA(’Uk)

Now similar to arguments in Lemma 1 of Andrews (1999) or Theorem 4 of Zhu and Zhang

(2004), we have

Qu(Vn(O(vy) — 0.(vx) = _inf  Qu(A) +0p1(1)

A€V (O—0.(vk))

0 Qu(N) 4o (1)

By continuous mapping theorem, we have

Vi(O(vr,) — 0.(vr)) —a A(ug).
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Next, we provide the asymptotic distribution of /n(c2(vy,) — o2, (vy)) by partitioning
0(vx), Oo(vr), T (vr), Z(vy), Z(vy) and A(vy) conformably with 8(vy,) = (61 (vy), 02(vr))
where 0, (vy,) = 02(v). We define some notation as follows:

o= () b= () b = (7).
6> (vr) 05 (v,) 0., (vy)

We also define the following two quadratic functions.
Qi) = (4 = Zu(on)" [HT o) HT] ™ (A = Zi(w), (28)
Q2(A1, X2) = (A2 + 5 Toxs M — I To (k) Too (A2 + L5 Ton M — Loy To ().
where H := [1: 0] € R"*®+3)_ Some algebra indicates that

Q(A(ve)) = Qu(Ai(vr)) + Q2(A1(vk), Ao (vr))-
When o2, (v;,) > 0 and o2, (vg) > 0, As(vy,) = RP™2, thus for any \;(vy) € R, we have

inf A1(vg), Aa(vg)) = inf A (vg), Aa(vg)) = 0.
)\2(Uk)eA2(Uk)Q2( 1( k) 2( k)) Ag(vk)eRP+2Q2( 1< k) 2( k))
Thus, we obtain
inf Avg)) = inf A1(vg)). 29
N TR A - W L D) (29)
Based on this, we have the following results:

~

Q1( M (vr)) = )\1(vki)relff\1(vk)Q1<)\l(vk))’ (30)
M (vr) = Z1(vp)1(Z1(v) > 0). (31)

Finally, we have the following asymptotic distributions:
V(G2 (k) — 02, (vr)) = V(0 (vr) — 01 (vk)) —a M (v), (32)
2[£0(B(00)) = La(8u(wi)| a2 ()" [HT () H] ™ i (1)
+75 (i) L35 (03) T (vie),
LRT,, (vx) —a M (ox)" [HZT (o) HT] ™ Xy ().

Furthermore, since Z(v;) is normally distributed with mean 0 and covariance Z(vy)™?,
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Z1(vg) = HZ(v,) is normally distributed with mean 0 and variance HZ(v;,) "' HT. Result
(31) indicates that

VG, (ve) = og,(ve)) —a (HZ(vp) " H)/2N(0,1)1(N(0,1) > 0),

LRT,,(vi) =4 %Xf + éxg.
Now, we consider local alternatives, H,, : 02(vy.) = h(vy)/v/n, we define h(vy,) = (h(vy),0)T €

RPT3, then similarly we have
1
La(h(ve); Yi) = h(vr)" Tn(0.(vr); Yie) = Sh(vr) Tu(0.(vr); Yi)h(vr) + 015 (1).

Therefore, under Hy, we have (Z,(0.(vy); Yi), L,(h(vg); Yi)) converges to normal distri-

bution with mean [07, —%h(vk)TI(vk)h(vk)]T and covariance matrix

h(vp)"  h(vp)"Z(vx)h(vr)

By LeCam’s third lemma, we have:

Va2 (vy) — o2, (v} B {HZ () " HT}Y? 5 N(h(vy,), LN (h(vy), 1) > 0),
LR, (ve) 224 N(R(vp), 1)1 (N(ﬁ(vk), 1) > o) ,

where h(vy,) = [HZ(vy)HT] e h(vg).
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2.2 Proof of Theorem 2
Lemma 2.9. Under Assumptz’ons C1-C6, C7b, we have

sup
veV

n Z Ng Z [E(M 2 ] (Uf(v),B(vk); Yir) K, (v, — v)

= Op(log*(1 + Ng)/vn) (33)
1 ni+na 1 Ng

Sup - Z Ne Z [ét(rD)@ + ng)] (ai(v)ﬁ(vk); Yir) Kn, (v — )

veV (|2 . °

= 0,(10g*(1 + No) V) (34)
| Z 7 Z [i9=2 4 0] (02(0), Blun): g i, (0 — )

= 0,(1og*(1+ No) /v) (3)
sup| a0 (0 Y| = Oy(1) (36)
sup| (. (0 Y) = Ziev)]| = O, (log?(1 + No)/v/) (37)
op| 7,0 (0 Y) = Tose(.(0): Y| = O, (10g*(1+ No) V) (39)

Proof. We provide the proof of (36) and (38), the proof of other equations is similar and
thus omitted. We first show (38). Since jmK(a*(v); Y) can be written as the sum of

several similar terms of which one is given as,

jnl K( ( 7 Z ZE(M Uk) yzk)Kiu (Uk - U)
Z N Z (80 B.(0r); Yir) Kn, (ve — v)
1
- N Z

<3 S (02(0), B 0y Ko (15— )

\/1n_1 Z é%)(af(v% E(W)% yzk)] [B(Uk) - B, (Uk)} Ky, (v, — v)

i=1 k=1
1 &

T Blur) = Bulwn) 5 E(M i) || Ky (0 — v

1§kﬁ%g“ﬁ( k) — Bl k)”NG ; Z o) Vi) || K, (v — )

where B(v;) is between B(vy) and 3, (vg). From (48) and (49) in Section 4, it follows that

f Yo Egjg (o2(v), B(vk); yix) can be written as the sum of several empirical processes.
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We only consider the following one, other processes can be dealt with similarly.

\/Ln_l Z [a:il(yil — :EZ;B(W;))] = \/Ln_l Z zi17i1 (V)
Z xllxll

= Opyi (10g1/2<1 + Na)) + Opas (1), (log(1 + Ne)) = Opy; (log(1 + Ng))
Thus k= 300, 857 (02(0), B(u): yin) = Oy (l0g(1+ Ng). Since |B(uy) = B (vi)| =
O, v, (log(1 + Ng)/\/_) we have that

Z Ng ZE(M B(vr); ya) Kny (v5 — 0)

[ (Uk> 5*(%))}

[log(1 + Ng)]2
\/— Z Ng ZE (Uk) ylk‘)Khl( U) + OZ%V ( \/ﬁ > .

The reason that we can change O, v, to O, v is that v appears only in bounded coefficient
functions (v only involved in a, b of (48) and (49)). Other involved terms of jn k(0(v);Y)
can be similarly shown to have same result, thus we have (38).

Then, let’s focus on (36). J,, k(0.(v);Y) is also the sum of several empirical processes

and one of them is given as,

NARACHOE Z Z B.(0x); yie) Kny (v — v)

which is the sum of several terms from (40—46) in Section 4. Then, we have

ni Ng
1 R
——= 2~ 2 (k) Ky (0r = v) = (A1) + (A2) + (A3)
1 ni 1 NG 1 n1 1 NG
=—) — 2 (0 K - —— N 2 K _
N Z N, Zml(?}k) m Uk — 0) + N Zl N, ;eﬂ(vk) m (0 — v)

+2—Z N Zml v)eq (0g) K, (0 — v),

15



where

= Z nfl(v)] [Ni NZ Ko (0 - v)]
+izl S - =S ]K,H =)
Ly <v>] [i fj i (01— v>]

Vi & Ng £

+ % sup \/_ Z 4 (v Z (v

NG — o, —vl<h
LS| [ S K- v)
VAL Ry Ne =1

where the last equality comes from the Donsker property in Assumption C5. Following

Kh1 k—U)

+ Op,V(l),

the arguments in Einmahl and Mason (2000), it follows that

| log(hi))|
2 \/_ Z NG Z 2 Uk, Uk>Kh1< ’U) + Op,V NGhl

|log(h1)|
Ay = o8l
3 Op,V NGhl ’
Furthermore, since
1 1 &
N_GZ(EG(”k>”k> — Be(v,0)) K, (vp —v)| < N_GZ |Ze (vks vi) — Ee(v, v) | K,y (v — v)
h—1 k=1
Ng
< Cohi— Y Ky, (0p = v) = Op(hn)
k=1
we have
1 e
Ay = \/ni (v, v) [N—G ;Khl(vk — U)]
In 1S [log(h1))
Jy— N Ze ) - 26 ) K, - @) =
i 2 g Dotk = e 0) (o =)+ O | 4R
| log(ha)|
= /M2 (v,v) [NGZK’“ (ox =) | + Opv(yv/nih1) + Opy Noh

16



We can then write the score function corresponds to MZ twin pairs as

TM (0% (v): R)

ot +ahv) | 1 I, ) ) 1
- 2( 1 (v) — 51 [ L (1 (v) + Mip(v) — 202*(”)] [N_G ; K, (vr, — U)]

Ul*

__20hWe) [ L xhe s IS
(Uil*(v) _ 4 )2 [ . (i1 (v)mi2(v) 2 ( )] [NGZK}“( k )]

02.(v vViiio k=1
log(h
Opv (V/nihi) + Opv | ?\f(hlﬂ (39)
fell)|

Thus we have the weak convergence of Jéf\ﬁ){(ai(v); R) given Assumptions C5 and C7b.

Similar results hold for DZ twin pairs and singleton twins, (36) now follows.

Lemma 2.10. Under Assumptions C1-C6, C7b, the weighted maximum likelihood esti-

mator suppose &+ (v) satisfies

Sup 155 (v) = a2(v)]| = 0p(1).

Proof. Similar to the proof of Lemma 2.7, we first consider the uniform convergence of
weighted likelihood function. The weighted likelihood function also consists of three parts,
corresponding to MZ, DZ and singleton twin pairs. We take MZ part as an example. The
proof of DZ and singleton parts are similar and are thus omitted.

LM (o) R Z ZW v), Box); yin) Kn, (v — v)

=1

- _2(04 51_1}04 () Z NL Z [(yilkz - xﬁB(vk))Q + (Yiok — xZ;B(vk))Q} Ky, (vp — v)

-+ 2((71 )2 Z Z |: Yilk — zlﬁ ?Jk))(yz% — xz;B(vk))} Khl (Uk — U)
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Following the arguments in the proof of Lemma 2.9, we have

2 n

LU0 R) = g S [ni > () + ) [N% > Ko~ v>]

1 i=1

30) 1
+2( ()( [ anl V)12 (v ][N_sz:;Khl(vk_v)_

- 3 og(o}0) — k(o)) - > Kin(ox =)

log?(1 + No) 1 [log(h)|
O (T oo (5 )+ O |\ gy | O ),

By Assumptions C5-C6 and C7b, we have the uniform convergence of E%}((UQ(U); R)

over v € V. The rest of proof completely mirrors that of Lemma 2.7 and is thus omitted.

Lemma 2.11. Let Z(v) as the limit of E [fn,K(af(v); Y)] , then for some gaussian process
Jxk (v), we have, under Assumptions C1-C6, C7b,

(@20 Y ), L@ (00 ) =4 (Tic(0), Zic(v) (40)
and as vy, — 0,

sup sup [Rosc(0®(v), 02(v)) = 0,(L). (41)

VeV a2 (v)€€:||o? (v)—oF (v)]|<vn
REMARK. At each fixed point v € V, Jk(v) is normal with mean 0 and vari-
ance 7y g (v) rather than variance Zx(v) where 7y i (v) is the asymptotic variance of
Tni(02(v):Y) and Zy (v) is the asymptotic limit of Z, x (a2(v); Y).
Proof. (40) is a direct result of Lemma 2.9 and (39). The proof of (41) completely mirrors
the proof of Lemma 2.8. We first consider an ordinary Taylor expansion on the weighted
log-likelihood function correpondint to MZ twin pairs. The DZ and singleton part are

quite similar, and we omit the proof without explictly making the statement in the sequel.

Li(o®(v); R) = cﬁ(a?(m;fz)
+ [o%(v) [Z ZK(M B(0x); Yi) K, (v — U)]
— % [0-2( [Z Z&m Ni Uk) yzk)Khl( Uk — U)]
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where &>(v) is between o(v) and o2(v). From the explicit formulas (50-52) in Section

4 and the proof of Lemma 2.9, it follows that the difference between

— 72D (52 K _
ny Z NG’ Z (70' * Uk) yzk) hl( Vg, U)

and

< Z N, ZEW o2(v), B(vw); Yir) Kn, (v — v)

is Opv (7 log®(1 + NG)/\/H) = op(l) Combining this with Lemma 2.9, we have that for
) —

any o(v) € € such that sup,cy ||o(v) — o.(v)|| <7, — 0,

Lox(0(v); R) = Lok(02(v); B) + [Vi(o?(v) = o2(v)] Tox(0?(v);Y)  (42)

1

— 5 V(e (0) = o2 ()] " [Zusc(o2(@0): Y) + 0,0 (1)| [Vialo?(v) = 2(v)]

Similar to the proof of Lemma 2.8, but notice that the weighted score vector is now
uniformly O,(1) ((36) of Lemma 2.9), we have sup,cy [[v/n(o(v) — a.(v))]]| = O,(1).
Finally, we can take the o, /(1) term out of (42) to conclude this Lemma.

Proof of Theorem 2.

We have shown the uniform consistency and uniform convergence rate of &5 (v) in Lem-
mas 2.10 and 2.11. We are now ready to show the asymptotic distribution of related

estimators. Let’s introduce some notation as follows:

Zg () = Zic(v) ' Tk (v),
Qr(A) = A= Zk(v)) I (v)(A = Zg (v)),

AK(U) = argmin QK(A>7 Hyg = [17070]
A€[0,00) x R?

Qux(\) = M — Zug () [He T HE] ™ [ — Zug ()],
Ak (v) = argmin Q1 x (A1) = Zyx(0)1(Z1,x(v) > 0),

A1 €[0,00)
LKV Ty k(v) Zigk(v
Tre(v) = T,k (v) i) = & (V) ,()’
j2,K(U) IQl,K(U) I22,K(U)
Zi k(v -~ /)\\1K v
Ziew) = k()  Reo) = A,(>
Zy (V) A2 i (V)
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It follows from Lemma 2.11 that we have
(Tnsc(@20):Y). Lok (02(0):Y)) = (T (). Iic(-):

Similar to the proof of Theorem 1, we have

V(65 (v) — 02(v)) =4 Ax(v),

Vin(3; (0) = 02.(v)) =a A (v),

WLR,, (v) =4 AL (0) [HkTi HE] ™' Ak (v).
However, since Zx (v) = Zx(v) ' Jxk(v) is normally distributed with mean 0 and covari-
ance matrix Zp' (v)Z1 (V)5 (v), Z1x(v) = Hy Zk (v) is normally distributed with mean
0 and variance

HiIg' (v)T x (v) T (v) H.

We can simplify the distribution of &, (v) and WLR,,(v) at each location as:

1/2

(G, (v) — 02, (v) =a [HrZg (0) Tk (v) I (v)Hg ] '~ N(0,1)1(N(0,1) > 0),
HiZy' (0)T k(0T (0)HE [1 5, 1,
HicTic! (v) Hi {?ﬁ ’ §X°} |

Next, we consider the asymptotic distribution of 7 (v) and WLR,,(v) under local alter-

WLR,,(v) —q

native H, : 02(v) = o2, (v) + h(v)/y/n. Following the argument of Section 8 in Andrews

a

(2001), we have
Tn (@2 (V) + hie(v)/v/1: Y) 4 Tic ()

where h(v) = [h(v),0,0]T. Furthermore, we have
1 ajn,K

Tu(@20) + (W) VY ) = T30 ¥) + o

Hich(v) + 0,(1),

and it is easy to show that
L 8\777,,[(

\/ﬁaaf(v) éd —IK(U), Ian(O'*O}); Y) éd IK(U).

20



Then we have, under local alternative H, : 02(v) = o2, (v) + h(v)/y/n

1/2

V{62 (v) — 02, (v)} g {H T (0) i (0) T (0) HE }
x N(hi(v), 1)1 (N(ﬁK(u), 1) > o) ,

—1 —1
WLRn(U) Hp, HKIK (U)ILK( )I (U)
HyZi (v)HE

)
% N(e(v), 1)1 (N (i (0).1) 2 0)
where hy(v) = [Hi T (v) Ty (0) T (0) HE] 772 (o).

3 Proof of Theorem 3

Given u,v € (0,1), we consider w(u,v) first.
E[w(u,v)] = E[Kp,(Th — u)Kp,(To —v)] = 1.
We then consider §w0(u, v), §w1(u, v) and §w2(u, v). Their expectations are given as,

E [S\wo(u, v)} = Ya(u,v) + Xe(u, v) + Ee g(u,v)

1 *y, 0’3, %, %, 0%, 0?3, _
+§u2<K) [ o o2 0@ o T 8u2G * 61}2G s + o(hz) + O(n
E [gwl(u, v)} = Y (u,v) + Xe(u, v)
1 [0°Y, 0°%, 0*%. 82
LK a a 2 4 o(h2 -1
+2u2( ) | Ou? * ov? + 8u2 ov? }h olha) + O™,

~ 1
E |:Sw2(ua U>:| = iza(ua U) + ZC(U’ U)
[10°%, N 10%%, N 9%y, N 0%%
|2 Ju? 2 Ov? ou? 0v?

: } h3 4 o(h3) +O(n™1).
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and their variance and covariance structures are given as

Var [gwo(u, v)] _1! [(

n

aq
2@1 + 20[2 + a3)2

(6%)

V
(20r + 200 1 032 5(u, v, u,v)

Vi(u, v, u,v) +

031 Q32 2
v v, h2) + O
+ o+ 205 T on)? 3(u, v, u,v) + (201 1 203+ 0a)? 2w, v, u,v)| + o(hy) + (Nghg)’
~ 1 [ Va(u, v, u,v) 9
Var [Swl(u,v)] = { o } +o(h3) + O(Ngh2>7
~ 1 [ Va(w, v, u,v) 5 1
Var [ Sua(u,v)| = [ - } +0(3) + Ol 7),
~ ~ 1
Cov | Sp1(u,v), Swa(u,v)| = o(h3) + O( ),
Nghs
~ ~ 1 1 2
Cov _Swo(u, v), Su1(u,v)| = - l2a1 Gy ag‘/})(u,v, u,v)} + o(h3) + O(Ngh2>’
- N . 1 1 1
Cov _Swo(u, V), Swa(u, v)_ = {2@1 G aSVG(u,U, u,v)} + o(h3) + O(Nghg)’
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where Vi, V5, V3, V) are

Vi(u,v,u,v) = 4V, (u, v, u,v) + 4Vo(u, v, u,v) + 2V, g(u, v, u,v)

U, V)Xo (u, v) + 4%, (u, 0) e ¢ (u, v) + 45, (u, v)2e ¢ (u, v)

)
al

+ 450 (1, u) S (v, 0) + 45, (v, v) S (u, v)

+ 254 (1, u)Seg (v, 0) + 254(0,0) Se.0 (1, 1) + 25 (u, u)Se.g (v, v) + 25(v, 1) Se 6 (u, u)
(

e
— 452 (u,v) — 452 (u,v) — 252 ;(u, v)
3
-2
+ 6%, (u, v

Vo(u,v,u,v) + 3g(u, u) X, (v, v) + 4Ve(u, v, u, v) + 2V, ¢(u, v, u, v)
)2 (u, v) + 43, (u, v)Ee ¢ (u, v) + 43, (u, v) X ¢ (u, v)
+ 3%, (u, u) (v, v) + 34 (v, v)Ee(u, w)
+ Ba(u, ) Ee 6 (v, v) + Eo (v, 0)Be (U u) + 2 (u, u)Ee,6(v, v) + 28 (v, 0)Xe 6 (u, u)
— %Zz(u, v) — 452 (u,v) — 22§7G(u,v)
Va(u, v, u,v) = Vy(u,v,u,v) + Vo(u, v,u,v) + Ve a(u, v, u, v)
+ 3 (u, u) X (v, v) + 3 (v, 0) 2 (u, u)
+ Ba(u, u)Ee (0, v) + B (0,0)Ze 6 (u, 1) + Be(u, ) Ee (v, v) + Ee(v,0)Ee 6 (u, u)
+ 254 (u, 0)Se(u, v) — X2 (u, v) — 2 (u,v) — X2 ;(u,v)

1 1
Vi(u,v,u,v) = =V (u, v, u,v) + §Ea(u, w) 2, (v,v) + Ve(u,v,u,v) + Ve o(u, v, u, v)

2
+ 2%, (u, 0)Xc(u, v) + 28, (u, v)2e ¢ (u, v) + 2X.(u, v) 2 ¢ (u, v)
+ Yo (u, u) X (v,0) + Lo (v, 0) 2 (u, )

+ Xa(u,u)Ee g (v,0) + Zo(v,0)Ee g (u, ) + Ze(u, u)Xe g (v, v) + 3e(v,0)2e ¢ (u, u)

1
- 522(% U) - E(Qz(uv ’U) - Ei,G(“? U)
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and Vi, Vg, V7, Vg are
Vs(u, v, u,v) = Vo(u,v,u,v) + Ve(u, v, u,v) + g (u, 1) (v, v) + X (v, 0) X (u, u)
+ 2o (u, w)Ee (v, v) + Lo(v,0) e (U, u) + Ee(u, u)Xe g (v,v) + e (v,0)Ee ¢ (u, w)
— 2522 (u,v) — 252(u,v)
Ve (u, v, u,v) = %Va(u,v,u, v) + %Za(u,u)Za(v,v) + Vo(u,v,u,v)
+ o (u, w)Ee(v,0) + Xo(v,0)Ee(u, w)
500, De6(0,0) 4 5 80(0,0) 80, w) + S, 1) D60, 0) + Bev, 0)Ze w0
- %Zz(u, v) — 252 (u, v)
Va(u, v,u,v) = Vo(u, v, u,v) + Vo(u, v, u,v) + X, (u, u) (v, v) + X4 (v,0) S (u, w)
+ 2o (u, w)Xe (v, v) + Lo (v, 0) e a(u, u) + Ee(u, u)Xe g (v, v) + e (v,v)Ee ¢ (u, w)
+ 2%, (u, )X (u, v) + 28, (u, v)2e ¢ (u, v) + 2. (u, v) 2, ¢ (u, )
+ Beo(t, u) e o(v,v) — X2 (u,v) — X2 (u, v)
Vs(u, v, u,v) = %lva(u,v,u, v) + Zza(u, u)Xq(v,v) + Ve(u, v, u,v)
+ Xa(u, u) e (v,0) + Eo(v,0)Ee(u, w)
+ Xa(u, u)Ee g (v,0) + Zo(v,0)Ee g (u, u) + Ze(u, u)Xe g (v, v) + 2o (v, 0)Ee ¢ (u, w)
+ 2%, (u, 0) X (u, v) + Xo(u, v)2e ¢ (u, v) + 28 (u, v) X, ¢ (u, v)
+ Xeg(u,u)Xeg(v,0) + iZi(u, v) — B2 (u,v)
Vo(u,v,u,v) = E [a?(u)a?(v)] , Ve(u,v,u,v) = E [cf(u)cf(v)] , Vea(u,v,u,v) =E [efj’G(u)efj’G(U)] )

Assumption (C7a) indicates that we have the asymptotic distributions of 34 (u,v),

Se(u,v) and S, (u, v):
Vi Salw,v) = Salu,0) b i N(O,Walu,0,u,0)),
Vi { el v) = e, v) } =50 N0, We(u,v,.0)),
Vi { e, v) = Tealu,v) | =4 NO, Weglu, v,u,v),

where W, (u,v,u,v) = 22:1 apVi(u,v,u,v), We(u,v,u,v) = 22:1 cxVi(u,v,u,v) and

8
Wea(u,v,u,v) =, epVi(u,v,u,v) for some constants a;’s, ¢;’s and ey’s.
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4 Explicit Forms

leyl—mripﬁﬂb:yz—ﬂ?gﬁ

71 0 a b
~N ,
T2 O b a
Its log likelihood and corresponding derivative are given as
a 1

{= —m(r% + 7“%) + mrﬂé 5 log(a2 - b2)7 (43)
. a b
lg = m(hh + x919) — m(ﬂw’z + To11), (44)
- ad+v ., 2ab a
fa = m(?”l + T’2) - —<a2 — b2)2rlr2 - (I2 — 627 (45)
: ab 9 o a? + b? b
b=~ (a2 — b?)? (ri+73) + mhm * a? — b2’ (46)
. a
fﬁﬁ = —m<$11‘{ —+ $Q$g) + m(ﬂﬁﬂg + 1721'{)’ (47)
. a2+ b2 2ab
U0 = _(a2——62)2(xm + T97s) + m(mrz + Tar1), (48)
. 2ab a’+v?
gy = m(w‘l + xo7p) — m(fclra + zar1), (49)
” a(a®+30%), 5 5. 2b(3a® + b?) a® + b
Eaa = —m(’f’l 7“2) —(a2 — b2)3 r1ry + (a2 — b2)27 (50)
. a(a®>+30%) , 5 5. 2b(3a® +V?) a? 4+ b?
by, = —m(ﬁ r3) @3 T @2y (51)
. b(3a* +b%), 5 o 2a(a®+ 3b?) 2ab
gab = m(rl + TQ) — —(a2 — b2)3 mro — (CLQ—— b2)2- (52)

5 Simulations

5.1 Example 1 (continue) on Heritability

For better comparison, we rewrite Dr. Wang’s (2011) functional mixed effects model for

longitudinal family data as follows:
Yij(v) = 1(v) + i + e ()" 8+ (v) + €5 (v) (53)

for j = 1,...,m;, where v is time in Wang (2011), c;;(v) is a time-varying coefficient,

«; is a random family-specific shared environmental effect, 7;;(v) is a random subject-
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specific genetic effect, and €;;(v) is a residual measurement error. Furthermore, in Wang
(2001), she modeled 7;;(v) as n;;(v) = B(v)'b;;, where B(v) is a vector of spline basis
and b;; is the corresponding vector of subject-specific polygenic coefficients. Moreover,
let b; = (bj,..., b}, )7, it is assumed that Cov(b;, b;) = K; ® Q, where ) is the unknown
covariance matrix of the polygenic effects basis, ® denotes the Kronecker and K; is the
known kinship coefficient matrix of the i—th family. Compared with (1), model (53)
assumes that a; and § are independent of v. We directly applied model (53) to the
simulated data sets generated in the first simulation study corresponding to n = 300, c =
0.1, and >, = 0.2.

Figure 1 shows that the method in Wang’s (2011) cannot correctly estimate the her-
itability curve when the common environment effect is not constant along the tract. As

expected, for the case with the common environment effect, Wang’s (2011) method works

pretty well.

Estimated Heritability Curve (non-const environment effect)
T T T T T

T T
—— True Heritability Curve
—FSEM N
Yw L

T T
—— True Heritability Curve
J{— FSEM H
YW

S
D

N
N
AN

=

M,

Figure 1: Estimated Heritability Curve when n = 300,c¢ = 0.1, and ¥, = 0.2.

5.2 Example 2 (continue)

Figure 2 presents the Type I and II error rates along the entire tract of both LR,,(v) and
WLR,,(v) for ¥, = 2.
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n = 150, rejection rates along fiber tract without genetic effect c=0 ose n = 150, rejection rates along fiber tract when c=0.2

g fiber tract without genetic effect c=0

Figure 2: Inference Performance (X, = 2): [(a),(c)] are rejection rates (type I error) of
the two test statistics along fiber tract when ¢ = 0 for n = 150 and n = 300; [(b),(d)]
are rejection rates (power) of the two test statistics along fiber tract when ¢ = 0.2 for

n = 150 and n = 300.
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