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A Proof of Lemma 1 (the predictive system for yt)

We can write the state equation (1) as

zt = T−1MTzt−1 + Bst (A.1)

Tzt = MTzt−1 + TBst (A.2)

x∗t = Mx∗t−1 + v∗t (A.3)

where x∗t = Tzt is n× 1 and v∗t = TBst. The observables equation (2) is then

yt = CT−1Tzt−1 + Dst (A.4)

= CT−1x∗t−1 + Dst (A.5)

Let

β∗′ =
[

1 01×(n−1)

]
CT−1 (A.6)

and we can write a predictive equation for the first element of yt as

yt = β∗
′
x∗t−1 + ut (A.7)

where

ut =
[

1 01×(n−1)

]
Dst (A.8)

This representation may in principle have state variables with identical eigenvalues

(for example multiple IID states) or state variables with zero β∗ entries (states that do

not directly affect yt). To derive a minimal representation we first eliminate from x∗t those

elements with zero β∗ entries (and rewrite β∗ appropriately). Then if state variables x∗i

and x∗j correspond to identical eigenvalues µi = µj (and so have the same autoregressive

parameter in the transition equation) we combine these into a new state variable xi =

x∗i +
β∗j
β∗i

x∗j (and note that xi will also be an AR(1) with parameter µi) and we can then

rewrite the prediction equation in terms of xi with parameter βi = β∗i . We are then left
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with an r × 1 vector xt obeying

xt = Λxt−1 + vt (A.9)

where vt contains the appropiate elements of v∗t and a prediction equation

yt = β′xt−1 + ut (A.10)

where Λ then contains the distinct eigenvalues of M corresponding to the r variables in

xt (which are either original states in x∗t or combinations thereof that are relevant for yt);

β contains the matching elements from β∗, and vt those from v∗t .

Note that

r = n−# {{states that do not predict yt} ∪ {repeated eigenvalues of M}} (A.11)

which could be substantially less than n.�

B Proof of Lemma 2 (The Macroeconomist’s ARMA)

After substitution from (4) the predictive regression (3) can be written as

det (I−ΛL) yt = β′adj (I−ΛL)vt−1 + det (I−ΛL) ut (B.1)

Given diagonality of Λ, from A1, we can rewrite this as

ỹt ≡
r∏

i=1

(1− λiL) yt =
r∑

i=1

βi

∏
j 6=i

(1− λjL) Lvit +
r∏

i=1

(1− λiL) ut ≡
r∑

i=0

γ ′iL
iwt (B.2)

wherein ỹt is then an MA(r), wt =
(
ut v

′
t

)′
and the final equality implicitly defines a set

of vectors γi (β, λ), for i = 0, . . . , r each of which is (r + 1)× 1.

Let acfi be the ith order autocorrelation of ỹt implied by the predictive system. Write

Ω = E (wtw
′
t) and we have straightforwardly

acfi (β, λ,Ω) =

∑r−i
j=0 γ ′jΩγj+i∑r
j=0 γ ′jΩγj

(B.3)

To obtain explicitly the coefficients of the MA(r) representation write the right hand

side of (B.2) as an MA(r) process
∑r

i=0 γ ′iL
iwt =

∏r
i=1 (1− θiL) εt = θ (L) εt for some
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white noise process εt and rth order lag polynomial θ (L).

The autocorrelations of θ (L) εt are derived as follows. Define a set of parameters ci

by
r∏

i=1

(1− θiL) = 1 + c1L + c2L
2 + ... + crL

r (B.4)

Then the ith order autocorrelation of θ (L) εt is given by (Hamilton, 1994, p.51)

ci + ci+1c1 + ci+2c2 + .... + crcr−i

1 + c2
1 + c2

2 + ... + c2
r

, i = 1, . . . , r (B.5)

Equating these to the ith order autocorrelations of ỹt we obtain a system of moment

equations

ci + ci+1c1 + ci+2c2 + .... + crcr−i

1 + c2
1 + c2

2 + ... + c2
r

= acfi (β, λ,Ω) , i = 1, . . . , r (B.6)

which can be solved for ci, i = 1, . . . , r, and hence for θi. The solutions are chosen such

that |θi| < 1, ∀i.�

C Proof of Proposition 1 (Bounds for the Predictive

R2)

We start by establishing the importance of two of the set of possible ARMA representa-

tions.

Lemma 4 In the set of all possible nonfundamental ARMA(r, r) representations consis-

tent with (5) in which θi > 0, ∀i, and θi is replaced with θ−1
i for at least some i, the

moving average polynomial θN (L) in (10) in which θi is replaced with θ−1
i for all i, has

innovations ηt with the minimum variance, with

σ2
η = σ2

ε

q∏
i=1

θ2
i (C.1)

Proof. Equating (5) to (10) the non-fundamental and fundamental innovations are

related by

εt =
r∏

i=1

(
1− θ−1

i L

1− θiL

)
ηt =

∞∑
j=0

cjηt−j (C.2)
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for some square summable cj. Therefore, since ηt is itself IID,

σ2
ε = σ2

η

∞∑
j=0

c2
j (C.3)

Now define

c(L) =
∞∑

j=0

cjL
j =

r∏
i=1

(
1− θ−1

i L

1− θiL

)
(C.4)

so

c(1) =
r∏

i=1

(
1− θ−1

i

1− θi

)
=

r∏
i=1

(
−1

θi

)
(C.5)

and

c(1)2 =
r∏

i=1

1

θ2
i

=

(
∞∑

j=0

cj

)2

=
∞∑

j=0

c2
j +

∑
k 6=j

cjck (C.6)

Since εt is IID we have

E(εtεt+k) = 0 ∀k > 0

implying
∞∑

j=0

cjcj+k = 0 ∀k > 0 (C.7)

Hence we have ∑
j 6=k

cjck = 2
∞∑

k=1

∞∑
j=0

cjcj+k = 0 (C.8)

thus
∞∑

j=0

c2
j = c(1)2 =

r∏
i=1

1

θ2
i

(C.9)

Thus using (C.9) and (C.3) we have (C.1).

To show that this is the nonfundamental representation with the minimum innovation

variance, consider the full set of nonfundamental ARMA(r, r) representations, in which,

for each representation k, k = 1, . . . , 2r−1, there is some ordering such that, θi is replaced

with θ−1
i , i = 1, . . . , s (k) , for s ≤ r. For any such representation, with innovations ηk,t,

we have

σ2
η,k = σ2

ε

s(k)∏
i=1

θ2
i (C.10)

This is minimised for s (k) = r, which is only the case for the single representation in

which θi is replaced with θ−1
i for all i, and thus this will give the minimum variance non-
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fundamental representation. Note that it also follows that the fundamental representation

itself has the maximal innovation variance amongst all representations.�

We now define the R2 of the (maximal innovation variance) fundamental and this

(minimal innovation variance) non-fundamental representations as follows

R2
F = R2

F (λ, θ) = 1− σ2
ε

σ2
y

(C.11)

and

R2
N = R2

N (λ, θ) = 1−
σ2

η

σ2
y

(C.12)

and note that immediately from the above we have

R2
N (λ, θ) = 1−

(
1−R2

F (λ, θ)
) r∏

i=1

θ2
i (C.13)

Also for the predictive model yt = β′xt−1 + ut we have

R2 =
σ2

ŷ

σ2
ŷ + σ2

u

(C.14)

where

σ2
ŷ = β′E (xtx

′
t) β (C.15)

We now show that we can recast the macroeconomist’s ARMA and its minimal vari-

ance nonfundamental counterpart as special cases of the predictive system in Lemma

1.

For these two ARMA representations

r∏
i=1

(1− λiL) yt =
r∏

i=1

(1− θiL) εt (C.16)

r∏
i=1

(1− λiL) yt =
r∏

i=1

(
1− θ−1

i L
)
ηt (C.17)
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we can define r × 1 coefficient vectors βF =
(
βF,1, . . . , βF,r

)′
and βN =

(
βN,1, . . . , βN,r

)′
that satisfy respectively

1 +
r∑

i=1

βF,iL

1− λiL
=

∏r
i=1 (1− θiL)∏r
i=1 (1− λiL)

(C.18)

1 +
r∑

i=1

βN,iL

1− λiL
=

∏r
i=1

(
1− θ−1

i L
)∏r

i=1 (1− λiL)
(C.19)

We can then define two r × 1 vectors of “univariate predictors” (which we label as

fundamental (F) and nonfundamental (N)) by

xF
t = ΛxF

t−1 + 1εt (C.20)

xN
t = ΛxN

t−1 + 1ηt (C.21)

where by construction we can now represent the (fundamental and nonfundamental) AR-

MAs for yt as predictive regressions

yt = β′FxF
t−1 + εt (C.22)

yt = β′NxN
t−1 + ηt (C.23)

The predictive regressions in (C.22) and (C.23), together with the processes for the

two univariate predictor vectors in (C.20) and (C.21), are both special cases of the general

predictive system of Lemma 1, but with rank 1 covariance matrices, ΩF = σ2
ε11′, and

ΩN = σ2
η11

′, thus proving Corollary 4.48 We shall show below that the properties of

the two special cases provide us with important information about all predictive systems

consistent with the history of yt. We note that, since these predictive regressions are

merely rewrites of their respective ARMA representations, the R2 of these predictive

regressions must match those of the underlying ARMAs (each of which can be expressed

as a function of the ARMA coefficients). That is:

1. The fundamental predictive regression yt = β′FxF
t−1 + εt has R2 = R2

F (λ, θ).

2. The nonfundamental predictive regression yt = β′NxN
t−1 + ηt has R2 = R2

N (λ, θ).

48Note that we could also write (C.22) as yt = β′x̂t−1 + εt; where x̂t = E
(
xt| {yi}t

i=−∞

)
is the

optimal estimate of the predictor vector given the single observable yt and the state estimates update
by x̂t = Λx̂t−1 + kεt, where k is a vector of steady-state Kalman gain coefficients (using the Kalman
gain definition as in Harvey, 1989). The implied reduced form process for yt must be identical to the
fundamental ARMA representation (Hamilton, 1994) hence we have βF,i = βiki.
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We now proceed by proving two results that lead straightforwardly to the Proposition

itself.

Lemma 5 In the population regression

yt = ν ′xxt−1 + ν ′FxF
t−1 + ξt (C.24)

where the true process for yt is as in (3), and xF
t is the vector of fundamental univariate

predictors defined in (C.20), all elements of the coefficient vector νF are zero.

Proof. The result will follow automatically if we can show that the xF
it−1 are all

orthogonal to ut ≡ yt−β′xt−1. Equalising (5) and (3), and substituting from (4), we have

(noting that p = q = r)

yt =

∏r
i=1(1− θiL)∏r
i=1(1− λiL)

εt =
β1v1t−1

1− λ1L
+

β2v2t−1

1− λ2L
+ . . . +

βrvrt−1

1− λrL
+ ut (C.25)

So we may write, using (C.20),

xF
jt−1 =

εt−1

1− λjL

=

(
L

1− λjL

) ∏r
i=1(1− λiL)∏r
i=1(1− θiL)

×(
β1Lv1t−1

1− λ1L
+

β2Lv2t−1

1− λ2L
+ . . . +

βrLvrt−1

1− λrL
+ ut

)
(C.26)

Given the assumption that ut and the vit are jointly IID, ut will indeed be orthogonal to

xF
jt−1, for all j, since the expression on the right-hand side involves only terms dated t− 1

and earlier, thus proving the Lemma.

Lemma 6 In the population regression

yt = φ′xxt−1 + φ′NxN
t−1 + ζt (C.27)

where xN
t is the vector of nonfundamental univariate predictors defined in (C.21), all

elements of the coefficient vector φx are zero.

Proof. The result will again follow automatically if we can show that the xit−1 are

all orthogonal to ηt ≡ yt − β′NxN
t−1. Equating (10) and (3), and substituting from (4), we
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have

yt =

∏r
i=1(1− θ−1

i L)∏r
i=1(1− λiL)

ηt = β1

v1t−1

1− λ1L
+ β2

v2t−1

1− λ2L
+ . . . + βr

vrt−1

1− λrL
+ ut (C.28)

Using
1

1− θ−1
i L

=
−θiF

1− θiF

where F is the forward shift operator, F = L−1, we can write

ηt = F r

r∏
i=1

(−θi)

(∏r
i=1(1− λiL)∏r
i=1(1− θiF )

)(
β1

v1t−1

1− λ1L
+ β2

v2t−1

1− λ2L
+ . . . + βr

vrt−1

1− λrL
+ ut

)
(C.29)

Now

F r

∏r
i=1(1− λiL)∏r
i=1(1− θiF )

vkt−1

(1− λkL)
= F r

(∏
i6=k(1− λiL)∏r
i=1(1− θiF )

)
vkt−1

= vkt + c1vkt+1 + c2vkt+2 + . . . (C.30)

for some c1, c2, ... since the highest order term in L in the numerator of the bracketed

expression is of order r − 1, and

F r

(∏r
i=1(1− λiL)∏r
i=1(1− θiF )

)
ut = ut + b1ut+1 + b2ut+2 + . . . (C.31)

for some b1, b2, . . ., since the highest order term in L in the numerator of the bracketed

expression is r. Hence ηt can be expressed as a weighted average of current and forward

values of ut and vit and will thus be orthogonal to xit−1 = vit−1

1−λiL
for all i, by the assumed

joint IID properties of ut and the vit, thus proving the Lemma.

Now let R2
1 = 1 − σ2

ξ/σ
2
y be the predictive R2 of the regression (C.24) analysed in

Lemma 5. Since the predictive regressions in terms of xt in (3) and in terms of xF
t in

(C.22) are both nested within (C.24) we must have R2
1 ≥ R2 and R2

1 ≥ R2
F . But Lemma

5 implies that, given νF = 0 we must have R2
1 = R2, hence R2 ≥ R2

F .

By a similar argument, let R2
2 = 1 − σ2

ζ/σ
2
y be the predictive R2 of the predictive

regression (C.27) analysed in Lemma 6. Since the predictive regressions in terms of xt

in (3) and in terms of xN
t in (C.23) are both nested in (C.27) we must have R2

2 ≥ R2

and R2
2 ≥ R2

N . But Lemma 6 implies that, given φx = 0 we must have R2
2 = R2

N , hence

R2
N ≥ R2. From above we have that R2

F and R2
N give the minimum and maximum values

of R2 from all possible (fundamental and non-fundamental) ARMA representations for
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yt. Thus writing R2
F = R2

min (λ, θ) and R2
N = R2

max (λ, θ) we have

R2
min (λ, θ) ≤ R2 ≤ R2

max (λ, θ) (C.32)

as given in the Proposition.

Moreover these inequalities will be strict unless the predictor vector xt matches either

the fundamental predictor xF
t or the nonfundamental predictor xN

t in which case the

innovations to the predictor variable match those in the relevant ARMA representation.

In the A,B,C,D system this occurs only if rank

[
B

D

]
= 1.

This completes the proof of the Proposition.

D Proof of Corollary 1 (R2 bounds for a minimal

ARMA)

The macroeconomist’s ARMA in (5) is ARMA(r, r) . The minimal ARMA(p, q) represen-

tation will only be of lower order if we have either cancellation of some MA and AR roots,

or an MA or AR coefficient precisely equal to zero. Thus we have

q = r −#{θi = 0} −#{θi = λi 6= 0} (D.1)

p = r −#{λi = 0} −#{θi = λi 6= 0} (D.2)

thus unless A,B,C,D satisfy exact restrictions such that there are zero coefficients or

cancellation in the macroeconomist’s ARMA we have r = p = q. Furthermore for q > 0

we have R2
F > 0 and R2

N < 1. hence the bounds lie strictly within [0, 1] .�

E Proof of Corollary 2 (R2 Bounds for observable

predictors with efficient filtering)

The proof follows as a direct consequence of efficient filtering, given some observation

equation for the observables, qt: the vector of state estimates, x̂t, will have the same

autoregressive form as the process in (4) for the true predictor vector (Hansen and Sargent,

2013, Chapter 8), with innovations, v̂t, that, given efficient filtering, are jointly IID with

the innovations to the associated predictive regression yt = β′x̂t−1 + ût, which takes the

same form as (3). Given that the resulting predictive system is of the same form, the
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proof of Proposition 1 must also apply.�

F Proof of Corollary 3 (Time series properties of the

predictions)

Using (B.1), restated here

det (I−ΛL) yt = β′adj (I−ΛL)vt−1 + det (I−ΛL) ut (F.1)

implies

det (I−ΛL) ŷt = β′adj (I−ΛL)vt−1 (F.2)

where the right-hand side of (F.2) is an MA(r − 1), since each element of adj(I−ΛL) is

a polynomial of order ≤ r − 1. Hence ŷt is an ARMA(r, r − 1).�

G Proof of Lemma 3 (Beveridge-Nelson decomposi-

tion)

The UC model of equation (16) is, setting the deterministic component g = 0 as this does

not affect this proof

Yt = ct + τ t (G.1)

ct = µct−1 + sc,t (G.2)

τ t = τ t−1 + sτ,t (G.3)

Assume sτ,t ∼ (0, σ2
τ ), sc,t ∼ (0, σ2

c) and assume σcτ = Cov (sc,t, sτ,t) = 0, i.e., the

innovations to the random walk and to the cyclical components are orthogonal.

We have

yt = 4Yt = 4ct +4τ t (G.4)

= (µ− 1) ct−1 + sc,t + sτ,t (G.5)
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Now we can write ct−1 = (1− µL)−1 sc,t−1

yt = (µ− 1) (1− µL)−1 sc,t−1 + sc,t + sτ,t (G.6)

yt = µyt−1 + (µ− 1) sc,t−1 + sc,t − µsc,t−1 + sτ,t − µsτ,t−1

yt = µyt−1 + sc,t − sc,t−1 + sτ,t − µsτ,t−1

or, since µ = λ,

yt = λyt−1 + sc,t − sc,t−1 + sτ,t − λsτ,t−1 (G.7)

which is an ARMA(1,1), as the second order autocorrelation of sc,t− sc,t−1 + sτ,t−λsτ,t−1

is zero.

The first order autocorrelation of εt − θεt−1, cf. (14), is − θ
1+θ2 so this has to match

the first order autocorrelation of sc,t − sc,t−1 + sτ,t − λsτ,t−1. This implies

− θ

1 + θ2 =
Cov (sc,t − sc,t−1 + sτ,t − λsτ,t−1, sc,t−1 − sc,t−2 + sτ,t−1 − λsτ,t−2)

V ar (sc,t − sc,t−1 + sτ,t − λsτ,t−1)
(G.8)

=
−σ2

c − λσ2
τ

2σ2
c +

(
1 + λ2

)
σ2

τ

(G.9)

So

− θ

1 + θ2 =
−σ2

c − λσ2
τ

2σ2
c +

(
1 + λ2

)
σ2

τ

(G.10)

=
−σ2

c + λσ2
c − λ (σ2

τ + σ2
c)

2σ2
c −

(
1 + λ2

)
σ2

c +
(
1 + λ2

)
(σ2

τ + σ2
c)

(G.11)

and

− θ

1 + θ2 =
−λ− (1− λ) q

1 + λ2 +
(
1− λ2

)
q

(G.12)

where q = σ2
c/ (σ2

τ + σ2
c).

Thus
θ

1 + θ2 =
λ + (1− λ) q

1 + λ2 +
(
1− λ2

)
q
. (G.13)

Now consider the curves G (θ) = θ
1+θ2 and F (λ) = λ+(1−λ)q

1+λ2+(1−λ2)q
for −1 ≤ θ, λ ≤ 1.

Note that G is monotonic with G (−1) = −1
2

and G (1) = 1
2
. We show that F (λ) lies
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everywhere above G (λ)

F (λ)−G (λ) =
λ + (1− λ) q

1 + λ2 +
(
1− λ2

)
q
− λ

1 + λ2 (G.14)

=

(
1 + λ2

)
(λ + (1− λ) q)− λ

(
1 + λ2 +

(
1− λ2

)
q
)(

1 + λ2 +
(
1− λ2

)
q
) (

1 + λ2
) (G.15)

Now the denominator is positive so we need only consider the numerator

(
1 + λ2

)
(λ + (1− λ) q)− λ

(
1 + λ2 +

(
1− λ2

)
q
)

= λ + (1− λ) q (G.16)

+ λ3 + λ2 (1− λ) q

− λ− λ3 − λ
(
1− λ2

)
q

=
(
(1− λ) + λ2 (1− λ)− λ

(
1− λ2

))
q

=
(
1− 2λ + λ2

)
q

= (1− λ)2 q > 0

So the curve F lies above the curve G and hence for any λ the solution to

G (θ) = F (λ) (G.17)

will have θ > λ (see Figure G.1).�

1

Figure G.1: Proof of Lemma 3 (Beveridge-Nelson decomposition)
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H Proof of Proposition 2 (Bounds for ρuv)

We can re-write (15), the moment condition for the ARMA(1,1), as

−θ

1 + θ
=

−λ + βρuvs(
1− λ2

)
+ β2s2 − 2λβρuvs

(H.1)

where ρuv = corr ((ut, vt) and s = σu

σv
, and we note that the predictive equation here has

R2 =
V ar (βxt−1)

V ar (yt)
=

β2σ2
v

1−λ2

β2σ2
v

1−λ2 + σ2
u

=
β2s2(

1− λ2
)

+ β2s2

Without loss of generality, assume β > 0, implying

βs =

√(
1− λ2

)
R2

1−R2
. (H.2)

Subsituting into (H.1) we can (with some tedious but straightforward manipulations)

invert to obtain an expression for ρuv in terms of λ, θ and R2, giving

ρuv(θ, λ, R2) = −

 (θ − λ) (1− θλ) +
(1−λ2)R2

1−R2 θ(
1− λ2 + (θ − λ)2)√(1−λ2)R2

1−R2

 (H.3)

This equation describes the predictive space Pλ,θ : a necessary relation between pa-

rameters that describe the predictive system that generates the ARMA(1,1), and has

powerful consequences. For example if for a given triplet (θ, λ, R2) the solved value for

ρuv lies outside the unit interval then there can be no possible predictive model described

by that particular combination of (θ, λ, R2).

We have already seen in Corollary 4 that the maximum and minimum values of R2

correspond to |ρuv| = 1. Values of R2 between these limits will correspond to different

values of ρuv. If the limits are both attained at ρuv = +1 (or at ρuv = −1) then there

must be a turning point in the function ρuv (θ, λ, R2) as R2 covers that range.

The first order condition yields a possible stationary point where:

∂ρuv (θ, λ, R2)

∂R2
= 0 ⇒ R2 =

(θ − λ) (1− θλ)

θ − λ + θ (1− θλ)
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which after substituting into (H.3) yields a solution as long as

(θ − λ) θ > 0

which is satisfied for θ > λ, given λ > 0. Given the definition above the second-order

condition confirms a maximum for ρuv, hence a minimum for |ρuv| at the value

ρmin =
2
√

(θ − λ) (1− θλ) θ(
1− λ2 + (θ − λ)2) > 0.�

I Proof of Proposition 3 (the time-varying ARMA(1,1))

Restating the predictive model (23) and (24) from the proposition,

yt = βtxt−1 + ut (I.1)

xt = µtxt−1 + vt (I.2)

it can be characterised by the sequence
{
βt, µt, σ

2
v,t, σ

2
u,t, σuv,t

}
.

Assumption: βt 6= 0

This assumption is the time-varying equivalent of that in the time-invariant case in

Lemma 1. (In this context we are simply ruling out a measure zero case in any model

that generates βt as a random sequence from a continuous error distribution.)

This then implies a time varying ARMA(1,1) since

yt − µt−1

βt

βt−1

yt−1 = βtxt−1 − µt−1

βt

βt−1

βt−1xt−2 + ut − µt−1

βt

βt−1

ut−1

= βt

(
xt−1 − µt−1xt−2

)
+ ut − µt−1

βt

βt−1

ut−1 (I.3)

thus

yt − λtyt−1 = βtvt−1 + ut − λtut−1 (I.4)

wherein

λt = µt−1

βt

βt−1

(I.5)

and the right-hand side is a time-varying MA(1) process (its 2nd order autocorrelation is

zero).

As in the time-invariant case we define two time-varying ARMA(1,1) representations
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yt − λtyt−1 = εt − θtεt−1 (I.6)

yt − λtyt−1 = ηt − γtηt−1 (I.7)

Note that the equality of the AR parameter of the predictor to the AR parameter

in the ARMA representation that occurs in the time-invariant case no longer holds; but

there is still a direct recursive mapping in terms of µt, βt and βt−1 (with equality as a

special case if the βt are constant).

The representation (I.6) is fundamental if we can derive εt as a convergent sum of

current and lagged values of yt:

εt = ỹt +
∞∑
i=1

(
i−1∏
j=0

θt−j

)
ỹt−i (I.8)

where ỹt = yt − λtyt−1, thus for fundamentalness we require

lim
i→∞

i∏
j=0

θt−j = 0 ∀t (I.9)

In the time-invariant case, with θt = θ ∀t, a necessary and sufficient condition is

|θ| < 1. For the time-varying case a sufficient condition is |θt| < 1 for all t, however

this is not a necessary condition (indeed we find in our application that the fundamental

representation can have |θt| > 1 for some t).

As in the time-invariant case, for the nonfundamental representation (I.7) we have

ηt = −
∞∑
i=1

(
i∏

j=1

γ−1
t+j

)
ỹt+i (I.10)

which gives a convergent sum in terms of current and future values of yt if

lim
i→∞

i∏
j=1

γ−1
t+j = 0 ∀t (I.11)

Note also that we now no longer have γt = θ−1
t , except in the time-invariant case.

Conditional upon the sequences
{
βt, µt, σ

2
v,t, σ

2
u,t, σuv,t

}T

t=0
the predictive model implies
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the sequences

W0t : = var
(
ỹt|
{
βt, µt, σ

2
v,t, σ

2
u,t, σuv,t

}T

t=0

)
(I.12)

W1t : = cov
(
ỹt, ỹt−1|

{
βt, µt, σ

2
v,t, σ

2
u,t, σuv,t

}T

t=0

)
(I.13)

where as before ỹt = yt − λtyt−1. These autocovariances, conditional upon the parameter

sequence, are given by

W0t = β2
t σ

2
v,t−1 + σ2

u,t +

(
µt−1

βt

βt−1

)2

σ2
u,t−1 − 2µt−1

β2
t

βt−1

σuv,t−1 (I.14)

W1t = βtσuv,t−1 − µt−1

βt

βt−1

σ2
u,t−1 (I.15)

We now have a recursive moment matching problem: for a given sequence {λt} (from

(I.5)) we require sequences
{
θt, σ

2
ε,t

}
such that the time-varying moments implied by the

fundamental ARMA representation, conditional upon
{
θt, σ

2
ε,t, λt

}
, match those of the

structural model given in (I.14) and (I.15), i.e.

cov
(
ỹt, ỹt−1|

{
θt, σ

2
ε,t, λt

}T

t=0

)
= −θtσ

2
ε,t−1 = W1t (I.16)

var
(
ỹt|
{
θt, σ

2
ε,t, λt

}T

t=0

)
= σ2

ε,t + θ2
t σ

2
ε,t−1 = W0t (I.17)

and analogously for the sequences
{
γt, σ

2
η,t

}
from the nonfundamental representation:

cov
(
ỹt, ỹt−1|

{
γt, σ

2
η,t, λt

}T

t=0

)
= −γtσ

2
η,t−1 = W1t (I.18)

var
(
ỹt|
{
γt, σ

2
η,t, λt

}T

t=0

)
= σ2

η,t + γ2
t σ

2
η,t−1 = W0t. (I.19)

Re-writing (I.17) and (I.19) as

σ2
ε,t = W0t − θ2

t σ
2
ε,t−1 (I.20)

σ2
η,t = W0t − γ2

t σ
2
η,t−1 (I.21)

then by recursive substitution, for given θt, the solution for σ2
ε,t becomes invariant to

starting values as t →∞ if

lim
t→∞

t∏
j=0

θ2
t−j = 0 (I.22)

which is clearly satisfied by (I.9), the property of fundamentalness.
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To solve, substituting from (I.16) into (I.17) we have

σ2
ε,t = W0t −

W 2
1t

σ2
ε,t−1

(I.23)

which we can solve recursively forward, and then use (I.16) to find θt. By inspection in

(I.20) the impact of the initial value σ2
ε,0 tends to zero as t → +∞, thus we have a unique

fundamental representation in population.

In the time-invariant case, once we know θ we know γ = θ−1, but here it is not so

simple. Substituting for γt using (I.18) the equivalent recursion for the nonfundamental

representation is

σ2
η,t = W0t −

W 2
1t

σ2
η,t−1

(I.24)

However if we solve forward, by inspection of (I.21), the impact of the initial value

diverges. But, if we rewrite as the backward recursion

σ2
η,t−1 =

W 2
1t(

W0t − σ2
η,t

) (I.25)

we can then solve for γt using (I.18). As t → −∞, the impact of starting values tends to

zero, thus the representation is again unique in population.

The proof of the inequality then follows analogously to the proof of Proposition 1,

since this only requires serial independence, it does not require that wt is drawn from

a time-invariant distribution. To see this, from (I.8) εt is a combination of current and

lagged ỹt, whereas from (I.10) ηt is a combination of strictly future values of ỹt. Thus ηt

must have predictive power for all possible predictors (except itself), but not vice versa.

�

I.1 Application of Proposition 3 to the unobserved components

model

It is straightforward to show that the unobserved components model of Section 6.3 can

also be put into the form of the predictive model in the proposition.
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Restating (33), the model for inflation Yt,

Yt = τ t + ct (I.1)

τ t = τ t−1 + sτ,t (I.2)

ct = µtct−1 + sc,t (I.3)

Then we can restate as the predictive model in (I.1) and (I.2), by defining

yt = ∆Yt (I.4)

xt = ct (I.5)

βt = µt − 1 (I.6)

ut = sc,t + sτ,t (I.7)

vt = sc,t (I.8)

where our assumption in the proof above that βt 6= 0 clearly translates to the assumption

µt 6= 1. We can then apply the formulae in the proof of the proposition.

J Proof of Proposition 4 (Escaping the ARMA(1,1)

bounds)

To prove the proposition, first define the limiting variance ratio (Cochrane, 1988) of the

predicted series, yt, as Vy = σ2
P /σ2

y where σ2
P = cy (1)2 σ2

ε is the variance of the Beveridge-

Nelson (1981) permanent component (see Lemma 3). It is straightforward to show (see

Robertson and Wright, 2009, Appendix C1) that in the case of an ARMA(1,1)

Vy < 1 ⇐⇒ θ > λ > 0 ⇐⇒ c (1) < 1 (J.1)

We now exploit a necessary linkage between Vy and three summary features of any mul-

tivariate system, proved in Mitchell, Robertson and Wright (2017), Proposition 2, repro-

duced below as Proposition 5 for convenience:

Proposition 5 Let Vy be the limit of the variance ratio (Cochrane,1988) of the predicted

process yt, defined by

Vy =
σ2

P

σ2
Y

= 1 + 2
∞∑
i

corr (yt, yt−i) (J.2)
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The parameters Ψ = (A,B,C,D) of the predictive system must satisfy

g (Ψ) = Vy (J.3)

where G
(
R2, Vŷ, ρBN

)
= 1 + R2 (Vŷ − 1) + 2ρBN

√
VŷR2 (1−R2)

where R2 (Ψ) is the predictive R2 from (3); ρBN (Ψ) = corr (ut, δ
′vt), with δ′= β′ [I − Λ]−1,

is the correlation between innovations to 1-step ahead and long-run (Beveridge-Nelson)

forecasts; and Vŷ (Ψ) is the variance ratio of the predicted value ŷt ≡ β′xt−1, calculated

by replacing yt with ŷt in (J.2).

Proof. See Mitchell, Robertson and Wright (2017).

To show that Proposition 5 leads directly to Proposition 4, if we totally differentiate

(J.3)

0 = G1dρBN + G2dR2 + G3dVŷ (J.4)

this gives
dVŷ

dR2
= −G2

G3

− G1

G3

dρBN

dR2
(J.5)

We evaluate this expression at the calculated upper bound for an ARMA(1,1), where

R2
max (λ, θ) = (1−λθ)2

1−λ2+(θ−λ)2
(using (18)); Vŷ (1, 1) = 1+λ

1−λ
and ρBN = −1 since, exploiting

(20) the reparameterisation of the nonfundamental ARMA(1,1) in Section 3.4, at the

upper bound ρBN = corr
(
εt,
(

λ−θ−1

1−λ

)
εt

)
= −1, given 0 ≤ λ < θ ≤ 1 as assumed in the

proposition.

We now establish that at this point G1 > 0, G2 > 0 and G3 > 0, implying
dVŷ

dR2 < 0 as

stated in the proposition.

Since

G1 = 2
√

VŷR2 (1−R2) > 0 (J.6)

for all possible values of Vŷ and R2, we thus need to establish the signs of G2 and G3 at

this point, using

G2 = Vŷ − 1 +
ρBNVŷ (1− 2R2)√

VŷR2 (1−R2)
(J.7)

G3 = R2 +
ρBNR2 (1−R2)√

VŷR2 (1−R2)
(J.8)

If we first evaluate (J.8) at ρ = −1 then

G3

(
−1, R2, Vŷ

)
> 0 ⇐⇒

√
Vŷ >

√
1−R2

R2
⇐⇒ Vŷ + 1 >

1

R2
(J.9)
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Now Vŷ + 1 = 1+λ
1−λ

+ 1 = 2
1−λ

hence

G3

(
−1, R2, Vŷ (1, 1)

)
> 0 ⇐⇒ R2 >

1− λ

2
(J.10)

But given the assumptions in the proposition we have

R2
max (λ, θ) ≥ 1− λ

2
(J.11)

hence

G3

(
−1, R2

max (λ, θ) , Vŷ (1, 1)
)

> 0 (J.12)

as required.

Now evaluate G2 at ρBN = −1

G2

(
−1, R2, Vŷ

)
= (Vŷ − 1)−

(
VŷR

2
(
1−R2

))−1/2
Vŷ

(
1− 2R2

)
=

(Vŷ − 1)
√

R2 (1−R2)−
√

Vŷ (1− 2R2)√
R2 (1−R2)

=
H (Vŷ, R

2)√
R2 (1−R2)

(J.13)

Now given Vŷ (1, 1) > 1 the numerator H (Vŷ, R
2) is certainly positive if (1− 2R2

max (λ, θ)) <

0 i.e. if R2
max (λ, θ) > 1

2
.

Thus we only need to show that H (Vŷ, R
2) is positive for R2

max (λ, θ) < 1
2
. Given that

R2
max (λ, θ) always satisfies the inequality (J.11), if we evaluate H (Vŷ, R

2) at R2 = 1−λ
2

and

Vŷ = 1+λ
1−λ

we have

H

(
Vŷ (1, 1) ,

1− λ

2

)
=

(
1 + λ

1− λ
− 1

)√
1− λ

2

(
1− 1− λ

2

)
−
√

1 + λ

1− λ

(
1− 2

1− λ

2

)

=
2λ

1− λ

√(
1− λ

2

)(
1 + λ

2

)
− λ

√
1 + λ

1− λ
= 0 (J.14)

and since

H1 =
1

2

(Vŷ − 1) (1− 2R2)√
R2 (1−R2)

+ 2
√

Vŷ > 0 (J.15)

we must have

R2
max (λ, θ) <

1

2
⇒ H

(
Vŷ (1, 1) , R2

max (λ, θ)
)

> 0 (J.16)

Hence

G2

(
−1, R2

max (λ, θ) , Vŷ (1, 1)
)

> 0 (J.17)
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as required.

Hence at R2 = R2
max (λ, θ) ,

dVŷ

dR2 < 0 so higher values of R2 require lower values of Vŷ.

�

K Time series properties of the inflation predictions

from the Smets and Wouters (2007) DSGE model

To illustrate the contrast between the restrictions implied by Proposition 4 and the time

series properties of inflation predictions in a benchmark macroeconomic forecasting model,

we examine the DSGE model of Smets-Wouters (2007). Using their own Dynare code, we

generate 100 artificial samples of quarterly data for the 16 state variables and 7 observables

in the Smets-Wouters model, using posterior modes of all parameter estimates as given

in their paper, and generate one-step-ahead predictions of changes in inflation from the

simulated data using the appropriate line of (2). Since we do not wish the results of this

exercise to be contaminated by small sample bias we set T = 1, 000, in an attempt to get

a reasonably good estimate of the true implied population properties.

Table K1 summarises the results.

Table K1: Time Series Properties of Simulated Inflation Predictions, ŷt ≡ ∆π̂t,

in the Smets-Wouters (2007) model at various forecast horizons

First Order Sample Variance Ratio (bias-corrected)

Autocorrelation 5 years 10 years 15 years 20 years

Mean 0.49 3.81 3.97 4.05 4.15

Median 0.49 3.81 3.89 3.92 3.98

Minimum 0.42 2.77 1.80 1.47 1.16

The first column of Table K1 shows the first-order autocorrelation coefficient of the

simulated predictions; the remaining columns show estimates of Vŷ using sample variance

ratios (using the small sample correction proposed by Cochrane, 1988) at a range of finite

horizons.49 Table K1 makes it clear that the Smets-Wouters model generates predictions

with strong positive persistence - as would be expected given that predicted changes in

inflation in the model are driven by strongly persistent processes in the real economy.

49Note that for the the general case, for yt Vy =
(
1−R2

min

)
c (1)2, hence c (1) < 1 implies Vy < 1, and

analogously for Vŷ. For the ARMA(1,1) case the reverse also applies.
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As a benchmark for comparison, in the ARMA(1,1) case Vŷ = 1+λ
1−λ

⇒ λ =
Vŷ−1

Vŷ+1
, thus a

median value of Vŷ ≈ 4 would arise from an AR(1) predictor with λ = 0.6, thus a value of

Vŷ well above the value implied by the CKP representation in recent decades, and shown

in Panel B of Figure L.1 for US CPI inflation and in Figure M.11 for US GDP deflator

inflation (strictly speaking the relevant comparator for the Smets-Wouters model). As

such the Smets-Wouters model is even further from generating IID predictions, consistent

with the SWC representation, since this would imply Vŷ = 1.

Thus, using Proposition 4, if the Smets-Wouters model were the true DGP it would

generate the “wrong kind of predictions” to have an R2 exceeding the the calculated upper

bound derived for recent year from a single predictor model.

L CPI inflation in 8 OECD countries

This appendix complements the results for the US, in Section 6 of the main paper, by

both analysing the univariate properties of inflation in a further seven OECD countries

(Canada, France, Germany, Greece, Italy, Japan and the UK) and by making inference

about both the potential predictive performance and nature of the true multivariate mod-

els that generated the data.

The quarterly headline CPI inflation data are downloaded from FRED (the underlying

data are from the OECD’s MEI database) over the sample 1961Q1 to 2017Q1. With the

exception of the US the published CPI series are not seasonally adjusted; but in most

countries there is significant evidence of quarterly seasonality. For all countries except

the US we therefore seasonally adjust the annualised quarterly inflation series, defined as

Yt = 400 log (CPIt/CPIt−1), using X12.50

To ensure this online appendix and its discussion of the eight OECD countries is self-

contained, and to facilitate cross-country comparisons, we include the US results, also

discussed in Section 6. Thus, Figure L.1 reproduces Figure 1 in the main paper.

Figures L.1 to L.8 summarise our estimation results and the properties of the derived

ARMA representations.

50As implemented in EViews 9.5. In Appendix M (Figures M.9-M.10) we show that when we apply
X12 to the unadjusted CPI inflation series for the US (which publishes both adjusted and unadjusted
series) and compare the results with the adjusted series they are extremely similar. We also report results
(Figures M.11-M.12) for the US using GDP deflator inflation (as analysed by Stock and Watson (2007)),
and show that the results are qualitatively similar. However, while the R2 bounds (in Panel E of Figure
M.11) still narrow in recent data they do not do so to the same extent as for CPI inflation (Panel E
of Figure L.1), implying that there is more scope to forecast changes in GDP deflator inflation with a
multivariate model than CPI inflation.
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Figure L.1: US. Panel A plots posterior median estimates of the permanent component,
τ t, of inflation from the SWC and CKP models alongside CPI inflation. Panel B plots
posterior median estimates of θt, λt and µt from the SWC and CKP models (where
λt = µt = 0 for SWC). Panels C and D plot posterior median of estimates of στ,t and
σc,t from the SWC and CKP models. Panels E and F plot posterior median estimates of
R2

min,t and R2
max,t from the SWC and CKP models as defined in Proposition 3.
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Figure L.2: Canada. See note to Figure L.1
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Figure L.3: France. See note to Figure L.1
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Figure L.4: Germany. See note to Figure L.1

60



-10

0

10

20

30

40

50

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

TAU CKP TAU SWC Y = CPI Inflation

A

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

theta SWC theta CKP lambda CKP mu CKP

B

0

2

4

6

8

10

12

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

sigTAU SWC sigC SWC

C

0

2

4

6

8

10

12

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

sigTAU CKP sigC CKP

D

0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2min SWC R2max SWC

E

0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2min CKP R2max CKP

F

 

Figure L.5: Greece. See note to Figure L.1
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Figure L.6: Italy. See note to Figure L.1
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Figure L.7: Japan. See note to Figure L.1
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Figure L.8: UK. See note to Figure L.1
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Panels A of Figures L.1 to L.8 plot, for each country, annualised quarterly inflation,

Yt, alongside the estimated permanent components, τ t, in the SWC and CKP represen-

tations.51 The CKP estimates of τ t are seen, from Panel A, to be much smoother than

those from SWC, including during the periods of higher inflation through the 1970s and

early 1980s. This is explained by Panels C and D; these Panels reveal that during this

period shocks to inflation in the US - and Canada, France, Greece, Italy and to a lesser

degree the UK too - are largely interpreted as permanent in SWC (hence at these times

the path for τ t is very similar to that for inflation itself), but allocated to the transitory

component in CKP. However, in more recent (post 1990s) data, the SWC and CKP esti-

mates of τ t (and hence the implied cycles, ct) are more similar, with the SWC estimates of

the variance of the permanent component falling and then stabilising at similar values to

CKP. Transitory shocks have tended to dominate in more recent data. A striking contrast

is found in Germany (Figure L.4) and Japan (Figure L.7) where transitory shocks play

a greater role in both the SWC and CKP representations. While both SWC and CKP

estimates of trend inflation in Germany stay within a very narrow range (as might be

expected, given the putative stabilising role of the Bundesbank for most of the sample),

the two estimates also do not converge in later data, with the SWC trend still affected

quite strongly by current inflation.52

Comparison of Panels E and F, of Figures L.1 to L.8, shows that, as we would expect

(see Section 5) both SWC and CKP generate similar estimates of R2
min,t (for yt = ∆Yt).

53

In the US, Canada, France and the UK (and to a lesser degree in Japan) estimates of R2
min,t

fell to near-zero during the high inflation of the mid-1970s but then rose thereafter. In

Germany there is a less pronounced dip in estimates of R2
min,t; but then inflation did not,

unlike in the other countries, rise to double-digit levels in the 1970s. In Italy estimates

of R2
min,t have remained consistently low throughout the sample period; while in Greece

51Panels C and D of Figures M.1-M.8 also show that results are robust, in all countries except Greece
and Italy, to consideration of a more diffuse prior for στ in CKP. Such a diffuse prior is in line with the
similarly diffuse prior employed in SWC. In Greece and Italy the relatively tight priors used by CKP
imply time-varying ARMA parameters that make us sceptical of the results. In both countries, the
implied paths for θ̂t (in Panel B of Figures L.5 and L.6) are very close to unity for most of the sample.
This appears to suggest over-differencing, reflecting very low (time-invariant) estimates of στ . However,
we think it unlikely that inflation in these countries was so close to being stationary. Furthermore, in
the case of Greece, a more diffuse prior results in more plausible time paths for τ̂ t (see Panel C of Figure
M.5).

52Note that this feature also differs strikingly from that in Chan (2017) who finds that the transi-
tory component dominates German inflation. However the difference here appears to reflect his use of
unadjusted CPI data: the seasonal component derived from X12 is very volatile.

53Chan et al. (2013)’s out-of-sample predictability tests (their Table 5) also show that differences
between the CKP and Stock-Watson’s UC model are relatively modest, certainly for 1-step ahead forecasts
which are our focus in this paper.
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they have bounced around more, but were also low in the inflationary 1970s.

These movements in R2
min,t, as discussed in the main paper, can be understood and

decomposed by inspecting the estimates for θ̂t and λ̂t. For the SWC representations

these falls in the estimated value of R2
min,t (Panel E) to near-zero in the mid-1970s are,

of necessity, matched by a fall in θ̂t, (Panel B). For the CKP representations these falls

in R2
min,t during this inflationary period are driven by both µ̂t, the estimated AR(1)

parameter of the transitory component of inflation, and λ̂t rising to peaks (Panel B).

These peaks are around 0.8 to 0.9 in the US, Canada, France, Greece and the UK. In

Germany, and in particular in Japan, these peaks are lower; while in Italy, the average

values of µ̂t and λ̂t are higher although these estimates still peak at around 0.9 in the late

1970s (see Figure L.6, Panel B).

Panels E and F of Figures L.1 to L.8 also show that while the time paths of estimates

of R2
min,t are similar for both SWC and CKP, their estimates of R2

max,t can differ very

markedly, particularly in the period when inflation was high and R2
min,t was low.54 For

all eight countries we observe only a small gap between R2
min,t and R2

max,t from the CPK

model, especially during the inflationary 1970s; in contrast the SWC model suggests much

larger gaps, even during the 1970s. In the SWC model estimates of R2
max,t are highest and

close to unity during the 1970s in the US, Canada, France, Greece and the UK; in Japan

there is a lower peak at around 0.9. These estimates of R2
max,t then declined as inflation

fell from the 1980s onwards. However, for Germany (and Italy) the estimates of R2
max,t

from SWC exhibit less variation: estimates are consistently higher, averaging around 0.7

(and 0.95), across the 1961Q1 to 2017Q1 sample. Comparison of Panels E and F, across

all eight countries, shows that the estimated paths for R2
max,t from CKP are much lower

than those implied by SWC. Again, as discussed in the main paper, we can understand

and decompose these movements in R2
max,t by relating them to the observed movements

of θ̂t and λ̂t.

M Supplementary empirical results: CPI inflation in

8 OECD countries

Here we present additional Figures referred to both in the main body of the paper and in

Appendix L to provide background information on the estimation results.

54In Panels E and F of Figures M.1-M.8 we show, by country, 16.5%, 50% and 83.5% quantiles of the
posterior distribution of (R2

max,t − R2
min,t) for SWC and CKP. For all countries, the posterior intervals

are much narrower for CKP than SWC.
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Figure M.1: US. Panels A and B plot posterior median estimates of R2
min,t and R2

max,t

from Proposition 3 and the time-invariant approximations from Section 3 for the SWC
and CKP models, respectively. Panel C plots posterior median estimates of the permanent
component, τ t, of inflation from the CKP model both where the priors are as in CKP
(calibrated for US inflation data) and when

√
E(σ2

τ ) 6= 0.141, as in CKP, but the priors
are chosen so that this is 100 times bigger. This “diffuse” prior imposes less smoothness
on the permanent component. Panel D plots posterior median estimates for στ,t and σc,t

for both variants of the CKP model. Panels E and F plot 16.5%, 50% and 83.5% quantiles
of the posterior distributions of (R2

max,t − R2
min,t) for the SWC and CKP models (using

CKP’s prior). Panels G and H plot 16.5%, 50% and 83.5% quantiles of the posterior
distributions of θt for the SWC and CKP models (using CKP’s prior).
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Figure M.2: Canada. See notes to Figure M.1
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Figure M.3: France. See note to Figure M.1
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Figure M.4: Germany. See note to Figure M.1

70



0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2min SWC R2min SWC time invariant

R2max SWC R2max SWC time invariant

A

0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2min CKP R2min CKP time invariant

R2max CKP R2max CKP time invariant

B

-10

0

10

20

30

40

50

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

TAU CKP TAU CKP diffuse prior Y = CPI Inflation

C

0

2

4

6

8

10

12

14

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

sigTAU CKP sigC CKP

sigTAU CKP dif f use prior sigC CKP dif f use prior

DD

0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2max-R2min SWC

E

0.0

0.2

0.4

0.6

0.8

1.0

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

R2max-R2min CKP

F

0.0

0.4

0.8

1.2

1.6

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

theta SWC

G

0.0

0.4

0.8

1.2

1.6

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 2015

theta CKP

H

 

Figure M.5: Greece. See note to Figure M.1
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Figure M.6: Italy. See note to Figure M.1
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Figure M.7: Japan. See note to Figure M.1
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Figure M.8: UK. See note to Figure M.1
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Figure M.9: US: using X12 to seasonally adjust CPI inflation. See note to Figure L.1
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Figure M.10: US: using X12 to seasonally adjust CPI inflation (cont.). See note to Figure
M.1
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Figure M.11: US: GDP deflator inflation. See note to Figure L.1
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Figure M.12: US: GDP deflator inflation (cont.). See notes to Figure M.1
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