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by Anna Bellach, Michael R Kosorok, Ludger Rüschendorf and Jason P Fine

A.1 Model conditions

M1) The cumulative baseline A0(t) is a strictly increasing and continuously differ-

entiable function and β0 lies in the interior of a compact set C.

M2) The vector of covariates Z(t) is P -almost surely of bounded variation on the

observed interval [0, τ ].

M3) The endpoint of the study τ is chosen in a way that P -almost surely there exists

a constant δ > 0 such that P (C ≥ τ |Z) > δ and P (X ≥ τ |Z) > δ.

M4) G is a thrice continuously differentiable and strictly increasing function with

G(0) = 0, G ′(0) > 0 and G(∞) = ∞. In addition to that one of the following

conditions is required:

a) G ′′(x) ≤ 0 for x > 0 or

b) G ′′(x) ≥ 0 for x > 0. In addition to that for any a ∈ (0,∞) and for any

sequence (xn) ⊂ R with xn →∞ as n→∞,

(∗) lim
n→∞

P(X ≤ τ,∆ε = 1)

[
log(axn)

G(a−1xn)
+

log G ′(axn)

G(a−1xn)

]
< P (X ≥ τ).

M5) Identifiability condition: If h1 ∈ Rd and h2 ∈ D[0, τ ] exist such that hT1Z(t) +

h2(t) = 0 P -almost surely, then h1 = 0 and h2(t) = 0 ∀t ∈ [0, τ ].

M6) For any h1 ∈ Rd and for any h2 ∈ D[0, τ ] exists a subset S ⊂ [0, τ ] of nonzero

Lebesgue measure such that ∀t ∈ S
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hT1Z(t) + h2(t) 6= −
G ′′
(∫ t

0
eβ

T
0 Z(u)dA0(u)

)
G ′
(∫ t

0
eβ

T
0 Z(u)dA0(u)

) ∫ t

0

eβ
TZ(u)

(
hT1Z(u) + h2(u)

)
dA0(u).

For the consistency of the weighted NPMLE, model conditions M1)-M5) and twice

continuous differentiability of G are sufficient. Model conditions M1)-M2),M5)-M6)

and thrice continuous differentiability of G are sufficient to obtain weak convergence.

For the proportional hazards (Fine-Gray) model conditions M5) and M6) are equiva-

lent. Condition M4a) is satisfied for example for the class of logarithmic transforma-

tion models and for the Box-Cox transformation models with ρ ∈ [0, 1]. M4b) holds

for the Box-Cox transformation models with ρ > 1. It is sufficient for (∗) to prove

that log(axn)/G(a−1xn)→ 0 and log G ′(axn)/G(a−1xn)→ 0 for xn →∞.

A.2 Consistency

We show that Â
0

n(τ) is bounded P -almost surely, thereby ascertaining the existence

of the weighted NPMLE. Then Â
0

n(t) is bounded on [0, τ ] uniformly P -almost surely.

From Helly’s selection theorem it is then obtained that ∃nk ⊂ N : Â
0

nk

∗→ A∗, for a

limit A∗, with ∗ denoting outer almost sure convergence. With a Kullback-Leibler

argument it is ascertained that every subsequence (β̂nk , Â
0

nk
) converges to the true

parameter (β0 , A0). Ân(t) is a sequence of monotone increasing functions, and the

limit A0(t) is continuous. From this ‖Ân − A0‖`∞[0,τ ] → 0 [P ] and |β̂n − β0| → 0 [P ]

where `∞[0, τ ] denotes the space of bounded functions on [0, τ ].

Existence of (β̂n, Â
0

n) and boundedness of Â
0

n(τ) under model condition M4a). We

define Ã
0

n(t) := n−1
∑n

i=1 Ni(t). By Jensen’s inequality it is ascertained that

n−1
[
`(Â

0

n, β̂n)− `(Ã0

n, β0)
]

≤

[
Pn1{X ≤ τ,∆ε = 1}

log G
(
e−M Â

0

n(τ)
)

G
(
e−M Â0

n(τ)
) − Pn1{X ≥ τ}

]
G
(
e−M Â

0

n(τ)
)

+Op(1).
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Existence of (β̂n, Â
0

n) and boundedness of Â
0

n(τ) under model condition M4b).

n−1
[
`(Â

0

n, β̂n)− `(Ã0

n, β0)
]

≤

{
Pn1{X ≤ τ,∆ε = 1}

[
log G′

(
eM Â

0

n(τ)
)

G
(
e−M Â0

n(τ)
) +

log
(
eM Â

0

n(τ)
)

G
(
e−M Â0

n(τ)
)]− Pn1{X ≥ τ}

}

×G
(
e−M Â

0

n(τ)
)

+Op(1).

The conclusion in both cases is that if Â
0

n(τ) became infinitely large, the right hand

side would go to −∞, which contradicts the definition of (Ân, β̂n) as a maximum

likelihood estimator.

Competing risks setting with administrative censoring. From differentiating the

discretized log-likelihood with respect to jump sizes we obtain

Â
0

n(t) =
∑

i:Xi≤t,∆iεi=1

[
n · Φa

n(X
i
, Â

0

n, β̂n)
]−1

=

∫ t

0

1
n

∑n
i=1 1(Ci ≥ s)dNi(s)

|Φa
n(s, Â0

n, β̂n)|
,

with Φa
n(s, Â

0

n, β̂n) as provided in our technical report. Substituting estimated pa-

rameters by the true model parameters we obtain

Ãan(t) =

∫ t

0

1
n

∑n
i=1 1(Ci ≥ s)dNi(s)

|Φ̃a
n(s, A0 , β0)|

,

and by Doob decomposition of the counting process Ni(t)

Φ̃a
n(s, β0 , A0) =

1

n

n∑
i=1

1(Ci ≥ s)Yi(s)e
βT0 Zi(s)G ′

(∫ s

0

eβ
T
0 Zi(u)dA0(u)

)
+ op(1).

By the Glivenko-Cantelli theorem Φ̃a
n(s, β0 , A0) converges uniformly to E

[
η(s, β0 , A0)

]
with

η(s, β0 , A0) ≡ 1(C ≥ s)Y (s)eβ
T
0 Z(s)G ′

(∫ s
0
Y (u)eβ

T
0 Z(u)dA0(u)

)
and another application of Doob decomposition implies

Ãan(t) = A0(t) + n−1

n∑
i=1

∫ t

0

1(Ci ≥ s)dMi(s)

E
[
η(s, β0 , A0)

]
+ op(1)

+ op(1).
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By the Glivenko-Cantelli theorem Ãan(t)→ A0(t) for n→∞ uniformly almost surely

in t. Further the Glivenko-Cantelli theorem implies that Φa
n(s, Â

0

n, β̂n) converges uni-

formly to a continuously differentiable function Φ∗(s, A∗, β∗) and the limit is bounded

away from zero. Â
0

n(t) is absolutely continuous with respect Ãan(t) and Â
0

n(t)/Ãan(t)

converges to α∗(t) = E
[
η(s, β0 , A0)

]
/Φ∗(s, A∗, β∗). Therefore,

Â
0

n(t)→ A∗(t) =

∫ t

0

E
[
η(s, β0 , A0)

]
Φ∗(s, A∗, β∗)

dA0(s).

With a Kullback-Leibler argument it is then obtained that the limit A∗(t) is P -almost

surely the true baseline hazard A0(t). For the setting with administrative censoring

we define the Kullback-Leibler distance

Ka(θ0, θ∗) = EFθ0 ,G

[
log

{(
fθ0(X)

fθ∗(X)

)∆1(ε=1)(Sθ0(C ∧ τ)

Sθ∗(C ∧ τ)

)1−∆(Sθ0(C ∧ τ)

Sθ∗(C ∧ τ)

)∆1(ε6=1)
}]

,

thereby denoting θ0 = (β0 , A0) and θ∗ = (β∗, A∗) and with fθ(t) = αθ(t)Sθ(t) being

the subdensity for the event of interest. As derived in Section B.3 this Kullback-

Leibler distance is nonnegative. On the other hand, as θ̂n = (β̂n, Â
0

n(t)) maximizes

the log-likelihood function it is obtained that Ka(θ0, θ∗) ≤ 0 and thus Ka(θ0, θ∗) = 0.

It is then ascertained in Section B.3 of our technical report that the Kullback-Leibler

distance takes the value zero if and only if β∗ = β0 and A∗ = A0 . From this we

conclude that β̂n → β0 P -almost surely and Â
0

nk
→ A0 uniformly P -almost surely.

Competing risks setting with independent right censoring

From maximizing the discretized likelihood function we obtain

Â
0

n(t) =
∑

i:Xi≤t,∆iεi=1

[
n · Φn(X

i
, Â

0

n, β̂n)
]−1

=

∫ t

0

1
n

∑n
i=1 1(Ci ≥ s)dNi(s)

|Φn(s, Â0

n, β̂n)|
,

with Φn(s, Â
0

n, β̂n) as provided in our technical report. Substituting estimated pa-

rameters by the true model parameters we define
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Ã
0

n(t) =

∫ t

0

1
n

∑n
i=1 1(Ci ≥ s)dNi(s)

|Φ̃n(s, A0 , β0)|
.

With an application of empirical process theory it is ascertained that Φ̃n(s, β0 , A0) =

Φ̃a
n(s, β0 , A0) + op(1) and thus Ãn(t) → A0(t). By the Glivenko-Cantelli theorem

Φn(s, β̂n, Ân) converges uniformly to a continuously differentiable function Φ∗(s, A∗, β∗)

with Φ∗(s, A∗, β∗) > 0 for s ∈ [0, τ ] and

Â
0

n(t)→ A∗(t) =

∫ t

0

E
[
η(s, β0 , A0)

]
Φ∗
(
s, β∗, A∗

) dA0(s).

A∗(t) is absolutely continuous with respect to the Lebesgue measure and the Radon–

Nikodym derivative takes the form α∗(t) = E
[
η(t, β0 , A0)

]
/Φ∗

(
t, β∗, A∗

)
α0(t).

We define the Kullback-Leibler distance corresponding to the weighted log-likelihood

function as

Kw∗(θ0, θ∗) = EFθ0 ,G

[
log

{(
fθ0(X)

fθ∗(X)

)∆1(ε=1)(Sθ0(C ∧ τ)

Sθ∗(C ∧ τ)

)1−∆

×

(
exp
(
−
∫ τ

0 w̃(t)dAθ0(t)
)

exp
(
−
∫ τ

0 w̃(t)dAθ∗(t)

)∆1(ε6=1)}]
.

From the asymptotic equivalence of Ka(θ0, θ∗) and Kw∗(θ0, θ∗) it can be concluded

that β∗ = β0 and A∗ = A0 .

A.3 Weak convergence

Let H denote the space of elements h = (h1, h2) with h1 ∈ Rd and h2 ∈ D[0, τ ]. A

norm on H is then defined by ‖h‖H = ‖h1‖+‖h2‖v, with ‖ · ‖ denoting the Euclidean

norm and ‖ · ‖v denoting the total variation norm. For p < ∞ we define Hp = {h ∈

H : ‖h‖H ≤ p}. The parameter space is denoted by Θ = {θ = (β,A0), with β ∈

Rd andA0 being a monotone increasing element ofD[0, τ ]}. For h ∈ Hp we define

θ(h) = hT1 β +
∫ τ

0
h2(u)dA0(u), so that Θ ⊂ `∞(Hp). One-dimensional submodels of
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the form t → θt = θ + t
(
h1,
∫ (·)

0
h2(u)dA0(u)

)
are considered with h ∈ Hp to define

the empirical score operator

Ψn(θ, h, w) =
∂

∂t
`n(θt, h, w)

∣∣∣∣
t=0

= Pnψ(θ, h, w) = Pn
(
ψ1(θ, h, w) + ψ2(θ, h, w)

)
,

for a measurable function ψ(θ, h, w), where Ψw
n1(θ, h, w) = Pnψ1(θ, h, w) is the compo-

nent related to the derivative with regard to β and Ψw
n2(θ, h, w) = Pnψ2(θ, h, w) is the

component related to the derivative along the submodel for A0. The limiting version

Ψ is defined by replacing the empirical measure Pn by the probability measure P .

Weak convergence is ascertained by a new lemma for weighted Z−estimators, that

is based on Theorem 3.3.1. of van der Vaart and Wellner (1996):

Lemma 1. Let the parameter set Θ be a subset of a Banach space. Let w̃(t) be a

bounded deterministic weight function and let ŵn(t) be a sequence of bounded random

weight functions with values in R+. Let Ψn and Ψ be a linear random map and a

linear deterministic map, respectively from Θ× R+ into a Banach space such that

a)
√
n(Ψn −Ψ)(θ̂n, ŵn)−

√
n(Ψn −Ψ)(θ0, ŵn) = o∗p

(
1 +
√
n‖θ̂n − θ0‖

)
,

such that
√
n(Ψn−Ψ)(θ0, w̃) converges to a tight limit Z1 and

√
n
(
(Ψn−Ψ)(θ0, ŵn)−

(Ψn −Ψ)(θ0, w̃)
)

converges to a tight limit Z2, and the sequences jointly converge to

(Z1,Z2).

Let (θ, w) → Ψ(θ, w) be Fréchet-differentiable at (θ0, w̃) with a continuously in-

vertible derivative Ψ̇w̃
θ0

. If Ψ(θ0, w̃) = 0 and θ̂n satisfies Ψn(θ̂n, ŵn) = o∗p(n
−1/2), if

Ψn(θ̂n, w̃) = Ψn(θ̂n, ŵn) + op(1) and if Ψn(θ̂n, w̃) converges in outer probability to

Ψ(θ0, w̃), then

√
n Ψ̇w̃

θ0
(θ̂n− θ0) = −

√
n
(
(Ψn−Ψ)(θ0, w̃) + (Ψn−Ψ)(θ0, ŵ)− (Ψn−Ψ)(θ0, w̃)

)
+o∗p(1)

(1)

and
√
n(θ̂n − θ0) ; −

[
Ψ̇w̃
θ0

]−1
(Z1 + Z2), with ; denoting weak convergence.
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As our model is based on iid observations, for condition a) in the above Lemma

1 it is sufficient to verify the two conditions of Lemma 5 in our technical report. By

the Donsker theorem
√
n(Ψn − Ψ)(θ0 , w̃) converges in distribution to the tight ran-

dom element Z1. Also by Donsker theorem
√
n
(
(Ψn −Ψ)(θ0 , ŵn)− (Ψn −Ψ)(θ0 , w̃)

)
converges in distribution to a tight random element Z2. Joint convergence follows

from the asymptotic linearity of the two components marginally, combined with the

fact that the composition of two Donsker classes is also Donsker. Per definition

Ψn(θ̂n, ŵn) = 0. As argued in Parner (1998) from the Kullback-Leibler informa-

tion being positive and by interchanging expectation and differentiation we obtain

Ψ(θ0, w̃) = 0. Arguments for the continuous invertibility of Ψ̇0 and Ψ̇a
0 under model

conditions M6),M7) are provided in our technical report.

From Lemma 1 we obtain weak convergence of
√
n(θ̂n − θ0) and the covariances

for the limiting process −Ψ̇−1
0 (Z1 +Z2), with Z1(h) = limn→∞ Pn ψ(β̂n, Ân, h, w̃) and

Z2(h) = limn→∞ Pn
[
(ψ(β̂n, Ân, h, ŵn)− ψ(β̂n, Ân, h, w̃)

]
, are given by

P
{[

(Z1 + Z2)
(
Ψ̇−1

0 (g)
)] [

(Z1 + Z2)
(
Ψ̇−1

0 (h)
)]}

for g, h ∈ H (Kosorok, 2008, page 302).

A.4 Variance estimation

The middle part of the sandwich variance estimator, as proposed in section ??, is

obtained from the iid decomposition of the score with ηi,n =
(
η1
i , . . . , η

d+k(n)
i

)
and

ψi,n =
(
ψ1
i , . . . , ψ

d+k(n)
i

)
defined as

η`i,n =

Zi`(Xi)+
∑

j:Xj≤Xi
∆jεj=1

Zi`(Xj)e
βTZi(Xj)An{Xj}

G′′
(∫Xi

0
eβ

T
0 Zi(u)dAn(u)

)
G′
(∫Xi

0
eβTZi(u)dAn(u)

)
1(∆iεi = 1)
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−
∑

j:Xj≤Xi∧τ
∆jεj=1

Zi`(Xj)e
βTZi(Xj)An{Xj} G′

(∫ Xi∧τ

0

eβ
TZi(u)dAn(u)

)

−
[∫ τ

Xi

w̃∗i (t)eβ
TZi(t)Z

i`
(t)G′

(∫ t

0

eβ
TZi(u)dAn(u)

)
dAn(t)

]
1(∆iεi = 2)

−
[∫ τ

Xi

w̃∗i (t)eβ
TZi(t)

(∫ t

0

Z
i`

(u)eβ
TZi(u)dAn(u)

)
G′′
(∫ t

0

eβ
TZi(u)dAn(u)

)
dAn(t)

]
×1(∆iεi = 2)

for ` ∈ {1, . . . , d} and

η`i,n=

[
1(X` = Xi)

[
An{X`}

]−1
+ 1

(
X` ≤ (Xi ∧ τ))eβ

TZi(X`)

×G′′
(∫ Xi

0

eβ
TZi(u)dAn(u)

)/
G′
(∫ Xi

0

eβ
TZi(u)dAn(u)

)]
1(∆iεi = 1)

−1
(
X` ≤ (Xi ∧ τ)

)
eβ

TZi(X`)G′
(∫ X`

0

eβ
TZi(u)dAn(u)

)

−1(Xi ≤ X`)

[
w̃∗i (X`)e

βTZi(X`)G′
(∫ X`

0

eβ
TZi(u)dAn(u)

)]
1(∆iεi = 2)

−
[
eβ

TZi(X`)

∫ τ

Xi∧X`
w̃∗i (t)eβ

TZi(t) G′′
(∫ t

0

eβ
TZi(u)dAn(u)

)
dAn(t)

]
1(∆iεi = 2)

for ` ∈ {d+ 1, . . . , d+ k(n)}. To calculate ψ`i,n we apply

Ĝc(t)

Ĝc(Xj)
− Gc(t)

Gc(Xj)
= − Gc(t)

Gc(Xj)

n∑
i=1

∫ t

Xj

1∑n
k=1 1(Xk≥u)

×dM c
i (u) + op(n

−1/2),

where M c
i (t) = 1(Xi ≤ t, ∆i = 0) −

∫ t
0
1(Xi ≥ u)dAc(u) is the martingale associ-

ated with the censoring process and Ac(t) is the cumulative hazard of the censoring

distribution. From this we obtain the representation

ψ`i,n =

∫ ∞
0

q`n(u){πn(u)}−1dM c
i (u), with
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q`n(u) =
1

n

∑
j:∆jεj=2

[∫ τ

0

w̃∗j (t)1(Xj ≤ u ≤ t)eβ
TZj(t)Z

j`
(t)G′

(∫ t

0

eβ
TZj(s)dAn(s)

)
dAn(t)

]

+
1

n

∑
j:∆jεj=2

[∫ τ

0

w̃∗j (t)1(Xj ≤ u ≤ t)eβ
TZj(t)

(∫ t

0

Z
j`

(s)eβ
TZj(s)dAn(s)

)

×G′′
(∫ t

0

eβ
TZj(s)dAn(s)

)
dAn(t)

]
for ` ∈ {1, . . . , d},

q`n(u) =
1

n

∑
j:∆jεj=2

[
w̃∗j (X`)1(Xj ≤ u ≤ X`)e

βTZj(X`) G′
(∫ X`

0

eβ
TZj(s)dAn(s)

)]

+
1

n

∑
j:∆jεj=2

[
eβ

TZj(X`)

∫ τ

0

1(X` ≤ t)1(Xj ≤ u ≤ t)w̃∗j (t)eβ
TZj(t)G′′

(∫ t

0

eβ
TZj(s)dAn(s)

)
dAn(t)

]

for ` ∈ {d+ 1, . . . , d+ k(n)} and πn(u) = n−1
∑n

j=1 1(Xj ≥ u).
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