Complex Number Addition and the
Complex (Argand) Plane, Activity 4

m Learning Goals:

I) Learn about the algebraic and geometric meanings of complex conjugation and
the modulus of a complex number, as well as the relationships between these.

2) Gain algebraic and geometric understandings of the triangle inequality.

3) Use the Mathematica functions Dot (usually represented as a period infix
operator “.”), ReflectionMatrix, Manipulate, Locator, Abs.

m Prerequisites:
I) Familiarity with vectors, linear algebra, and linear transformations
2) Comfort with geometric interpretations of absolute value

3) Mathematica content from Activities |, 2, and 3 of this module

m [ntroduction:

A fundamental part of geometry is the study of transformations that preserve various properties of
geometric objects. An important class of transformations includes the so-called isometries, which
preserve distances along lines and curves. Isometries include the familiar “rigid” translations and
rotations, but they also include the slightly less familiar reflections. In the plane, reflections include
transformations that map every point to its “mirror image” across some line. They also include transfor-
mations that map every point to its “mirror image” across from some point, although such a transforma-
tion can be though of more simply as a 180° rotation about that point. In the context of complex analy-
sis, given a point z € C, its reflection across the horizontal (real) axis is given a special symbol Z and is
called the complex conugate of z. It plays a special role in complex analysis, and we will see that role
get played out in this activity culminating in a proof of the fact that the shortest distance between two
points is along the straight line segment between them.
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m Content;

The geometric concept of a reflection is useful in many mathematical contexts, including tests for
symmetries in graphs of functions (which, in turn, can lead to simpler calculations in important applied
math subjects like Fourier series) and applications of group theory to atoms, molecules, and solids (and
to the sub-field of crystallography). In two-dimensional rectangular coordinate geometry, the simplest
types of reflections are to reflect across the horizontal axis, to reflect across the vertical axis, and to
reflect through the origin — though this last one is a different type than the first two. The reflection that
maps z=a+ bi to its additive inverse -z=-a-bi (denoted by z— -z ora+ bi- —a- bi) is a reflection
through the origin. The reflection that maps z across the real (horizontal) axis is denoted by z+ Z or
a+bia+bi=a-biandis called complex conjugation —zZ=a- bi is called the complex conju-
gate of z=a+ bi. The reflection that maps z across the imaginary (vertical) axis would take a + bi and
map it to —a + b4, which can be viewed as the composite transformation z+ zZ+~ -z. Evidently this is the
same thing as the composition in the reverse order z+— -z =z, implying that -z==z. In Mathematica,
complex conjugation can be done for particular complex numbers with the function and we
can numerically confirm this last equality by entering the code in the following cell.

Manipulate[{a+b * I, -Conjugate[a+b *I], Conjugate[-(a+b=x*xI)]},
{{a, 2}, -4, 4}, {{b, 3}, -4, 4}, LabelStyle - Large]

The parallelogram law is not the only reason it is useful to view complex numbers as vectors, it can also
be useful if we think of reflections and other kinds of linear transformations in terms of ideas from linear

e . . a
algebra. To be more specific, if we view the complex number z=a + bi as a column vector z = ( b )

a

then reflections can be viewed as linear transformations that map z = ( b

) to a vector of the form

a
b

a

Rz=R( .

), where R is some 2 x 2 matrix and R( ) represents the 2x2 matrix R times the 2x1 column

vector ( a
b

For example, reflection across the horizontal axis (i.e., complex conjugation) can be viewed as

a ay_(1 0\(a . o 10 ,
(b ) (s ( b ) = ( 0 -1 )(b ) so that the reflection matrix in this situation is R = ( 0 -1 ) And reflection

), with the multiplication defined in the usual way.

across the vertical axis can be viewed as ( Z ) > ( —ba ) = ( _01 ? ) ( Z ) so that the reflection matrix in

this situation is R = ( _01 (1) ) Reflection through the origin can be viewed as
a -a -1 0 a u . L L (-1 0
(b ) - ( b ) _( 0 -1 )(b ) so that the “reflection matrix” in this situation is R = ( 0 -1 ) (actually,

this is more commonly called a “rotation matrix” — see the introduction). The Mathematica function
can confirm the first two results. In general, the syntax ReflectionMatrix[{a,b}] pro-

duces a 2 x 2 matrix representing a reflection across a line perpendicular to the vector ( Z) (i.e., parallel

to the vector ( _ba )) though, as with above, this seems to work best for particular (real)

numbers a and b. is an output-formatting command that allows us to see the output as an
actual 2 x 2 matrix (rather than a list of lists). Because reflection through the origin is not reflection
across any particular line, we cannot use to confirm our answer for that case (though
the matrix used above for that case is still correct). We can, however, confirm our answers for the last
two cases above. Reflection across the horizontal axis is reflection across a line perpendicular to the
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0
vector 1)
MatrixForm[ReflectionMatrix[{0, 1}]]

Reflection across the vertical axis is reflection across a line perpendicular to the vector ( g) ) (here,

when the application of a function in Mathematica is an “afterthought”.)

ReflectionMatrix[{1, 0}] // MatrixForm

As already mentioned, reflection through the origin is really a rotation by 180° = rrradians about the

RotationMatrix[n] // MatrixForm
RotationMatrix[180 Degree] // MatrixForm

. : : : . a 1 0\/a a -
We can algebraically implement complex conjugation as a mapping z = ( b ) ] ( 0 -1 )( b ) = ( ) =Z

“wn

using the Dot infix operator (period) “.” to do the matrix multiplication:

MatrixForm[ ( (])' _01 . ( : ) ]

Technically speaking the output of the code ( (1) 01 ) . ( g )(without MatrixForm) is not the list {a, -b}
whose entries are the numbers a and -b. Rather, it is the list {{a}, {-b}} whose entries are the lists {a}

and {-b} — which is Mathematica’'s way of representing the column matrix ( a

—b) in terms of lists.

1 0 a
(6 21)-(5)
This might seem like a minor problem, but we do run into trouble with it if we want to plot points with

{{a}, {-b}} of its “inner lists”, leaving just the numbers a and -b behind for the entries of the new list.

Flatten[((l) _01).(;)]

Alternatively, if we input the column matrix (Z
(period) “.” in the same kind of way as before, Mathematica still does the correct matrix/vector multiplica-
tion, but returns the (unformatted) answer as the list {a, -b}.

) as the actual list {a, b} and use the infix Dot operator

(5 %) 10w
Discussion I: Describe other kinds of geometric transformations/motions of
the plane — that map a given geometric object to another object that is either
congruent to or similar to the original object. You can describe them verbally
but you should also be more mathematically precise in your descriptions. For
example, you could describe what happens to the complex numbers (vectors)

z=1=(g)andz=i=(]

0 I ) under these transformations. Is this last description
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sufficient to completely describe how the transformation acts on every
point/vector? Is the transformation linear (does it have an associated matrix and
map the zero vector to itself)? Is it affine (another type of transformation that
has an associated matrix as part of its description)? Does it preserve distances?
You may want to consider experimenting with the Mathematica function
RotationMatrix to help you give a fuller description.

Response |:

(You can type your thoughts and answers here formatted in text mode)

Grader/Instructor Response |:

(The grader/instructor will give you feedback about your work here)

We can now use the Mathematica knowledge gained from the previous activities in this educational
module on complex addition and the complex plane to produce a locator-enabled animation showing
the geometric effect of conjugation on points in the complex plane (previously we called such a thing
“cursor-enabled”, but from now on we will call it “locator-enabled”). Study the code below, especially in
cise further below. Note that the infix star operator * multiplies each element of a list by the same
number (we’ve used this before).
10 ) .
o -1/’
Manipulate [Show[Graphics[{Thick, Red, Arrow[{{O, O}, z}], Blue, Arrow[{{O, O}, R.2}],
Text[Style["z", Red, Large, Italic], 1.2 % z],
Text [Style["i" , Blue, Large, Italic] , 1.2 %xR. z] }] ,
ListPlot[{z, R.z}, PlotStyle » {Black, PointSize[.02]}],
Axes - True, AxesStyle -» Large, TicksStyle - Black,
PlotRange » 5, AspectRatio » Automatic, AxesLabel -
{Text [Style["real", Large, Italic]], Text[Style["imaginary", Large, Italic]]},
ImageSize - Large] , {{z, {1, 2}}, Locator}]

R=

If we want, we can even get fancy and include another animation parameter, call it A, that allows us to
actually visualize the reflection of z to Z as A varies from 0 to 1. This takes some creativity to construct.
you have the desire to understand it. We will have occasion to create similar animations in future
modules, so it is worth your time to study. Either way, you can enjoy the dynamic output that occurs
when you open up the A-slider and play the animation.
R = ((]5 _01 ); Manipulate[
Show|[Graphics [{Thick, Red, Arrow[{{0, 0}, z}], If[A < .95, Dashing[.01], Dashing[1]],
Blue, Arrow[{{0, 0}, (1-A) *z+A*xR.2z}], Text[Style["2z", Red, Large, Italic],
1.2%x2z], Text [Style["?" , Blue, Large, Italic] ’
If[A< .95, 10" (6) *xR.z, 1.2% ((1-2) xz+A*R.2)1]}],
ListPlot[{z, (1-A) *z+A*R.z}, PlotStyle » {Black, PointSize[.02]}],
Axes - True, AxesStyle - Large, TicksStyle - Black,
PlotRange » 5, AspectRatio » Automatic, AxesLabel -
{Text [Style["real", Large, Italic]], Text[Style["imaginary", Large, Italic]]},
ImageSize -» Large] , {{z, {1, 2}}, Locator}, {A, 0, 1}, LabelStyle » Large]

Mathematica Exercise I: Make a locator-enabled animation showing the
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geometric effect of the mapping that sends z to its reflection =z = —Z with
respect to the imaginary (vertical) axis. Label the points/vectors with z and —-Z.
As an optional part to this exercise, include an animation parameter that allows
you to visualize the reflection as the parameter varies from 0 to |.

Mathematica Work |:

(Enter your code under this cell when Mathematica is in “Input mode” — make sure a horizontal
line is showing before you start typing)

Grader/Instructor Mathematica Assessment |:

(The grader/instructor will give you feedback about your work here)

Why is does the reflection across the real axis z+ Z play a more important role in complex analysis that
reflection across the imaginary axis z+ =z =-z? Evidently the first transformation must be more impor-
tant since it gets its “own symbol” whereas the second transformation doesn’t. Perhaps the most
fundamental reason is algebraic: when z and Z are multiplied, the result is a non-negative real number
— moreover, it's a special non-negative real number, the square of the distance from the point z to the
origin O (alternatively, the square of the length of z as a vector). It’s true that z + Z is always real as well,
which is often useful to realize.

If we assume, as has already been mentioned, that we multiply complex numbers as if they are linear
polynomials in the indeterminate i, replacing i with -1, we get

2
zZ=(a+bi) (a—bi)=32—abi+abi—b2172=a2+b2=(\/ a’+b? ) . Since the absolute value of a real

number measures its distance to the origin, it make sense to use the symbol | z| to represent the
distance between the point z and the origin in the complex plane — in other words,

|z| = |la+bi| =4/ a® + b? by the Pythagorean Theorem. Hence, zZ= | z|2. Don’t ever forget this
last equation! It's a basic fact that many students forget about, but it ends up being more useful than
you might imagine — we will make use of it below. A couple more useful facts you will want to make
sure you remember are z1 + Z = Z1 + Zz and Z4 Zz = Z1 Z2, and you should take the time to verify these.
The quantity | z|, which we could call the absolute value of the complex number z, is more commonly
called the modulus of z— not to be confused with the modulo operation from number theory. Since
Mathematica reserves \Vod for the modulo operation from number theory, group theory, and ring theory,
it uses Abs for the operation of finding the modulus of a complex number.

Abs[11+7 I]
Sqrt[11°2+772]

It is worth noting here that the double equal sign == can be thought of as an infix operator for the Equal

Equal[Abs[11+7 I], Sqrt[11°2+7"2]]

Abs[11+7 I] == Sqrt[11°2+7"2]

Sqrt[11°2+7°2] = 11+7

Since, when drawn in the standard position of the parallelogram rule, the complex numbers z4, z,, and
Z1+z» (as vectors) can be thought of as sides of a triangle, the moduli |z1|, |z2|, and |z4 + z2|
represent the lengths of the sides of that triangle.

Discussion 2: Suppose you are given two arbitrary complex numbers z| and z;
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and their sum z,| + z, visualized in the way just described in the cell above. s
there a relationship between the moduli |z, |, |z2], and |z| +z; | that is true
no matter what z| and z, are?! This relationship could be an equation, an
inequality, or a set of inequalities. It also could involve some arithmetic
operation(s). Draw pictures to help you form your hypothesis and then visually
explain why it’s true.

Response 2:

(You can type your thoughts and answers here formatted in text mode)

Grader/Instructor Response 2:

(The grader/instructor will give you feedback about your work here)

Since the shortest distance between any two points in a plane is the length of the straight line between
them, the length of any side of a triangle will be less than or equal to the sum of the lengths of the other
two sides, with equality only occurring when the triangle is “degenerate” — when it’s really just a line
segment because the three points all lie on the same line. Since the complex numbers (vectors) z4, z»,
and z; + z can be thought of as sides of a triangle, it follows that we can write |z1+z2| £ |z1] + | Z2].
This inequality is aptly called the triangle inequality, and it is a very useful tool in complex analysis, both
for estimation in various kinds of calculations and for proofs of theorems. Equality holds if and only if
Zp =0 or zy =cz, for some ceR. For the mathematical analyst, the triangle inequality is like the Ameri-
can Express Card — they don’t leave home without it — and they hope to use it well in order to avoid
being called an infidel.

Are there symbolic ways of proving the triangle inequality? It's relatively easy if the z's are actually real

. x ifx=0 .
numbers. Since | x| = ¥ ifx<0 for xeR, we can write — | x1| <x1< |xq| and - | x2| <x2 =< | x2| for
all x4, xo e R. Adding these inequalities leads to —(|x1| + [X1|)==|X1] = | X2| SX1+X2 < | X1 | + | X2],

which means that | xq +x2| < |xq] + | x2|for all x4, xo eR.

Now consider the complex case. It's definitely trickier. It's one of those proofs where you just have to
keep pushing forward; doing various calculations and thinking carefully about what they mean. Sud-
denly, if you are persistent, the necessary flash of insight may finally hit you. This is a situation where it
is handy to use the relations |z|%=zZ and Z; + Z; = Z; + Z; mentioned above. Use the first of these on
the quantity | z; + z» | 2 to get, assuming that multiplication of complex number satisfies the distributive
property, the equation |z1 + 22 |? = (21 + 22) (z1 + 22)=(Z1+22) (Z1+Z2) = ZH Z1 + Z1 Z2+ 22 Z1 + 22 22
=z11%2+ | 22|12+ 21 22+ 20 Z1. Evidently the expression z4 z; + z, Z1 is a real number since the various
moduli in the last equation are real numbers (in fact, z, Z:ﬁ) . If we can show that

Z1Z2+222Z1<2 |z1| | z2| we will be done since this fact will imply that

1211?24+ | 2212+ 21 Z2+ 2221 S |211%+2 |Z1] |Z2] + | 221%=(]Z1| + | 22| )? and we can take positive
(real) square roots of both sides of the inequality |z1 + 22 |2 < (|z1] + | 22| )? to finish the proof.

We can gain more insight by letting zy =a+ biand z; =c+ di to get
Z1Zx+z2Z1=(a+bi)(c-di)+(c+di)(a-bi)
=(ac+bd)+(-ad+bc)i+(ac+bd)+(-bc+ad)i=2(ac+bd)=2Re(z4zz) — actually, we could
have derived this from the fact that z, Z:ﬁ without using the a, b, ¢, and d. Since Re(z)< |z | and
|Z| = |z| forany ze C and since |z1z2| = |z1]| | z2| for any z4, z € C (think about these statements),
it follows that z1 z; + 22, Z1 =2 Re(z122) <2 | z1Z2| =2 | 21| | z2|. We are done. This proves
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|ZzZ1+2Z2| = |Z9] + | 22]- Q.E.D.

Mathematica Exercise 2: Make a locator-enabled animation showing the
geometric meaning of the triangle inequality for various values of z| and z;. Feel
free to use your creativity to make this any way you want.

Mathematica Work 2:

(Enter your code under this cell when Mathematica is in “Input mode” — make sure a horizontal
line is showing before you start typing)

Grader/Instructor Mathematica Assessment 2:

(The grader/instructor will give you feedback about your work here)

Since we know the difference of two complex numbers z4 — z, can be visualized as a vector starting at
the tip of z; and ending at the tip of z{, when z4 and z, are based at the same spot, we can also write
what the triangle inequality means in this situation (enter the code below to remind yourself of the
picture). One way it can be taken to mean is that |z -z2| < |z1| + | z2|. This inequality can also be
thought about in a purely algebraic way using the form of the triangle inequality above as:

|zZ1-22] = |Z1+(-22)| £ |z1| + |-Z2]| = |Z1]| + | Z2|. The quantity | z; — z2| can be interpreted as the
distance between z1 and z; (as points). Hence, the distance between any two complex numbers,
viewed as points, is less than or equal to the sum of their distances to the origin (the sum of the lengths
of the complex numbers as vectors).

Manipulate[
Show[Graphics[{Thick, Red, Arrow[{{0, 0}, z1}], LightRed, Arrow[{-22, z1 -z2}],
Blue, Arrow[{{0, 0}, z2}], Arrow[{zl - 22, z1}], LightBlue,
Arrow[{{0, O}, -22}], Green, Arrow|[{z2, z1}], Arrow[{{O0, O}, z1 -22}]}],
Graphics[{Text[Style["z>", Blue, Large, Italic], .5 *z2],
Text [Style["z2", Blue, Large, Italic], .52z2+ (z21-22)],
Text [Style["-z,", LightBlue, Large, Italic], -.5*2z2],
Text[Style["z:", Red, Large], .5*2z1], Text[Style["z1", LightRed, Large, Italic],
.5%21-22], Text[Style["z1-22", Green, Large, Italic], .5* (z1+22)],
Text[Style["z;-2z,", Green, Large, Italic], .5* (z1-22)]}],
Axes - True, AxesLabel » {Text[Style["real", Large, Italic]],
Text [Style["imaginary", Large, Italic]]}, TicksStyle - Large,
PlotRange -» {{-8.1, 8.1}, {-8.1, 8.1}}, ImageSize - Large],
{{=z1, {1, 3}}, Locator}, {{z2, {2, 2}}, Locator},
LabelStyle -» Large]

Alternative ways of viewing the triangle inequality in this situation that are sometimes useful are:
|z1] = 1(z1-22)+Z2| S |Z1-2Z2| + | 22| @nd | 22| = |[(Z2-Zz1)+Z1| S |Z1-2Z2| + |21 ].

m Conclusion:

This ends the last activity of the learning module on complex addition and the complex plane. Hopefully
you have gained insight into the natural geometric nature of complex numbers and the way that basic
geometric facts can be expressed using complex numbers. These points of view and facts are fundamen
tal to understanding complex analysis. Make sure they stay in your brain for the long haul by continu-
ally reminding yourself of them as you work more deeply into complex analysis.



