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Abstract

This document provides more detailed information about algorithmic derivations
and “Lego bricks” used in the main manuscript. Section 1 provides an overview of
commonly used priors for GAM-type model terms. Section 2 presents the “Lego
bricks” for estimating censored Gaussian models and Section 3 for the Cox model.
The detailed derivations for posterior mode estimation and MCMC are then presented
in Section 4 and 5



1 “Lego brick” B3, prior structures in BAMLSS

Table 1 provides an overview of commonly used “Lego bricks” for GAM-type prior structures

used within building block B3 in Section 4.
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Table 1: Commonly used “Lego bricks”, building block B3, for model terms in BAMLSS.

Priors for linear effects assume that the precision matrix P(7) is fixed. For smooth effects,

prior densities are: inverse gamma (IG), half-Cauchy (HC), scale-dependent (SD) and half-

normal (HN).

2 “Lego bricks” for the censored Gaussian distribution

The following presents the “Lego bricks” of example Section 6.1 in the main manuscript

that are used for the construction of iteratively weighted least squares (IWLS) updating

functions Ujy(+) of the Gaussian model left censored at zero.

B1. The density function of a Gaussian distribution left censored at zero is given by
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where ¢ is the probability density and ® the cumulative distribution function of the

standard normal distribution.



B6b. Score vectors u; = 9¢(8;y, X)/0n, are computed with
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3 “Lego bricks” for the Cox model

Based on the survival function

S(t) = Prob(T > t) = exp (- /O t )\(u)du) ,

for full Bayesian inference the following “Lego bricks” need to be implemented for updating
functions Ujx(-) using algorithms A1, A2a and A2b (algorithms are presented in Section 3.2

in the main manuscript):

B1. The log-likelihood function of the continuous time Cox model is given by

n
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where §; is the usual censoring indicator, which equals to d; = 1 in this example, because

we focus on real fire events.



B6a. For derivative-based estimation using Algorithm A2a and for MCMC simulation with
Algorithm A2b, the score vectors and Hessian need to be computed. Assuming a basis
function approach, the score vector of the regression coefficients for the time-varying
part n,(t) is
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B7a. The elements of the Hessian w.r.t. 8, are
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Note that the Hessian cannot be fragmented further to obtain building block B7b and
IWLS updating functions. The reason is that the diagonal weight matrix based on

0%0(B;y,X)/0n,(t)0n,(t)" requires a functional derivative like the Hadamard deriva-
tive since the predictor depends on time ¢. However, it turns out that this derivative
forms martingale residuals in the IWLS step (see, e.g., Barlow, 1988) which are inca-
pable of estimating time-varying effects, see also Hofner (2008, Section 5.2) for a detailed
discussion. Therefore updating functions Uy (-) for the time-varying predictor 7, (t) are

based on updating Equation (17) within Algorithm A2a and A2b.

B6b & B7b. Constructing updating functions for the time-constant part n, again yields an

IWLS updating scheme, see Section 4, with working observations given by
z=m,+ Wy,

with the weight matrix

W = diag(P exp(n,)),

where P is a diagonal matrix with elements p;; = fg “exp(nia(u)du). The score vector is
u=4—Pexp(n,).

(Hennerfeind et al., 2006)



4 Posterior mode updating based on IWLS

The following shows the steps needed to derive the iterative updating scheme based on

IWLS in Section 4.2. Focusing on the j-th row of (14) gives
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This yields the updating function Uj,(-) shown in (16) in the main manuscript.



5 Approximate full conditionals for MCMC

The following shows the steps to derive a multivariate normal jumping distribution based

on a second order Taylor series expansion of the log-posterior centered at the last state of
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Using a basis function representation of functions fj;(-) the precision matrix is
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with weights Wy, = —diag(0%*¢(8;y, X)/dn,.0n ) and the mean can be written as
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with working observations z = 77,(;) + W,;klu,(f).
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