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This appendix is structured as follows. Section S.1 explains the bandwidth selectors used in

the paper. Section S.2 discusses the hypothesis tests and the con�dence bands related to �d(�)

introduced in Section 2. Section S.3 develops Wald tests for the three hypotheses, assuming the

second-order derivative of the conditional quantile function is continuous at the cut-o¤. Section S.4

provides a local asymptotic power analysis for the score and Wald tests. Section S.5 includes the

proofs of the results given in the paper. Section S.6 reports additional simulation results, followed

by several tables.
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S.1 Bandwidth selection

This section discusses how the �ve selectors determine hn;0:5, the bandwidth at the median. Then,

bandwidths at other quantiles are computed using the link function of Yu and Jones (1998):

hn;� =
�
2�(1� �)=[��(��1(�))2]

	1=5
hn;0:5;

where �(�) and ��1(�) are the density and quantile functions of a standard normal distribution.
The �rst two bandwidth selectors are based on the leave-one-out cross validation. They are sim-

ple modi�cations of the methods given in Ludwig and Miller (2007) and Imbens and Lemieux (2008),

originally designed for the average treatment e¤ect. Speci�cally, for a given candidate bandwidth h,

we estimate the conditional median at xi using the local linear regression, while leaving out (xi; yi),

and denote the estimate by Q̂h(0:5jxi). Then, we compute CV (h) = k�1
Pk
i=1 jyi� Q̂h(0:5jxi)j and

determine the bandwidth as hn;0:5 = argminh CV (h). Because the focus here is on the responses

near x0, observations far from x0 are less relevant. Therefore, following Imbens and Lemieux (2008),

we use only half the observations that are closest to x0 as evaluation points. These two selectors

di¤er in terms of whether x0 is treated as an interior or a boundary point. The �rst selector

treats x0 as an interior point, that is, utilizing observations on both sides of xi when estimating

the conditional median at xi. This can be viewed as selecting the bandwidth by imposing the null

hypothesis of no treatment e¤ects. We denote the chosen bandwidth as hcvin;� . The second selector

treats x0 as a boundary point. For example, if xi < x0, then only observations to the left of xi are

used when estimating the conditional median at xi. This can be viewed as selecting the bandwidth

under the alternative hypothesis. We denote the chosen bandwidth by hcvn;� .

The third bandwidth selector uses the minimum MSE bandwidth formula of Qu and Yoon

(2015), while treating x0 as an interior point. This leads to

hn;0:5 =

0B@ R1
�1K (v)

2 dv

4�22fX (x0) fY jX (0:5jx0)
2
�
@2Q(0:5jx0)

@x2

�2
1CA
1=5

n�1=5: (S.1)

The densities fX (x0) and fY jX (0:5jx0) are estimated as follows. The marginal density estimate
is f̂X(x0) = (nhx)�1

Pn
i=1K ((xi � x0)=hx), where hx is a bandwidth parameter. The conditional

density estimate is

f̂Y jX(zjx0) =
Z

1

hyx
K ((z � y)=hyx) dF̂ (yjx0); (S.2)

where hyx is another bandwidth parameter, and F̂ (yjx0) = supf� 2 (0; 1)jQ̂(� jx0) � yg is the
inverse function of Q̂(� jx0); which is the estimated conditional quantile with the cross validation
bandwidth. To implement (S.2), we draw samples from F̂ (yjx0) and apply the kernel density
estimator to the sample with kernel K(�) and bandwidth hyx. In practice, the bandwidth hyx is
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set to 2ehyx; with ehyx and hx being the bandwidths determined using Silverman�s rule of thumb
formula. Finally, the second-order derivative @2Q(0:5jx0)=@x2 is estimated using the local cubic
median regression. Its bandwidth will be set to 1.0 throughout the simulations (note that, in this

case, the support of x is [�1; 1]). We denote the resulting bandwidth by hintn;� .
The fourth bandwidth selector also uses the formula of Qu and Yoon (2015), but treats x0 as a

boundary point. This leads to the following bandwidth for Q(0:5jx+0 ) :

h+n;0:5 =

0B@ �01N
�1MN�1�1

4fX (x0) fY jX
�
0:5jx+0

�2 �@2Q(0:5jx+0 )
@x2

�2
(�01N

�1L)2

1CA
1=5

n�1=5; (S.3)

where �1 = (1 0)0, N andM are 2-by-2 matrices with the (i; j)th elements given by
R1
0 ui+j�2K (u) du

and
R1
0 u(i+j�2)K(u)2du and L = [

R1
0 uK (u) du

R1
0 u2K (u) du]0. In the implementation, the

derivative @2Q(0:5jx+0 )=@x2 is estimated in the same way as for the third bandwidth selector, but
now uses only observations on the right side of x0. The MSE optimal bandwidth for estimating

Q(0:5jx�0 ) satis�es the same expression as (S.3), but with
R 0
�1 replacing

R1
0 and x�0 replacing x

+
0 .

The one-sided conditional density fY jX
�
0:5jx+0

�
uses the same formula as in (S.2), except that

F̂ (yjx0) is replaced by F̂ (yjx+0 ), which is computed by inverting Q̂(� jx
+
0 ). Finally, after obtaining

estimates for h+n;0:5 and h
�
n;0:5, we use the smaller of the two to implement the tests. The moti-

vation is that using a smaller bandwidth, although sacri�cing some e¢ ciency, will not erroneously

introduce a large bias. We denote the bandwidth by hbdyn;� .

The �fth bandwidth selector is an adaptation of the Imbens and Kalyanaraman (2012) se-

lector from the conditional mean to the conditional quantile setting. Instead of minimizing the

MSEs associated with the conditional mean functions, Imbens and Kalyanaraman (2012) suggested

minimizing the MSE associated with estimating their di¤erence. For quantile treatment e¤ects,

calculations lead to the following bandwidth formula:

hn;0:5 =

0BB@ �01N
�1MN�1�1

�
1

fY jX(0:5jx+0 )
2 +

1

fY jX(0:5jx�0 )
2

�
4 (�01N

�1L)2 fX (x0)

��
@2Q(0:5jx+0 )

@x2
� @2Q(0:5jx�0 )

@x2

�2
+ (r� + r+)

�
1CCA
1=5

n�1=5; (S.4)

where r+ and r� are regularization terms that equal three times the variances of @2Q̂(0:5jx+0 )=@x2

and @2Q̂(0:5jx�0 )=@x2, respectively. Their purpose is to stabilize the bandwidth in situations where
the second-order derivatives do not change at x0; or when they are imprecisely estimated. The

quantities r� and r+ depend on the following three factors for obtaining @2Q̂(0:5jx+0 )=@x2 and
@2Q̂(0:5jx�0 )=@x2: the order of the local regressions, the kernel used, and the bandwidths. In

simulations, we consider local quadratic regressions, the Epanechnikov kernel, and the bandwidth
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hr = 0:5. This leads to

r+ =
3

nh5r

�03
�N�1 �M �N�1�03

fY jX
�
0:5jx+0

�2
fX (x0)

; (S.5)

where �3 = (0 0 1)0, and �N and �M are 3-by-3 matrices, with the (i; j)-th elements given byR1
0 ui+j�2K (u) du and

R1
0 ui+j�2K(u)2du. The expression of r� is the same as (S.5), but withR 0

�1 and x�0 replacing
R1
0 and x+0 , respectively. In the implementation, we rewrite (S.5) as

3

nh5r

�03
�
fX (x0) �N

��1 �
fX (x0) �M

� �
fX (x0) �N

��1
�03

fY jX
�
0:5jx+0

�2 :

Then, the relevant quantities can be estimated using (nhr)�1
Pn
i=1 �zi;� �z

0
i;�diKi;� !p fX (x0) �N and

(nhr)
�1Pn

i=1 �zi;� �z
0
i;�diK

2
i;� !p fX (x0) �M . We denote the bandwidth by hikn;� . We also experiment

with estimating @2Q(0:5jx+0 )=@x2 and @2Q(0:5jx
�
0 )=@x

2 using local cubic rather than quadratic

regressions. Then, (r� + r+) tends to take on substantially higher values than when using the local

quadratic regression, often dominating the term
�
@2Q(0:5jx+0 )=@x2 � @2Q(0:5jx

�
0 )=@x

2
�2
. For this

reason, we choose to use the quadratic regressions in the simulations and the empirical application.

Among the �ve selections, hcvin;� and h
int
n;� are consistent with the principle of the score test

because they impose the null hypothesis of no treatment e¤ects. In addition, hcvn;� , h
bdy
n;� , and hikn;�

are consistent with the principle of the Wald test. We use these pairings in the experimentations.

Finally, when implementing the tests with the bias estimation, we need additional bandwidth

parameters for the regressions in (12). Motivated by the results in Calonico, Cattaneo, and Titiunik

(2014), we let these equal the bandwidths for the local linear regressions (i.e., bn;� = hn;� for all

� 2 T ) throughout the experimentations.

S.2 Hypothesis tests and con�dence bands related to �d(�)

This subsection shows how to test the hypotheses and to construct uniform con�dence bands for

�d(�). For any of the three speci�cations of �d(�) in Section 2, let �1(�) denote the quantity inside

the �rst parentheses and �2(�) be the quantity inside the second parentheses. Then,

�d(�) = �1(�)� �2(�):

The three null hypotheses of interest are: (i) H1
0 : �

d(�) = 0 for any � 2 T ; (ii) H2
0 : �

d(�) = c for

some c 2 R for all � 2 T ; and (iii) H3
0 : �

d(�) � 0 for all � 2 T . Let n1 and n2 be the sample
sizes, and hn1;� and hn2;� be the bandwidths when estimating �1(�) and �2(�). Let fY jX;j(� jx+0 ),
fY jX;j(� jx�0 ), d

+
�;j , and d

�
�;j (j = 1; 2) be the respective conditional densities and biases. (In the case

with two cut-o¤s, interpret fY jX;1(� jx+0 ) as fY jX(� jx
+
0 ) and fY jX;2(� jx

+
0 ) as fY jX(� jx

+
1 ).) De�ne

fY jX(� jx0) = (fY jX;1(� jx+0 ) + fY jX;1(� jx
�
0 ) + fY jX;2(� jx

+
0 ) + fY jX;2(� jx

�
0 ))=4.
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S.2.1 Testing hypotheses assuming continuous second-order derivatives at the cut-
o¤s

De�ne

W d
n(�) =

p
n1hn1;� f̂Y jX(� jx0)

�
�̂1(�) � �̂2(�)

�
;

and consider the following test statistics.

For H1
0 : WSdn (T ) = sup

�2T

���W d
n(�)

��� ;
For H2

0 : WHd
n (T ) = sup

�2T

�����W d
n(�)�

p
n1hn1;� f̂Y jX(� jx0)R

s2T
p
n1hn1;sf̂Y jX(sjx0)ds

Z
�2T

W d
n(�)d�

����� ;
For H3

0 : WAdn (T ) = sup
�2T

���1�W d
n(�) � 0

�
W d
n(�)

��� :
To present the limiting distributions of the test statistics, let Gj�(�) (j = 1; 2) be two mutually

independent Gaussian processes that are the limits of

1

fX;j(x0)
p
njhnj ;�

nX
i=1

�
� � 1

�
u0i (�) � 0

��( fY jX(� jx0)
fY jX;j(� jx+0 )

�+i;� ;jdi �
fY jX(� jx0)
fY jX;j(� jx�0 )

��i;� ;j (1� di)
)
Ki;� ;j ;

where �+i;� ;j , �
�
i;� ;j , and Ki;� ;j are computed with bandwidth hnj ;� . Let �(�) be the quantity de�ned

in the Proposition below and Gd�(�) = G
1
�(�)� �(�)G2�(�):

Proposition 3 Assume the conditions in Lemma 2 hold for j=1,2 with @2Q(� jx+0 )=@x2 = @2Q(� jx
�
0 )=@x

2

for all � 2 T . Assume
p
n1hn1;�=

p
n2hn2;� ! �(�) > 0. Then:

1. Under �d(�) = 0 for all � 2 T , WSdn (T )) sup�2T
��Gd�(�)�� :

2. Under �d(�) = � for all � 2 T for some � 2 R;

WHd
n (T )) sup

�2T

�����Gd�(�)�
p
n1hn1;�fY jX(� jx0)R

s2T
p
n1hn1;sfY jX(sjx0)ds

Z
�
Gd�(�)d�

����� :
3. Under the least favorable null hypothesis of �d(�) = 0 for all � 2 T ;

WAdn (T )) sup
�2T

���1�Gd�(�) � 0�Gd�(�)��� :
S.2.2 Testing hypotheses allowing discontinuous second-order derivatives at the cut-

o¤s

De�ne

WR;d
n (�) =

p
n1hn1;� f̂Y jX(� jx0)

�
�̂1(�) � �̂2(�) � h2n1;� (d̂

+
�;1 � d̂

�
�;1) + h

2
n2;� (d̂

+
�;2 � d̂

�
�;2)
�
;
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where d̂+�;j and d̂
�
�;j are estimated with local quadratic regressions with bandwidth hnj ;� (j = 1; 2).

The tests are:

For H1
0 : WSR;dn (T ) = sup

�2T

���WR;d
n (�)

��� ;
For H2

0 : WHR;d
n (T ) = sup

�2T

�����WR;d
n (�)�

p
n1hn1;� f̂Y jX(� jx0)R

s2T
p
n1hn1;sf̂Y jX(sjx0)ds

Z
�2T

WR;d
n (�)d�

����� ;
For H3

0 : WAR;dn (T ) = sup
�2T

���1�WR;d
n (�) � 0

�
WR;d
n (�)

��� :
Let GR;j� (�) (j=1,2) be two independent copies of GR� (�); see (15) in Section 5.2. Note that in

GR;j� (�); the bandwidth is equal to hnj ;� . De�ne G
R;d
� (�) = GR;1� (�)� �(�)GR;2� (�):

Proposition 4 Let the conditions in Lemma 2 and Lemma 3 hold for j=1,2. Assume
p
n1hn1;�=

p
n2hn2;� !

�(�) > 0. Then:

1. Under �(�) = 0 for all � 2 T , WSR;dn (T )� sup�2T
���GR;d� (�)

��� = op (1) :
2. Under �(�) = � for all � 2 T for some � 2 R;

WHR;d
n (T )� sup

�2T

�����GR;d� (�)�
p
nhn;� f̂Y jX(� jx0)R

s2T
p
nhn;sf̂Y jX(sjx0)ds

Z
�2T

GR;d� (�)d�

����� = op (1) :
3. Under the least favorable null hypothesis of �(�) = 0 for all � 2 T ;

WAR;dn (T )� sup
�2T

���1�GR;d� (�) � 0
�
GR;d� (�)

��� = op (1) :
The relevant critical values can be obtained using simulations.

S.2.3 Uniform con�dence bands for �d(�)

A uniform band can be obtained by inverting the Wald tests for the hypothesis H1
0 . In the case

with continuous second-order derivatives, let cdp be the (1 � p) percentile of the distribution of
sup�2T

��Gd�(�)��. The con�dence band for �d(�) is then given by
�̂1(�) � �̂2(�) �

cdpp
n1hn1;� f̂Y jX(� jx0)

:

When discontinuous second-order derivatives are allowed, let cR;dp be the (1 � p) percentile of the
distribution of sup�2T

���GR;d� (�)
���. The uniform band is given by

�̂1(�) � �̂2(�) � h2n1;� (d̂
+
�;1 � d̂

�
�;1) + h

2
n2;� (d̂

+
�;2 � d̂

�
�;2) �

cR;dpp
n1hn1;� f̂Y jX(� jx0)

:
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S.3 Wald tests assuming @2Q(� jx+0 )=@x2 = @2Q(� jx�0 )=@x2

De�ne

Wn(�) =
p
nhn;� f̂Y jX(� jx0)�̂(�); (S.6)

Treatment signi�cance. This hypothesis can be tested using a Kolmogorov�Smirnov-type test:

WSn (T ) = sup
�2T

jWn(�)j :

Treatment homogeneity. This hypothesis can be tested by measuring the deviation of Wn(�)

from the average of Wn(�) over T :

WHn (T ) = sup
�2T

�����Wn(�)�
p
nhn;� f̂Y jX(� jx0)R

s2T
p
nhn;sf̂Y jX(sjx0)ds

Z
�2T

Wn(�)d�

����� :
Treatment unambiguity. To test this hypothesis, we determine whether the treatment can be

detrimental at some unknown quantiles, using

WAn (T ) = sup
�2T

j1 (Wn(�) � 0)Wn(�)j :

Let G1(�) be a zero-mean continuous Gaussian process with a covariance function that satis�es

E [G1(t)G1(s)] =
(t ^ s� ts)

fX(x0)(�
+
0 �

+
2 �

�
�+1
�2
)2 (�(t)�(s))1=2

Z 1

�1
H(t)H(s)K

�
u

�(t)

�
K

�
u

�(s)

�
du;

(S.7)

where

H(�) =
fY jX(� jx0)
fY jX(� jx+0 )

�
�+2 �

�
u

�(�)

�
�+1

�
I(u � 0)�

fY jX(� jx0)
fY jX(� jx�0 )

�
��2 �

�
u

�(�)

�
��1

�
(1� I(u � 0)) :

Proposition 5 Assume the same conditions as in Lemma 2 hold, with @2Q(� jx+0 )=@x2=@2Q(� jx
�
0 )=@x

2

for all � 2 T . Then:

1. Under �(�) = 0 for all � 2 T , WSn (T )) sup�2T jG1(�)j :

2. Under �(�) = � for all � 2 T for some � 2 R,

WHn (T )) sup
�2T

�����G1(�)�
p
nhn;�fY jX(� jx0)R

s2T
p
nhn;sfY jX(sjx0)ds

Z
�
G1(�)d�

����� :
3. Under the least favorable null hypothesis of �(�) = 0 for all � 2 T (this is explained in the

proof),

WAn (T )) sup
�2T

j1 (G1(�) � 0)G1(�)j :
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Proof of Proposition 5. In all three results, the e¤ects are homogeneous across quantiles. This

implies fY jX(� jx+0 ) = fY jX(� jx
�
0 ) and, consequently,

Wn;c(�) =
1

fX(x0)
p
nhn;�

nX
i=1

�
� � I

�
u0i (�) � 0

�� (2di � 1)�+2 � �xi�x0h�

�
�+1

�+0 �
+
2 �

�
�+1
�2 Ki;� + op(1):

The results then follow from the same arguments as in the proof of Proposition 1. For Case 3,

the reason why "�(�) = 0 for all � 2 T " is the least favorable null for the treatment unambiguity

hypothesis is as follows. De�ne M(�) =
p
nhn;� f̂Y jX(� jx0)�(�). Then, for any �(�) satisfying the

null hypothesis (i.e., �(�) � 0 for all � 2 T ), the following two inequalities always hold because
M(�) � 0:

j1 (Wn(�) � 0)Wn(�)j � j1 (Wn(�) � 0) (Wn(�)�M(�))j

� j1 (Wn(�)�M(�) � 0) (Wn(�)�M(�))j : (S.8)

The term Wn(�) �M(�) is equal to Wn;c(�); de�ned in (14). Therefore, it satis�es the approx-

imation given in Lemma 2 for any �(�) � 0. As a result, the supremum of (S.8) converges to

sup�2T j1 (G1(�) � 0)G1(�)j under �(�) � 0. This shows that the test may be conservative if

�(�) � 0 but �(�) is not always zero. The test will not over-reject the null hypothesis. This

completes the proof.

S.4 Local asymptotic power analysis

The local alternatives are speci�ed as follows. When testing for the treatment signi�cance and

unambiguity hypotheses, let

Q(� jx+0 )�Q(� jx
�
0 ) = (nhn)

�1=2�(�); (S.9)

with j�(�)j < +1 for all � 2 T . When testing for the treatment homogeneity hypothesis, let

Q(� jx+0 )�Q(� jx
�
0 ) = � + (nhn)

�1=2�(�); (S.10)

with j�j < +1 and j�(�)j < +1 for all � 2 T . The bandwidth hn satis�es Assumption (5). The

quantities � and �(�) are �xed as n!1.

Proposition 6 Assume the same conditions as in Lemma 2 hold with @2Q(� jx+0 )=@x2 = @2Q(� jx
�
0 )=@x

2

for all � 2 T . Let eG1(�) = G1(�) + c(�)1=2fY jX(� jx0)�(�);
where c(�) is de�ned in Assumption (5). Then:
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1. Under (S.9), Rn (T )) fX(x0)

�
�+0 �

+
2 �(�

+
1 )

2

2�+2

�
sup�2T

��� eG1(�)���.
2. Under (S.9), WSn (T )) sup�2T

��� eG1(�)���.
3. Under (S.10),

WHn (T )) sup
�2T

����� eG1(�)�
p
nhn;�fY jX(� jx0)R

s2T
p
nhn;sfY jX(sjx0)ds

Z
�

eG1(�)d�
����� .

4. Under (S.9) with �(�) < 0 for all � 2 T ;

WAn (T )) sup
�2T

���1� eG1(�) � 0� eG1(�)��� .
The proof uses the same arguments as that of Lemmas 1 and 2. It is omitted. Interestingly,

the �rst two results show that the score and Wald tests for the treatment signi�cance hypothesis

have the same local asymptotic power against the sequence (S.9). This follows after noting that,

under the null hypothesis, their covariance functions satisfy

E(G(t)G(s)) = fX(x0)
2

 
�+0 �

+
2 �

�
�+1
�2

2�+2

!2
E(G1(t)G1(s)).

In addition, the four results show that the tests can have nontrivial power against alternatives of

order (nhn)�1=2. Finally, what matters for power is not only the di¤erence Q(� jx+0 )�Q(� jx
�
0 ), but

also the conditional density and the bandwidth. Everything else being equal, the power is higher

if the departure from the null occurs in a dense region or at a place where the bandwidth is wider.

S.5 Proofs of results in the paper

Proof of Lemma 1. For any �(�) 2 R and �(�) 2 R, de�ne

ei(�) = Q(� jx0) + (xi � x0)0
@Q(� jx0)
@x

�Q(� jxi);

�(�) =
p
nhn;�

0@ �(�)�Q(� jx0)

hn;�

�
�(�)� @Q(� jx0)

@x

�
1A and z0i;� =

�
1;
xi � x0
hn;�

�
:

Applying (7), we can write

ui(�) = u
0
i (�)� ei(�)� (nhn;� )�1=2z0i;��(�):

Consequently,

Rn(�) = (nhn;� )
�1=2

nX
i=1

n
� � 1[u0i (�) � (nhn;� )�1=2z0i;��(�) + ei(�)]

o
diKi;� :
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To establish the asymptotic property of Rn(�), we need to analyze both the e¤ect of the para-

meter estimation and that of the local linear approximation. To this end, de�ne

Sn (� ; �(�); ei (�)) = (nhn;� )
�1=2

nX
i=1

n
P
h
u0i (�) � (nhn;� )�1=2z0i;��(�) + ei(�)

���xii
� 1

h
u0i (�) � (nhn;� )�1=2z0i;��(�) + ei(�)

io
diKi;� :

Let �̂(�) and Sn(� ; �̂(�); ei (�)) equal �(�) and Sn (� ; �(�); ei (�)) ; but evaluated at �̂(�) and �̂(�).

Then, by adding and subtracting terms:

Rn(�) = Sn (� ; 0; 0) (Term 1)

+ fSn (� ; 0; ei (�))� Sn (� ; 0; 0)g (Term 2)

+fSn(� ; �̂(�); ei (�))� Sn (� ; 0; ei (�))g (Term 3)

+(nhn;� )
�1=2

nX
i=1

n
� � P (u0i (�) � ei (�) + (nhn;� )�1=2z0i;� �̂ (�)

���xi)o diKi;� (Term 4).

Term 1 depends only on the data generating process. Term 2 depends on the remainder term

from the local linear approximation. Terms 3 and 4 are a¤ected by the parameter estimation.

By Theorems 2 and 3 in Qu and Yoon (2015), the inequality constraints (or rearrangement) have

no �rst-order e¤ect on �̂(�). Therefore, we can treat �̂(�) as the estimator obtained by applying

quantile-by-quantile local linear regressions without imposing any constraints (or rearrangement).

Further, Qu and Yoon (2015, Step 1 in the proof of Theorem 1) show that Pr(sup�2T jjb�(�)jj �
log1=2(nhn;� ))! 1. Therefore, it su¢ ces to consider the set f�(�) : jj�(�)jj � log1=2(nhn;� )g when
analyzing Rn(�).

We study Terms 1 to 4 separately. By Lemma B.5 in Qu and Yoon (2015), sup�2T jj(Term
2)jj = op (1) and sup�2T jj(Term 3)jj = op (1).1 Apply the mean value theorem:

(Term 4) = �(nhn;� )�1=2
nX
i=1

fY jX(eyijxi) ei(�)diKi;� �
 

1

nhn;�

nX
i=1

fY jX(eyijxi)Ki;�diz0i;�
!
�̂(�)

= An;1(�) +An;2(�)�̂(�);

where eyi lies between Q(� jxi) and Q(� jxi)+ ei(�)+ (nhdn;� )�1=2z0i;� �̂. To analyze An;1(�), note that
ei(�) = �

1

2
h2n;�

�
xi � x0
hn;�

�2 @Q2(� jx0)
@x2

+ o(h2n;� ) uniformly over � 2 T :

1Lemma B.5 focuses on Term 3 while establishing the order of Term 2 as an intermediate result; see the second
term on the right-hand side of (B.8) on page 18.
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Therefore, uniformly over � 2 T ,

An;1(�) =
1

2
(nh5n;� )

1=2@
2Q(� jx0)
@x2

(
1

nhn;�

nX
i=1

fY jX(eyijxi)�xi � x0hn;�

�2
diKi;�

)
+ op (1)

=
1

2
(nh5n;� )

1=2@
2Q(� jx0)
@x2

fY jX(� jx0)
(

1

nhn;�

nX
i=1

�
xi � x0
hn;�

�2
diKi;�

)
+ op (1)

=
1

2
(nh5n;� )

1=2fY jX(� jx0)fX(x0)
@2Q(� jx0)
@x2

�+2 + op(1);

where the second equality holds because xi is in a vanishing neighborhood of x0, and the third equal-

ity is by the uniform law of large numbers. By similar arguments, An;2(�) = �fY jX(� jx0)fX(x0)(�+0
�+1 ) + op(1). Finally, for �̂(�), apply Theorem 1 of Qu and Yoon (2015, see (A4) on page 15):

�̂ (�) =
1

fY jX (� jx0) fX (x0)

0@ 1 0

0 ��12

1A((nhn;� )�1=2 nX
i=1

�
� � 1

�
u0i (�) � 0

��
zi;�Ki;�

+
1

2

q
nh5n;�fY jX (� jx0) fX(x0)

@2Q(� jx0)
@x2

0@ �2

�3

1A9=;+ op (1) :
The results for An;1(�); An;2(�); and �̂(�) jointly imply, uniformly over � 2 T :

An;1(�) +An;2(�)�̂ (�)

= �(nhn;� )�1=2
nX
i=1

�
� � 1(u0i (�) � 0)

��
�+0 +

�+1
�2

�
xi � x0
hn;�

��
Ki;�

� 1

2

q
nh5n;�fY jX(� jx0)fX(x0)

@Q2(� jx0)
@x2

�
�+0 �2 +

�+1 �3
�2

� �+2
�
+ op (1) :

Combining the results for Terms 1 to 4, we have

Rn(�) = (nhn;� )
�1=2

nX
i=1

�
� � 1(u0i (�) � 0)

��
di � �+0 �

�+1
�2

�
xi � x0
hn;�

��
Ki;�

+
1

2

q
nh5n;�fY jX(� jx0)fX(x0)

@Q2(� jx0)
@x2

�
�+2 � �

+
0 �2 �

�+1 �3
�2

�
+ op (1) :

Because the kernel is symmetric, �3 = 0; �
+
0 = 1=2 and �

+
2 = 0:5�2. As a result, �

+
2 ��

+
0 �2�

�+1 �3
�2

=

0. This completes the proof.

Proof of Proposition 1. It su¢ ces to consider the leading term on the right-hand side in Lemma

1. For any �xed � 2 T , this term satis�es the central limit theorem. Its stochastic equicontinuity

with respect to � is implied by Lemma B3 in Qu and Yoon (2015). The result follows because the

supremum operator is continuous when taken over a compact set.
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Proof of Lemma 2. By Theorem 1 in Qu and Yoon (2015),p
nhn;�

�
Q̂(� jx+0 )�Q(� jx

+
0 )
�

(S.11)

=
q
nh5n;�d

+
� +

�01N
�1 (nhn;� )

�1=2Pn
i=1

�
� � 1(u0i (�) � 0

�
)dizi;�Ki;�

fX (x) fY jX
�
� jx+0

� + op (1) ;

where �1 = (1; 0)0; u 2 R; �u = (1; u0)0; d+� = 1
2 �
0
1N

�1 @2Q(� jx+0 )
@x2

R1
0 u2�uK (u) du; andN =

R1
0 �u�u0K (u) du.

Because �01N
�1 = (�+0 �

+
2 �

�
�+1
�2
)�1[�+2 ��+1 ], the �rst term on the right side of (S.11) is equal

to
1

2

q
nh5n;�

@Q2(� jx+0 )
@x2

�
�+2
�2 � �+1 �+3

�+0 �
+
2 �

�
�+1
�2 ; (S.12)

while the second term is equal to

(nhn;� )
�1=2Pn

i=1

�
� � 1(u0i (�) � 0)

�
�+i;�diKi;�

fX (x) fY jX
�
� jx+0

� : (S.13)

Applying the same arguments to Q̂(� jx�0 ), we have

p
nhn;�

�
Q̂(� jx�0 )�Q(� jx

�
0 )
�

=
1

2

q
nh5n;�

@Q2(� jx�0 )
@x2

�
��2
�2 � ��1 ��3

��0 �
�
2 �

�
��1
�2 (S.14)

+
(nhn;� )

�1=2Pn
i=1

�
� � 1(u0i (�) � 0)

�
��i;� (1� di)Ki;�

fX (x) fY jX
�
� jx�0

� + op (1) :

Combining (S.12), (S.13) and (S.14) leads to the desired result.

Proof of Lemma 3. It su¢ ces to show that
q
nb5n;�

�
d̂+� � d+�

�
= D+2 (�) + op (1) uniformly over

� 2 T . The proof is similar to that of Lemma 1. To re�ect this, we de�ne the notation analogously.
Let

�ui(�) = yi � �+(�)� (xi � x)�+(�)� (xi � x)2
+(�);

�ei (�) =

�
Q(� jx+0 ) + (xi � x0)

@Q(� jx+0 )
@x

� (xi � x0)2
1

2

@Q2(� jx+0 )
@x2

�
�Q(� jxi);

��(�) =
p
nbn;�

0BBB@
�+(�)�Q(� jx+0 )

bn;� (�
+(�)� @Q(� jx+0 )

@x )

b2n;� (

+(�)� 1

2
@Q2(� jx+0 )

@x2
)

1CCCA , and �z0i;� =

26664
1

(xi � x0)=bn;�
(xi � x0)2=b2n;�

37775 :
De�ne

�Sn
�
� ; ��(�); �ei (�)

�
= (nbn)

�1=2
nX
i=1

n
P
h
u0i (�) � (nbn;� )�1=2�z0i;� ��(�) + �ei(�)

���xii
� 1

h
u0i (�) � (nbn;� )�1=2�z0i;� ��(�) + �ei(�)

io
di �Ki;� :
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Note that �ei (�) satis�es

�ei(�) = �
1

3!

�
xi � x
bn;�

�3 @3Q(� jx+0 )
@x3

b3n;� + o
�
b3n;�

�
: (S.15)

Let b��(�) equal ��(�); but with �+(�); �+(�); and 
+(�) replaced by the estimates from the local
quadratic regression. Applying the subgradient condition, we have

(nbn)
�1=2

nX
i=1

1
h
u0i (�) � (nbn;� )�1=2�z0i;�b��(�) + ei(�)io di �Ki;� = op(1)

uniformly over � 2 T . This implies

f �Sn(� ; b��(�); �ei (�))� �Sn (� ; 0; �ei (�))g (S.16)

+
�
�Sn (� ; 0; �ei (�))� �Sn (� ; 0; 0)

	
+ �Sn (� ; 0; 0)

+(nbn)
�1=2

nX
i=1

n
� � P (u0i (�) � �ei (�) + (nbn;� )�1=2�z0i;�b�� (�)���xi)o di�zi;� �Ki;� = op(1):

The terms in the �rst two curly brackets are op (1) uniformly. Applying a �rst-order Taylor expan-

sion to the last term, we obtain:

�(nbn)�1=2
nX
i=1

fY jX (eyijxi) �ei (�) di�zi;� �Ki;��(nbn)�1=2(nbn;� )�1=2
 

nX
i=1

fY jX (eyijxi) diKi;� �zi;� �z0i;�
!b��(�);

where eyi lies between Q(� jxi) and Q(� jxi)+ei(�)+(nbn;� )�1=2di�z0i;�b��(�). As a result,
b��(�) =

�
fY jX

�
� jx+0

�
fX (x0) �N

+
��1(�

bn
bn;�

�1=2
�Sn (� ; 0; 0)� (nbn;� )�1=2fY jX

�
� jx+0

� nX
i=1

�ei (�) di�zi;� �Ki;�

)
+ op (1) :

The term involving �ei(�) is negligible because nb7n;� = o(1). Therefore,

b��(�) = �fY jX �� jx+0 � fX (x0) �N+
��1

(bn=bn;� )
1=2 �Sn (� ; 0; 0) + op (1) :

Multiplying both sides by ��03 leads to the desired result.

Proof of Proposition 2. By Lemma 2 and Lemma 3,

WR
n (�) = G

R
� (�) + op (1)

uniformly over T . Then, the proof can be completed by applying the same arguments as those in
the proof of Proposition 1.

Proof of the validity of the procedure in Remark 2. The proof is given in four steps,

using similar arguments as in Politis and Romano (1994) and Hahn (1995). It allows for two
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possible bandwidth sequences: (i) bn;�=hn;� !1 for all � 2 T . This corresponds to using a larger
bandwidth for the local quadratic regression than the local linear regression. (ii) bn;�=hn;� = r(�)

with 0 < r(�) < 1 for all � 2 T . This corresponds to using a comparable bandwidth for the
local quadratic relative to the local linear regression. Note that under the three null hypotheses,

fY jX
�
� jx+0

�
= fY jX

�
� jx+0

�
= fY jX (� jx0).

Step 1. We verify that GR� (�) converges weakly to a continuous Gaussian process over T under

both bandwidth sequences.

Under bandwidth sequence (i), (
q
nh5n;�=

q
nb5n;� )

�
D+2 (�)�D

�
2 (�)

�
converges weakly to 0 over

� 2 T . Therefore,

GR� (�) = f̂Y jX(� jx0)fD+1 (�)�D
�
1 (�)g+ op(1)) G1(�) over � 2 T ;

where G1(�) is the Gaussian process de�ned in (S.7).

Under bandwidth sequence (ii), the limit of f̂Y jX(� jx0)(D+1 (�)�D
�
1 (�)) is still given by G1(�).

The limit of f̂Y jX(� jx0)(
q
nh5n;�=

q
nb5n;� )(D

+
2 (�) � D

�
2 (�)), denoted by G2(�), is a zero-mean

Gaussian process with covariance function

E [G2(t)G2(s)] =
(t ^ s� ts)�2

fX(x0) (�(t)�(s))
1=2 (r(t)r(s))5=2

Z 1

�1
H2(t)H2(s)K

�
u

�(t)

�
K

�
u

�(s)

�
du;

where

g(�)0 =

�
1

u

�(�)

u2

�(�)2

�
; r(�) = bn;�=hn;� ; �(�) = bn;�=bn;1=2;

and

H2(�) = �
0
3

(
fY jX(� jx0)
fY jX

�
� jx+0

�( �N+)�1I(u � 0)�
fY jX(� jx0)
fY jX

�
� jx�0

�( �N�)�1 (1� I(u � 0))
)
g(�).

Therefore,

GR� (�)) G1(�)�G2(�) over � 2 T :

Step 2. Denote the simulated version of GR� (�) by Ŝ
R
� (�). We prove that, if some convergences

hold, then ŜR� (�) converges weakly to the same Gaussian process as given in Step 1, conditionally

on the original observations.

We �rst establish some general results, and then apply them to the two bandwidth sequences

(i) and (ii). It is useful to write out the expression of ŜR� (�) explicitly:

ŜR� (�) = [bS+1 (�)� bS�1 (�)]� [bS+2 (�)� bS�2 (�)];
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where

bS+1 (�) =
f̂Y jX(� jx0)fX (x0)
f̂Y jX

�
� jx+0

�
f̂X (x0)

S+1 (�) ; (S.17)

bS+2 (�) = r(�)5=2

q
nh5n;�q
nb5n;�

f̂Y jX(� jx0)fX (x0)
f̂Y jX

�
� jx+0

�
f̂X (x0)

S+2 (�);

S+1 (�) =
(nhn;� )

�1=2Pn
i=1(� � 1(ui � � � 0))�

+
i;�diKi;�

fX (x0)
;

S+2 (�) = r(�)�5=2�
�03(
�N+)�1(nbn;� )�1=2

Pn
i=1 f� � 1(ui � � � 0)g di�zi;� �Ki;�
fX (x0)

;

and bS�1 (�) and bS�2 (�) are de�ned in the same way as bS+1 (�) and bS+2 (�) ; except using observations
on the left side of the cut-o¤. The parameter r(�) is de�ned only under bandwidth sequence (ii).

It can be set to any �nite positive value under bandwidth sequence (i).

For now, assume the following three convergences hold for the sample sequence (x1; y1); (x2; y2); ::: :

(C1) f̂Y jX(� jx+0 ) ! fY jX(� jx+0 ), f̂Y jX(� jx
�
0 ) ! fY jX(� jx�0 ), and f̂Y jX(� jx0) ! fY jX(� jx0) uni-

formly over � 2 T . In addition, f̂X (x0)! fX (x0) :

(C2) For any t; s 2 T ;

t ^ s� ts
n (hn;thn;s)

1=2

nX
i=1

(�+i;tdiKi;t � �
�
i;t(1� di)Ki;t)(�

+
i;sdiKi;s � �

�
i;s(1� di)Ki;s)

fX (x0)
2 ! E [G1(t)G1(s)]

(C3) Under bandwidth sequence (ii), for any t; s 2 T ;

t ^ s� ts
n (bn;tbn;s)

1=2

nX
i=1

�
�2

r(t)5=2r(s)5=2fX (x0)
2 �
0
3

�
( �N+)�1di � ( �N�)�1(1� di)

�
�

�zi;t �Ki;t �Ki;s�z
0
i;s

�
( �N+)�1di � ( �N�)�1(1� di)

�0
�3

o
! E [G2(t)G2(s)] :

We claim that, for every sequence (x1; y1); (x2; y2); ::: that satis�es (C1)-(C3), the following two

results always hold:

(R1) The process S+1 (�)�S
�
1 (�), conditional on (x1; y1); (x2; y2); :::; (xn; yn), converges weakly to

G1(�) over T .

(R2) Under bandwidth sequence (ii), the process S+2 (�)�S
�
2 (�), conditional on (x1; y1); (x2; y2); :::,

(xn; yn), converges weakly to G2(�) over T .
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Claim (R1) can be proved as below. First, the �nite dimensional convergence of S+1 (�)�S
�
1 (�)

follows by applying the Cramer-Wold device conditionally, and then applying (C2). Note that the

left-hand side of (C2) equals the covariance of S+1 (t) and S
+
1 (s); conditional on (x1; y1); (x2; y2); :::; (xn; yn).

Second, the stochastic equicontinuity of S+1 (�)�S
�
1 (�) can be veri�ed by applying the arguments

in Lemma B.3 in Qu and Yoon (2015) conditionally, and then applying (C2). Claim (R1) then

follows by combining these two results. Claim (R2) can be proved in the same way, using the

condition (C3) instead of (C2).

Now, we apply (C1)�(C3) and (R1)�(R2) to the two bandwidth sequences. Under bandwidth
sequence (i), (C1) and (R2) imply bS+2 (�) � bS�2 (�) converges weakly to 0 conditionally. Further,
(C1) and (R1) imply bS+1 (�) � bS�1 (�) converges weakly to G1(�) conditionally. Therefore, ĜR� (�)
converges weakly to G1(�); conditional on (x1; y1); (x2; y2); :::; (xn; yn). Under bandwidth sequence

(ii), (C1) and (R2) imply bS+2 (�)�bS�2 (�) converges weakly toG2(�) conditionally. Further, (C1) and
(R1) imply bS+1 (�) � bS�1 (�) converges weakly to G1(�) conditionally. Therefore, ĜR� (�) converges
weakly to G1(�)�G2(�); conditional on (x1; y1); (x2; y2); :::; (xn; yn).

Step 3. We show that (C1)�(C3) hold in probability for the original sample sequence (x1; y1); (x2; y2); :::.
For (C1), f̂Y jX(� jx+0 )

p! fY jX(� jx+0 ) uniformly over T ; because
p
nhn;� (Q̂(� jx+0 )�Q(� jx

+
0 )) =

Op (1) uniformly over T , see (11). Similarly, f̂Y jX(� jx�0 )
p! fY jX(� jx�0 ) uniformly over T . By the

continuous mapping theorem, f̂Y jX(� jx0) converges in probability to fY jX(� jx0) uniformly over T .
Finally, f̂X (x0)!p fX (x0) because f̂X (x0) is a standard kernel density estimator.

To prove (C2), it su¢ ces to verify that the expectation of the left-hand side of (C2) converges

to E [G1(t)G1(s)] ; and that its variance converges to 0. Because the summands are i.i.d., the

expectation of the left hand side is equal to

t ^ s� ts
(hn;thn;s)

1=2
E

(
(�+i;tdiKi;t � �

�
i;t(1� di)Ki;t)(�

+
i;sdiKi;s � �

�
i;s(1� di)Ki;s)

fX (x0)
2

)
: (S.18)

Consider the following component of (S.18):

t ^ s� ts
(hn;thn;s)

1=2
E

(
�+i;tdiKi;t�

�
i;s(1� di)Ki;s

fX (x0)
2

)

=
t ^ s� ts

(hn;thn;s)
1=2 fX (x0)

2
�
�+0 �

+
2 �

�
�+1
�2�2

Z 1

�1

�
�+2 �

�
x� x0
hn;t

�
�+1

�
I(x � x0)

�K
�
x� x0
hn;t

��
��2 �

�
x� x0
hn;s

�
��1

�
(1� I(x � x0))K

�
x� x0
hn;s

�
fX(x)dx:

Let u = (x� x0)=hn;0:5 and apply the mean value theorem. Then, the preceding display converges

S-16



to

t ^ s� ts
fX(x0)(�

+
0 �

+
2 �

�
�+1
�2
)2 (�(t)�(s))1=2

Z 1

�1

�
�+2 �

�
u

�(t)

�
�+1

�
I(u � 0) (S.19)

�K
�
u

�(t)

��
��2 �

�
u

�(s)

�
��1

�
(1� I(u � 0))K

�
u

�(s)

�
du:

The remaining components of (S.18) can be analyzed in the same way. Combining these results, it

follows that (S.18) converges to E [G1(t)G1(s)]. To show the variance of the left hand side of (C2)

converges to zero, it is su¢ cient to prove that

(t ^ s� ts)2

n2 (hn;thn;s)

nX
i=1

nX
j=1

E

 
(�+i;tdiKi;t � �

�
i;t(1� di)Ki;t)(�

+
i;sdiKi;s � �

�
i;s(1� di)Ki;s)

fX (x0)
2

!

�
 
(�+j;tdjKj;t � �

�
j;t(1� dj)Kj;t)(�

+
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which holds because of the arguments (S.18)-(S.19), the independence of the summands when i 6= j,
and nhn;0:5 !1. The convergence in (C3) holds for the same reason as that in (C2); the detail is
omitted.

Step 4. We apply a subsequence argument to show that the simulation procedure is weakly

consistent.

First, from Step 3, any subsequence of (x1; y1); (x2; y2); ::: contains a further subsequence, such

that (C1)�(C3) holds with probability 1, by Theorem 20.5 in Billingsley (1986). Second, from

Step 2, conditional on any of such further subsequence, the simulated process ŜR� (�) converges

weakly to the same limit as GR� (�) does. Therefore, Ŝ
R
� (�), conditional on the original sequence

(x1; y1); (x2; y2); :::; (xn; yn), converges weakly to the desired limit in probability. This implies that

the simulation procedure is weakly consistent.

S.6 Additional simulation results

This subsection considers three issues. First, it compares the power of the score and Wald tests

under an ideal simulation setting. Second, it evaluates the e¤ect of estimating the conditional

density on the size of the Wald tests. Third, it reports the rejection rates at the 5% nominal level

for Models 1�4 considered in Section 8.

Power comparison. Tests may display di¤erent power if they use distinct bandwidths or di¤er-

ent bias correction methods. To exclude such e¤ects, we compare the score test and the Wald test

for the treatment signi�cance hypothesis using the same bandwidth without bias estimation. The

sample size is 1000 and the bandwidth at the median is 0.4. The data generating processes are
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Models 1 and 2. The rejection frequencies at the 10% level are reported in Table A1. The values

are comparable between the two tests for all the cases considered. This con�rms the results from

the local power analysis.

Conditional density estimation. Section 8 documents that the Wald tests have less stable

size properties compared to those of the score test, especially when the sample size is small. Here,

we examine the extent to which this is because the Wald tests require estimating the conditional

density. We repeat the same procedures as in Section 8, but using the true conditional densities

instead of the estimated densities. The data generating processes are Models 1 and 2 for which all

three tests are valid. The sample size is n = 500 and the nominal level is 10%. Table A2 shows

the results. Compared with Tables 2�4, the values are now consistently close to the nominal level.
They are also comparable to those of the score test. Therefore, estimating conditional densities

accounts for most of the size distortions in small samples.

Empirical sizes at the 5% nominal level. Section 8 only reports sizes at the 10% level. To

complement these results, here we also report the sizes the 5% level. The results are shown in

Tables A3�A6. Overall, the same patterns as in Tables 2�4 and 9 are observed. The conclusions
therefore remain the same.
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Table A1: Power of Score and Wald tests using the same bandwidth (10%).

Test Model 1 Model 2

ch=0.3 0.6 1.0 2.0 ch=0.3 0.6 1.0 2.0

Score 0.265 0.663 0.948 1.000 0.386 0.741 0.975 1.000

Wald 0.293 0.648 0.922 1.000 0.336 0.693 0.941 1.000

Empirical rejection frequencies based on 2000 repetitions. The sample size n = 1000 and
the bandwidth at the median is fixed at 0.4.

Table A2: The Size of Wald tests using true conditional density functions (10%).

Methods Model 1 Model 2

TS TH TU TS TH TU

Wald

hcv0.5 0.102 0.108 0.104 0.101 0.101 0.076

hbdy0.5 0.105 0.100 0.111 0.110 0.096 0.090

hik0.5 0.105 0.106 0.106 0.102 0.098 0.102

Wald Robust

hcv0.5 0.094 0.094 0.098 0.094 0.089 0.097

hbdy0.5 0.090 0.090 0.092 0.094 0.076 0.100

hik0.5 0.096 0.081 0.098 0.100 0.074 0.096

Wald Robust EC

hcv0.5 0.106 0.100 0.098 0.100 0.090 0.103

hbdy0.5 0.103 0.096 0.106 0.108 0.082 0.104

hik0.5 0.100 0.096 0.102 0.100 0.090 0.102

Empirical rejection frequencies based on 2000 repetitions. The sample size is n = 500. TS,
TH, and TU stand for the treatment significance/homogeneity/unambiguity hypotheses.
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Table A3: The Size of Tests for the Treatment Significance Hypothesis (Models 1 & 2).

Tests Model 1 Model 2

n=500 n=1000 n=2000 n=500 n=1000 n=2000

Score

hcvi
0.5 0.054 0.042 0.048 0.057 0.050 0.048

hint
0.5 0.054 0.058 0.056 0.062 0.062 0.058

Wald

hcv
0.5 0.090 0.067 0.056 0.098 0.094 0.072

hbdy
0.5 0.101 0.074 0.058 0.116 0.084 0.062

hik
0.5 0.130 0.084 0.059 0.132 0.092 0.061

Wald Robust

hcv
0.5 0.081 0.051 0.045 0.084 0.060 0.041

hbdy
0.5 0.085 0.059 0.042 0.091 0.062 0.042

hik
0.5 0.102 0.074 0.042 0.109 0.074 0.040

Wald Robust EC

hcv
0.5 0.088 0.060 0.054 0.097 0.068 0.050

hbdy
0.5 0.094 0.064 0.052 0.112 0.070 0.051

hik
0.5 0.113 0.074 0.049 0.122 0.078 0.048

Note. The table reports rejection frequencies at the 5 percent nominal level based on
2000 replications. ”Wald”, ”Wald Robust” and ”Wald Robust EC” denote tests constructed
assuming a continuous second order derivative at the cutoff, allowing a discontinuous second
order derivative whose magnitude of discontinuity can vary freely across the quantiles, and
allowing a discontinuous second order derivative whose magnitude of discontinuity remains
constant across the quantiles. See the footnote of Table 1 in the main text for the definitions
of the bandwidth parameters.

Table A4: The Size of Tests for the Treatment Unambiguity Hypothesis (Models 1 & 2).

Tests Model 1 Model 2

n=500 n=1000 n=2000 n=500 n=1000 n=2000

Wald

hcv0.5 0.086 0.052 0.046 0.062 0.044 0.031

hbdy0.5 0.088 0.057 0.047 0.078 0.052 0.040

hik0.5 0.100 0.064 0.055 0.102 0.062 0.047

Wald Robust

hcv0.5 0.070 0.049 0.040 0.064 0.046 0.037

hbdy0.5 0.077 0.053 0.046 0.088 0.053 0.044

hik0.5 0.082 0.053 0.047 0.087 0.058 0.042

Wald Robust EC

hcv0.5 0.078 0.054 0.052 0.078 0.052 0.044

hbdy0.5 0.082 0.056 0.048 0.092 0.058 0.042

hik0.5 0.088 0.058 0.046 0.091 0.057 0.044

Note. The nominal level is 5 percent. See Table A3.
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Table A5: The Size of Tests for the Treatment Homogeneity Hypothesis (Models 1 & 2).

Tests Model 1 Model 2

n=500 n=1000 n=2000 n=500 n=1000 n=2000

Wald

hcv0.5 0.084 0.060 0.046 0.088 0.064 0.052

hbdy0.5 0.082 0.062 0.048 0.094 0.071 0.050

hik0.5 0.102 0.073 0.052 0.110 0.068 0.057

Wald Robust

hcv0.5 0.077 0.049 0.042 0.077 0.048 0.038

hbdy0.5 0.078 0.053 0.038 0.080 0.052 0.040

hik0.5 0.096 0.066 0.043 0.102 0.070 0.046

Wald Robust EC

hcv0.5 0.072 0.053 0.042 0.074 0.056 0.044

hbdy0.5 0.064 0.054 0.041 0.076 0.062 0.042

hik0.5 0.088 0.064 0.046 0.098 0.059 0.045

Note. The nominal level is 5 percent. See Table A3.

3



Table A6: The Size of Robust Tests in Models 3 & 4.

Tests Model 3 Model 4

n=500 n=1000 n=2000 n=500 n=1000 n=2000

Treatment Significance:

Wald Robust

hcv
0.5 0.110 0.094 0.086 0.125 0.075 0.054

hbdy
0.5 0.106 0.063 0.042 0.124 0.060 0.046

hik
0.5 0.110 0.062 0.055 0.105 0.058 0.036

Wald Robust EC

hcv
0.5 0.123 0.100 0.100 0.133 0.078 0.060

hbdy
0.5 0.122 0.072 0.051 0.136 0.079 0.060

hik
0.5 0.121 0.084 0.064 0.120 0.064 0.041

Treatment Unambiguity:

Wald Robust

hcv
0.5 0.029 0.026 0.020 0.078 0.052 0.052

hbdy
0.5 0.048 0.038 0.028 0.076 0.050 0.048

hik
0.5 0.052 0.036 0.018 0.066 0.036 0.031

Wald Robust EC

hcv
0.5 0.032 0.027 0.019 0.082 0.061 0.057

hbdy
0.5 0.047 0.046 0.034 0.083 0.056 0.048

hik
0.5 0.057 0.042 0.022 0.067 0.038 0.032

Treatment Homogeneity:

Wald Robust

hcv
0.5 0.072 0.044 0.050 0.104 0.068 0.061

hbdy
0.5 0.080 0.052 0.054 0.096 0.066 0.054

hik
0.5 0.080 0.048 0.050 0.077 0.066 0.044

Wald Robust EC

hcv
0.5 0.068 0.052 0.048 0.098 0.082 0.064

hbdy
0.5 0.088 0.052 0.060 0.100 0.074 0.058

hik
0.5 0.086 0.056 0.045 0.091 0.066 0.050

Note. The nominal level is 5 percent. See Table A3.
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