Complex Number Addition and the
Complex (Argand) Plane, Activity 3

m Learning Goals:

I) Review mathematical and Mathematica content of the two preceding activities
in order to solidify understanding and skill.

(“dynamic”) output that further solidifies understanding and skill.

3) Gain understanding about the algebraic and geometric meanings of complex
number subtraction.

m Prerequisites:

I) Familiarity with vectors: in physics, linear algebra, multivariable calculus,
and/or differential equations

2) Comfort with abstract algebra, though not necessarily at the level of a course
in abstract algebra

3) Mathematica content from Activities | and 2

m [ntroduction:

To have a deep understanding of even a simple function, like the squaring function w=f(z) = 2, it is
good, but not sufficient, to just be familiar with its formula and how to use it to compute values. Under-
standing its “behavior” by the nature of its graph (when z is real), its mapping properties (when z is
complex), and its dynamic properties under iteration — including properties that may be unexpected —
is essential to gain more complete knowledge. Likewise, static pictures that illustrate mathematical
concepts online and in books are great, but dynamic and interactive pictures, created on computers, are

ica to solidify what we have learned about the geometry of complex numbers and their sums in Activi-
ties 1 and 2 of this learning module and to gain new knowledge about the geometry of complex number
subtraction. The fact that subtraction is defined in terms of addition is the algebraic key that unlocks the
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geometric knowledge.

m Content;

Recall from Activity 2 that the geometric meaning of the formula for the sum of two complex numbers,
(@a+bi)+(c+di)=(a+c)+(b+d)i, is the same as that for the sum of the two-dimensional vectors

v =(a, by and w={(c, d). In fact, we can think of the complex numbers as actually being vectors and use
the parallelogram law to add them. The following code generates a picture to illustrate this. You should
review Activity 2 to understand how this code works.

Show[Graphics[{Thick, Red, Arrow[{{0, 0}, {1, 3}}]1, Arrow[{{2, 2}, {3, 5}}], Blue,
Arrow[{{O0, O}, {2, 2}}], Arrow[{{1, 3}, {3, 5}}], Black, Arrow[{{O, O}, {3, 5}}]}],
Graphics[Text[Style["v", Blue, Large], {1.3, 1}1],
Graphics|[{Text[Style["v", Blue, Large], {1.6, 4}],
Text[Style["w", Red, Large], {.4, 2}], Text[Style["w", Red, Large], {2.7, 3.2}],
Rotate[Text[Style["v+w", Large], {1.3, 2.5}], 60 Degree]}],
Axes - True, PlotRange -» {{-.1, 5.1}, {-.1, 5.1}}]

Discussion I: Review the meaning of the parallelogram law, then describe its
meaning in your own words without looking at other written sources.

Response |:

(You can type your thoughts and answers here formatted in text mode)

Grader/Instructor Response |:

(The grader/instructor will give you feedback about your work here)

One of our goals here in Activity 3 is to learn how to use Mathematica’s key dynamic interactivity com-
mand, , to make slider-enabled animations that illustrate the parallelogram rule. First, we
illustrate the use of to make an interactive plot of the family of functions f,(x) = sin(w x).
Note that the function is embedded within the , as the function’s first input
(specifically, Plot[Sin[w*x],{x,-277,27},PlotRange—{-1,1},PlotStyle»{Thick,Cyan},AxesLabel-»
{“x”,”y”}] is the first input of below). The parameter w is called the angular frequency of the
sinusoidal function, and it also serves as our animation parameter. The list {w, 1, 5} is the second (and
last) input for in this case, and it causes the value of w to start at 1 and increase to 5 before
starting over again when the animation is played. For a sampling of values of w between 1 and 5, we
get pictures of the graphs of the equations y =f,,(x) = sin(w x) that are stitched together to form an
animation as w increases.
Manipulate[Plot[Sin[w*x], {x, -2 7w, 2}, PlotRange » {-1, 1},

PlotStyle -» {Thick, Cyan}, AxesLabel -» {"x", "y"}], {w, 1, 5}]

As another example to illustrate the power and flexibility of , here is a short bit of code that
will create a dynamic version of Pascal’'s Triangle. Note here that computes the value of the
Binomial coefficient ( Z ) = m creates the array of values, while and are used

to format the output in the traditional way that Pascal’s Triangle is displayed, though the alignment is
poor near the left and right edges as the triangle increases in size. The use of the last 1 in the list
{m,0,15,1} is what forces the value of m to increment up by 1 each time to remain at integer values as
the animation proceeds.
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Manipulate[Column[Table[Binomial[n, k], {n, O, m}, {k, O, n}], Center], {m, O, 15, 1}]

Now we use in conjunction with and to create an interactive output that
illustrates the parallelogram law as the complex numbers change. In the code below, there are four
animation parameters for > a, b, ¢, and d; representing the real and imaginary parts of the
complex numbers a+ biand c+di. Take note of the effects of the options and

on the output.

Manipulate]|

Graphics[{Thick, Red, Arrow[{{0, 0}, {a, b}}], Arrow[{{c, d}, {a+c, b+d}}],
Blue, Arrow[{{O0, O}, {c, d}}], Arrow[{{a, b}, {a+c, b+d}}],
Black, Arrow[{{0, 0}, {a+c, b+d}}]}, Axes » True, AxesLabel -
{Text[Style["real", Large, Italic]], Text[Style["imaginary", Large, Italic]]},

TicksStyle » Large, PlotRange -» {{-8.1, 8.1}, {-8.1, 8.1}}, ImageSize - Large],
{{a, 1}, -4, 4}, {{b, 3}, -4, 4}, {{c, 2}, -4, 4},
{{d4, 2}, -4, 4}, LabelStyle -» Large]

If we are careful, we can now use , , and to add textual labels to these complex
numbers (vectors) that move appropriately as the numbers themselves move. We will use z; and z; as
the labels for these complex numbers (vectors). Make sure you take the time to think about how the
locations of the labels (as rectangular coordinates) within the commands (as, for example,
.5{c,d}+{a,b}) depend on the values of a, b, ¢, and d. Note that the syntax near the end of the cell (such
as the {{b,3},-4,4}) gives the “starting values” of a, b, ¢, and d as 1, 3, 2, and 2, respectively; and note
that this syntax forces the animation parameters to vary over the range from -4 to 4.

Manipulate[
Show[Graphics[{Thick, Red, Arrow[{{0, 0}, {a, b}}], Arrow[{{c, d}, {a+c, b+d}}],
Blue, Arrow[{{O0, O}, {c, d}}], Arrow[{{a, b}, {a+c, b+d}}],
Black, Arrow[{{0, 0}, {a+c, b+d}}]}],
Graphics[{Text[Style["z,", Blue, Large], .5 {c, d}],
Text[Style["z>", Blue, Large], .5 {c, d} + {a, b}], Text[Style["z:", Red, Large],
.5% {a, b}], Text[Style["2z:1", Red, Large], .5 {a, b} + {c, d}],
Text[Style["z:+22", Large], .5 {a+c, b+d}]}], Axes » True, AxesLabel -
{Text[Style["real", Large, Italic]], Text[Style["imaginary", Large, Italic]]},
TicksStyle » Large, PlotRange » {{-8.1, 8.1}, {-8.1, 8.1}}, ImageSize - Large],
{{a, 1}, -4, 4}, {{b, 3}, -4, 4}, {{c, 2}, -4, 4},
{{d, 2}, -4, 4}, LabelStyle - Large]

To create a cursor-enabled, rather than a slider-enabled, animation of the same picture, we can make
use of the command within . Note that the syntax gives the “starting values” of z;
and zpas z1=1+3iand z,=2+2i (or {1, 3} and {2, 2} as lists). then allows these to change
two-dimensionally with the cursor location (once either “cross-hair” is clicked on) over the given window.

Manipulate]|
Show[Graphics[{Thick, Red, Arrow[{{0, O}, z1}], Arrow[{z2, z1 +22}], Blue, Arrow|[
{{0, 0}, z2}], Arrow[{zl1l, z1 +22}], Black, Arrow[{{0, O}, z1 +2z2}]}], Graphics]|
{Text[Style["z,", Blue, Large], .5 *z2], Text[Style["z,", Blue, Large], .52z2 +2zl1],
Text[Style["z,", Red, Large], .5*2z1], Text[Style["z:", Red, Large], .5zl +z2],
Text[Style["z;+22", Large], .5 (21 +22)]}], Axes » True, AxesLabel -
{Text[Style["real", Large, Italic]], Text[Style["imaginary", Large, Italic]]},
TicksStyle » Large, PlotRange -» {{-8.1, 8.1}, {-8.1, 8.1}}, ImageSize - Large],
{{z1, {1, 3}}, Locator}, {{z2, {2, 2}}, Locator},
LabelStyle » Large]

Mathematica Exercise I: Return to Activity 2 and study the way the sum
of three complex numbers (as vectors) can be visualized. Next, use ,
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, , , , and other Mathematica commands to create an
interactive and labeled version of this diagram whose animation parameters are
the real and imaginary parts of the complex numbers zy =a+b1, z; =c+di, and
z3=e+f 1. You can choose to make your interactivity either slider-enabled or
cursor-enabled.

Mathematica Work |:

(Enter your code under this cell when Mathematica is in “Input mode” — make sure a horizontal
line is showing before you start typing)

Grader/Instructor Mathematica Assessment |:

(The grader/instructor will give you feedback about your work here)

The operation of subtraction can be defined for any algebraic structure where addition has been defined
in such a way so as to guarantee the existence of an additive identity and additive inverses. In such a
situation, one element can then be subtracted from another element by adding the additive inverse of
the element being subtracted. In the particular case of the set of complex numbers C, once addition
has been defined via the formula (a+ bi) + (c+di)=(a+c) + (b+d)i, itis clear that 0 + 0i is the additive
identity and that (-a) + (-b) i is the additive inverse of the arbitrary complex number a + bi. Hence, we
can define (a+ bi) - (c+di) to equal (a+ bi) + ((-c) + (-d) i). Clearly this is also the same as
(a-c)+(b-d)i, which is what you hopefully would have guessed we should do for complex number
subtraction before reading this paragraph.

The geometric meaning of complex number subtraction is the same as the geometric meaning of vector
subtraction in the plane. Given two vectors v =(a, b) and w ={c, d), how should we geometrically
interpret the meaning of v-w? There are two typical ways of doing this, both related to the parallelo-
gram law for vector addition. We could interpret v-w as v + (-w), where —w = {(-c, —d) is the additive
inverse of w={c, d), and -w has the same length as w but points in the exact opposite direction. Or we
could realize, knowing that vector addition is commutative, that v - w is the unique vector with the
property that it gives v when added to w; that is, w+ (v-w) = (v-w) + w=v. If we view complex
numbers as two-dimensional vectors, then we should view the geometry of complex number subtraction
in the same way. Both of these perspectives are represented in the interactive diagram generated by
the code below for the complex numbers z4 =a + bi and z; = ¢ + d i and their difference
z1-zp=(@-c)+(b-d)i.
Manipulate[
Show[Graphics[{Thick, Red, Arrow[{{0, 0}, z1}], LightRed, Arrow[{-22, z1 -22}],
Blue, Arrow[{{0, 0}, z2}], Arrow[{zl -22, z1}], LightBlue,
Arrow[{{O0, 0}, -22}], Green, Arrow|[{z2, z1}], Arrow[{{O0, O}, z1-2z2}]}],
Graphics[{Text[Style["z.", Blue, Large], .5 * z2], Text[Style["z>", Blue, Large],
.522+ (21-22)], Text[Style["-2>", LightBlue, Large], - .5 % 22],
Text[Style["z:", Red, Large], .5*2z1], Text[Style["z,", LightRed, Large],
.5%2z1-22], Text[Style["2z1-2,", Green, Large], .5* (z1l+22)],
Text[Style["z;-2,", Green, Large], .5* (z1-22)]}], Axes » True, AxesLabel »
{Text [Style["real", Large, Italic]], Text[Style["imaginary", Large, Italic]]},
TicksStyle » Large, PlotRange -» {{-8.1, 8.1}, {-8.1, 8.1}}, ImageSize - Large],
{{=z1, {1, 3}}, Locator}, {{z2, {2, 2}}, Locator},
LabelStyle » Large]

Because of this diagram, the “quickest” way to draw z4 — z, as a vector is to draw a vector based at the
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tip (head) of z, and Vterminating at the tip (hread) of z1, when both z4 and z, are drawn starting from the
same base (which is typically the origin 0 =0 + 01).

Discussion 2: Give a detailed explanation of why the diagram created from
the preceding line of code illustrates the geometric meaning of complex number
subtraction in two different ways, based on the parallelogram law for complex
number addition. Note that —z; can be thought of as playing a role in this
diagram in two locations on one the parallelograms, though it is only labeled as
—Z; once.

Response 2:

(You can type your thoughts and answers here formatted in text mode)

Grader/Instructor Response 2:

(The grader/instructor will give you feedback about your work here)

Mathematica Exercise 2: Use Manipulate, Graphics, Arrow, Show, Text,
and other Mathematica commands to create an interactive diagram to illustrate
the geometric meaning of z| -z, —z3 = z| +(-2;) + (-z3) = 2| = (z, + z3) in any
way you like. You can choose to make your interactivity either slider-enabled or
cursor-enabled.

Mathematica Work 2:

(Enter your code under this cell when Mathematica is in “Input mode” — make sure a horizontal
line is showing before you start typing)

Grader/Instructor Mathematica Assessment 2:

(The grader/instructor will give you feedback about your work here)

In our final activity, Activity 4, of this learning module on complex addition and the complex plane, we
will delve a bit into complex number multiplication and the idea of complex conjugation for the purpose
of understanding a fundamental inequality called the triangle inequality, which symbolically expresses
the basic idea that the shortest distance between two points is along the straight line between them.



