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The proofs of theorems

The proof of Theorem 1. Consider first the case c = 1 and the four terms in (11) separately

fixing the choice ofm. Denoting the first term of (11) by Bij
1,m(X), then according to Lemma

5.4.1 in Virta et al. (2017) we have

Bij
1,m(Xst) =

τ 4

ρm
UmE

[
(u

(m)
i )TZ(m)Z

T
(m)u

(m)
j · Z(m)Z

T
(m)

]
UT

m,

where Z(m) is the flattened matrix defined in Section 4 and (u
(m)
i )T is the ith row of Um.

Using the standard properties of expected value and independent random variables the

(k, k′) element of the inner expectation can be shown to be for k 6= k′ equal to u
(m)
ik u

(m)
jk′ +

u
(m)
jk u

(m)
ik′ and for k = k′ equal to δijρm + u

(m)
ik u

(m)
jk (κ̄

(m)
k + 2). Using these to construct a

matrix form for the expectation we have

Bij
1,m(Xst) = τ 4Um

(
p∑

k=1

u
(m)
ik u

(m)
jk κ̄

(m)
k Ekk

)
UT

m + τ 4δijρmI + τ 4Eij + τ 4Eji.

The second, third and fourth terms in (11) then serve to remove the extra constant terms

above. That they indeed cancel one-by-one the final terms can easily be shown by examining
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them in the above manner using the independence of X and X∗. This concludes the proof

for c = 1 and the corresponding result for c = 2 can be proven in precisely the same

manner.

The proof of Theorem 2. The consistency of the TJADE estimator is proven similarly as

the consistency of the TFOBI estimator in the proof of Theorem 5.2.1 in Virta et al. (2017).

In the following we assume that r = 2 and we are interested in the asymptotical behavior

of the 1-mode unmixing matrix. As discussed in Section 4, for the general case of arbitrary

r and m-mode unmixing matrix, it suffices to m-flatten the tensor and replace in the

following Σ̂
−1/2
1 with Σ̂

−1/2
m , Σ̂

−1/2
2 with Σ̂

−1/2
m+1 ⊗ · · ·⊗ Σ̂

−1/2
r ⊗ Σ̂

−1/2
1 ⊗ · · ·⊗ Σ̂

−1/2
m−1 , p2 with

ρm and use the corresponding row mean quantities.

For the asymptotic expressions of the diagonal elements of
√
n(Φ̂− I) it suffices to use

the same arguments as in the proof of Theorem 5.2.1 in Virta et al. (2017) and for the

off-diagonal elements we aim to use Lemma 2 from Miettinen et al. (2015).

But first, define the symmetric standardization functionals L̂ = (l̂kk′) := Σ̂
−1/2
1 and

R̂ = (r̂ll′) := Σ̂
−1/2
2 giving the standardized identity-mixed observations as Xst,i = L̂Z̃iR̂

T ,

where Z̃i = Zi − Z̄. We then have

√
n(l̂kk′ − δkk′) = −(1/2)

√
n(ŝkk′ − δkk′) + oP (1),

see Virta et al. (2017), and as simple moment-based estimators we have both
√
n(L̂− I) =

OP (1) and
√
n(R̂− I) = OP (1), regardless of whether we really have r = 2 or use flattened

tensors of higher order.

Assume then first that c = 1. The matrices Ĉkk′
1,1 , k, k′ ∈ {1, . . . , p}, in (14) to be simulta-

neously diagonalized satisfy Ĉkk′ := Ĉkk′
1,1 →P Ckk′

1,1 (Zi) = δkk′κ̄
(1)
k Ekk. In the view of Lemma

2 in Miettinen et al. (2015) this means that the only matrices Crs
1,1(Zi), r, s ∈ {1, . . . , p},

having non-zero kth or k′th diagonal elements are Ckk
1,1(Zi) and Ck′k′

1,1 (Zi), respectively,

yielding the following form for the (k, k′), k 6= k′, element of Û := ÛT
1 estimated by (16).

√
nûkk′ =

κ̄
(1)
k

√
nĈkk

kk′ − κ̄
(1)
k′
√
nĈk′k′

kk′

(κ̄
(1)
k )2 + (κ̄

(1)
k′ )2

+ oP (1),

where Ĉkk
rs is the (r, s) element of Ĉkk. The above expression then together with the (k, k′),

k 6= k′, element of the left standardization matrix L̂ gives an asymptotic expression for the
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off-diagonal elements of the estimated left TJADE matrix, see Virta et al. (2017):

√
nφ̂kk′ =

√
nûkk′ +

√
nl̂kk′ + oP (1), (19)

reducing the problem of finding the asymptotics of TJADE into the task of finding the

asymptotic behaviors of
√
nĈkk

kk′ and
√
nĈk′k′

kk′ . Dropping the subscripts for clarity, note

that Ĉaa = B̂aa − Ξ̂(p2I + 2Eaa)Ξ̂T and starting from B̂aa write it out as

B̂aa =
1

p2n

n∑
i=1

(L̂T
a Z̃iR̂

∗Z̃T
i L̂a) · L̂Z̃iR̂

∗Z̃T
i L̂T ,

where L̂T
a is the ath row of L̂ and R̂∗ := R̂T R̂. An arbitrary off-diagonal element of

√
n(B̂aa −Baa(Zi)) then has after the matrix multiplication the form

√
nB̂aa

kk′ =
1

p2n

∑
defgstuv

√
nr̂∗ef r̂

∗
tul̂adl̂ag l̂ksl̂k′vĤde,gf,st,vu, (20)

where Ĥde,gf,st,vu = (1/n)
∑n

i=1 z̃i,dez̃i,gf z̃i,stz̃i,vu →P E(zi,dezi,gfzi,stzi,vu). Next we expand

the multiplicands r̂∗·· and l̂·· in (20) one-by-one such as l̂ab = (l̂ab − δab) + δab, the first term

of which is OP (1) when combined with
√
n allowing the use of Slutsky’s theorem to the

whole multiple sum and the second term of which produces an expression like (20) only

with one summation index less.

Starting from left this process then produces the terms oP (1); oP (1); δak
√
nl̂kk′ +

δak′
√
nl̂k′k+oP (1); δak

√
nl̂kk′+δak′

√
nl̂k′k+oP (1); δak′(κ̄

(1)
k′ +p2+2)

√
nl̂kk′+(1−δak′)p2

√
nl̂kk′+

oP (1) and δak(κ̄
(1)
k + p2 + 2)

√
nl̂k′k + (1 − δak)p2

√
nl̂k′k + oP (1) finally leaving us with the

expression

1

p2

∑
et

1√
n

n∑
i=1

z̃2i,aez̃i,ktz̃i,k′t + oP (1). (21)

Substituting now either a = k or a = k′, expanding z̃i,ab = zi,ab−z̄ab and using the quantities

defined in Section 4 the expression in (21) gets the forms
√
nr̂kk′ +

√
nq̂kk′ + oP (1) and

√
nr̂k′k +

√
nq̂k′k + oP (1), respectively.

Using the above, e.g.
√
nB̂kk

kk′ gets the form

(p2 + 2)
√
nl̂kk′ + (κ̄

(1)
k + p2 + 2)

√
nl̂k′k +

√
nr̂kk′ +

√
nq̂kk′ + oP (1).

For the asymptotic behavior of the remaining term Ξ̂(p2I + 2Eaa)Ξ̂T one can first use

techniques similar to the above to show for Ξ̂ = (ξ̂kk′) that
√
n(ξ̂kk′−δkk′) = oP (1) for k 6= k′.
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Consequently an arbitrary off-diagonal element of
√
n(Ξ̂(p2I + 2Eaa)Ξ̂T − p2I − 2Eaa) is

also oP (1) implying that the term actually contributes nothing to the asymptotic variances

of the estimator. Thus
√
nĈaa

kk′ =
√
nB̂aa

kk′ + oP (1) and the result of Theorem 2 is obtained

by plugging everything in into (19) and using the fact that the standardization functionals

are symmetric. The asymptotic variances of Corollary 1 are then straightforward to obtain,

e.g. using the table of covariances in the proof of Theorem 5.2.1 in Virta et al. (2017).

Although the starting expressions for c = 1 and c = 2 are different the final expressions

for both
√
nĈkk

kk′ and
√
nĈk′k′

kk′ actually match exactly. The corresponding proof for c = 2

is obtained in exactly likewise manner, expanding the terms suitably and using Slustky’s

theorem and is thus omitted here.
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