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Abstract: A one-dimensional model for the initiation of shear bands in a reactive material is

developed, with an Arrhenius source term to model the chemical reaction occurring in the band.

An inhomogeneity in the heat flux is used as the stimulus for localised plastic deformation, and

the problem is treated as a perturbation to the elastic solution. In the analysis, the thin zone of

localisation is identified as a boundary layer. It is found that the behaviour of the perturbations to

the temperature and stress in the band are governed by three dimensionless parameters which are

known in terms of various material properties. The resulting equations are solved numerically and

a criterion for the onset of shear banding is discussed.

1 Introduction

Unintended low energy thermal or mechanical stimuli can lead to the accidental ignition of explosive

materials. During such events, described as ‘insults’ in the literature, ignition of the explosive is

caused by localised regions of high temperature known as ‘hot spots’. Understanding the response

of explosive materials to insults, and in particular understanding the mechanisms which cause the

formation of hot spots, is of key importance in developing and maintaining safe procedures for

working with explosives. Investigation of explosive response to insults through the use of numerical

continuum mechanics methods, such as finite element models, often falls victim to problems such as

severe mesh deformation [1]. Typically a very high resolution is required to overcome such issues,

but this comes at the cost of computational resources and time. Additionally, large scale numerical

codes do not always offer as much physical insight as small scale, simplified, analytical models.

Many mechanisms for hot spot generation are discussed in the literature [see 2, and references

therein], and include adiabatic compression of trapped gas spaces, friction between impacting sur-

faces, local adiabatic shear, and heating at crack tips. Here we develop a one-dimensional model

which investigates the role of localised shear, or shear banding, as an ignition mechanism resulting

from an insult.
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A common description of shear localisation is as follows. Consider a material which exhibits strain

hardening, strain-rate hardening and thermal softening behaviour being placed under a uniform

shear stress. In the early stages the response will be that of uniform shear strain; the material

will undergo homogeneous deformation. As the strain is increased so that the material enters into

the plastic regime, material hardening behaviour is observed. This hardening behaviour will be

exacerbated by any geometric discontinuity or material inhomogeneity – the strain rate will be

higher near the discontinuity, leading to further hardening behaviour. If the straining occurs at a

high enough average strain rate (typically greater than 102 s−1) there is insufficient time for the

generated heat to be conducted away [3]. The material softens due to the localised temperature

increase and, if this softening process dominates over the strain hardening effects, the material

strength decreases. The local net softening of the material serves to concentrate the deformation

into thin planar regions, known as shear bands. It is hypothesised that the concentration of thermal

energy within such shear bands could trigger a localised reaction which may cause thermal runaway.

Shear localisation has been widely studied in inert materials (see [4, 5], for example), but there

have been relatively few analytical studies on localised shear in explosive materials. In contrast to

the dearth of analytical work, many experimental studies can be found in the literature. Evidence

for localised shear within the explosive sample can be observed in recovered unexploded samples.

Photographic evidence for adiabatic shear is given by Field et al. [6], showing ignition and propa-

gation occurring in a shear band in a sample of high explosive. Notable analytical work on shear

localisation in explosive materials includes [7–10] and the substantial work [11]. Also worthy of

mention are the experimental works [12, 13]. It is in general concluded that localised shear is a

prevalent hot spot mechanism, which manifests in many differing loading scenarios.

Here we present a model for the onset of localisation in a reactive material in which the reaction

and localisation of plastic work occur on a similar timescale. We investigate the standard one-

dimensional model for the initiation of a shear band, with the addition of an Arrhenius source term to

model the chemical reaction occurring in the band. Motivated by [5] we use an inhomogeneity in the

heat flux as the stimulus for localised plastic deformation, and treat the problem as a perturbation

to the elastic solution. In the analysis, the thin zone of localisation (or shear band) is identified as

a boundary layer.

In Section 2 the governing equations for the one-dimensional slab are presented in dimensional

form. The constitutive law for the strain-rate is chosen to be that in [5], which is convenient for

the asymptotic analysis in the following section. The governing equations are then recast in non-

dimensional form using a thermal length scale, effectively placing the shear band an infinite distance

from the edge of the plates, consistent with the physical observation that a shear band width is

typically much smaller than the size of the slab. In Section 3 we give details of the boundary layer

analysis used to obtain equations which govern the growth of the magnitudes of the perturbations to

the temperature and stress at the centre of the band. In Section 4 the equations from the boundary

layer analysis are expressed in terms of new non-dimensional parameters, and it is shown that the
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growth of the perturbations are controlled by three parameters which are know in terms of material

properties. The results are compared with the inert case and a criterion for the initiation of reactive

shear bands in discussed. We conclude in Section 5, where we give an example to demonstrate the

role of the governing parameters, and suggest how the solution may differ if the onset of plastic

localisation and onset of reaction occur on disparate timescales.

2 Mathematical Model

We consider a slab of reactive material of height 2L undergoing elastic-thermo-visco-plastic defor-

mation, see Figure 1. In dimensional form the governing equations read:

ρṽt̃ = s̃ỹ, momentum balance; (1)

ρcT̃t̃ = κT̃ỹỹ + βs̃Γ̇ + ρΩA exp

(
− E

RT̃

)
, energy balance; (2)

s̃t̃ = G(ṽỹ − Γ̇), elastic relationship; (3)

Γ̇ = Γ̇(s̃, T̃ , Γ), plastic flow law; (4)

Γ =

∫ t̃

0
Γ̇(t′) dt′, plastic strain. (5)

Here the dependent variables are velocity ṽ(ỹ, t̃), stress s̃(ỹ, t̃), temperature T̃ (ỹ, t̃), and plastic

strain rate Γ̇(ỹ, t̃). The plastic strain Γ(ỹ, t̃) is determined by integration of strain rate. The

material constants ρ, G, c, κ, β, Ω, A, E and R, are the density, elastic shear modulus, specific

heat, thermal conductivity, Taylor-Quinney coefficient, heat of reaction, rate constant, activation

energy and molar gas constant, respectively.

On the top and bottom of the slab we impose the boundary conditions

ṽ(±L, t̃) = ±ṽ0, T̃ (±L, t̃) = T̃0, (6)

with appropriate compliance of the stress. The initial conditions are taken to correspond to the

uniform shearing solution

ṽ(ỹ, 0) = ω̃ỹ, s̃(ỹ, 0) = s̃0, Γ̇(ỹ, 0) = ω̃, Γ(ỹ, 0) = 0, T̃ (ỹ, 0) = T̃0, (7)

where ω̃ is the nominal strain rate. Specification of an initial stress s̃0 > 0 corresponds to starting

the physical problem nearer to the onset of plastic deformation [5].

In order to initiate a shear band it is necessary to introduce some external localised stimulus.

Motivated by the work on inert shear bands by DiLellio and Olmstead [5], we consider an inhomo-

geneity in the heat flux placed at ỹ = 0 as the stimulus for the formation of a shear band. The heat
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Figure 1: Schematic of uniform shearing vs. a shear band centered about ỹ = 0.

flux disturbance is introduced as

κT̃ỹ(0
−, t̃) = −κT̃ỹ(0+, t̃) = Q(t̃) ≥ 0, t̃ > 0, (8)

where Q(t̃) is assumed to be of small magnitude and short duration. Owing to symmetry considera-

tions, we treat only the upper half plane, and solve the governing equations subject to the following

conditions on the velocity and stress along the centreline

ṽ(0, t̃) = 0, s̃ỹ(0, t̃) = 0, t̃ > 0. (9)

In the following we choose to adopt a strain-rate model which depends only on the stress and

temperature. The analysis may be extended to account for hardening effects, but this introduces

additional complexities. In the interest of obtaining a clear insight into how the reaction affects

the onset of shear bands, and to allow for a more direct comparison with [5], the effects of strain

hardening are not considered herein. We use the model proposed in [5] which accounts for thermal

softening and strain rate dependence, and takes the following exponential form

Γ̇(s̃, T̃ ) = Γ̇∗ exp{−[B−11 (T̃p − T̃ ) +B−12 (s̃p − s̃)]}, (10)

where Γ̇∗ is a dimensional reference strain-rate, and the constants T̃p and s̃p are the critical values

of temperature and stress below which the plastic strain-rate is exponentially small. It is required

that T̃p > T̃0 and s̃p > s̃0 so that the problem is started in the elastic stage in which plastic strain

is initially negligible. The parameters B1,B2 are related to strain-rate sensitivity M and thermal
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sensitivity P via the definitions

M ≡ 1

s̃p

∂s̃

∂ log Γ̇
=
B2

s̃p
, P ≡ − T̃p

s̃p

∂s̃

∂T̃
=

(
B2

s̃p

)/(
B1

T̃p

)
. (11)

This strain-rate model is a good approximation of more typical power law models, but offers a form

which is much more convenient for the boundary layer analysis to follow.

We introduce non-dimensional variables, which are related to the dimensional variables by

t = t̃/t∗, y = ỹ/l, v = ṽ/ṽ0, s = s̃/s̃0, γ̇ = Γ̇/Γ̇0, T = T̃ /T̃0, q = Q/q0, (12)

and the non-dimensional constants

t∗ =
s̃0

GΓ̇0

, l =

(
κs̃0

ρcGΓ̇0

)1/2

, Γ̇0 =
ṽ0
l

, Γ0 = t∗Γ̇0, ω =
ω̃

Γ̇0

,

ρ̂ =
κΓ̇0

cs̃0
, λ =

βs̃20
ρcGT̃0

, Ê =
E

RT̃0
, Ω̂ =

Ω

cT̃0
, Â = At∗, q0 =

κT̃0
l

. (13)

The choice of the thermal length scale l allows us to make the simplifying assumption that the

material sample occupies the space −∞ < y <∞, which is consistent with the physical observation

that shear bands are typically very thin compared with the sample size.

The non-dimensional governing equations for the shearing problem in the upper-half plane read

ρ̂vt = sy, (14)

Tt = Tyy + λsγ̇ + Ω̂Â exp

(
−Ê
T

)
, (15)

st = vy − γ̇, (16)

γ̇ =
Γ̇∗

Γ̇0

exp

{
−
[
T̃0
B1

(Tp − T ) +
s̃0
B2

(sp − s)
]}

, (17)

where Tp = T̃p/T̃0 > 1 and sp = s̃p/s̃0 > 1 are the non-dimensional critical temperature and stress,

respectively. Since we are neglecting hardening effects (i.e. strain dependence), the non-dimensional

counterpart of (5) has been omitted.

3 Boundary Layer Analysis

We seek a solution of (14) – (17) in the form of a perturbation to the elastic (γ̇ = 0) solution.

In the following analysis, a thin zone centred around y = 0 in which significant plastic work and

reaction take place is identified. Outside of this region both the heating due to plastic work and

heating due to reaction are exponentially small, and far from the centre of the localisation zone
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the elastic solution remains valid. The solution in the thin zone around y = 0 is matched on to

the elastic solution via an intermediate diffusive zone. The equations governing the behaviour of

the perturbations to the elastic stress and temperature along the centreline will be obtained. The

governing equations may be recast in the form

st = ρ̂−1
∫ t

0
syy(y, t′) dt′ + ω − γ̇, (18)

Tt = Tyy + λsγ̇ + Ω̂Â exp

(
−Ê
T

)
, (19)

where (18) represents a combination of (14) – (16), and the velocity has been eliminated using the

initial condition v(y, 0) = ωy. The plastic strain-rate is still given by (17). These equations are to

be solved subject to the initial and boundary conditions

s(y, 0) = 1, T (y, 0) = 1, (20)

sy(0, t) =0, Ty(0, t) = −q(t), T (∞, t) = 1. (21)

In order to proceed with the boundary layer analysis we must identify a small parameter ε. This

is introduced through the ratios B1/T0 and B2/s0 by the relations

B1

T̃0
= β−11 ε,

B2

s̃0
= β−12 ε, 0 < ε� 1, (22)

where β1 and β2 are O(1) with respect to ε. Such a scaling is typical of material which exhibit shear

banding [5]. It is assumed that the plastic strain rate function can be multiplicatively scaled [5], so

that
Γ̇∗

Γ̇0

= γ̇0ε
−1/2, (23)

and the plastic strain-rate takes the non-dimensional form

γ̇(s,T ) = γ̇0ε
−1/2 exp{−ε−1[β1(Tp − T ) + β2(sp − s)]}, (24)

where γ̇0 is O(1) with respect to ε.

The non-dimensional parameter ρ̂ is typically small in materials which exhibit shear banding

effects so, in order to take advantage of this, we introduce the scaling

ρ̂ = ερ̂0, (25)

where ρ̂0 is O(1) with respect to ε.
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We also exploit the largeness of the pre-exponential factor Â by setting

Â = Â0
Ê1/2

TR
exp

(
Ê

TR

)
, (26)

where TR is the non-dimensional critical reaction temperature, i.e. the temperature at which sig-

nificant reaction first occurs, and Â0 is O(1) with respect to ε. The reaction temperature will

later be used to identify a reaction time scale tR. As in high activation energy asymptotic analy-

ses (e.g. [14]), the small parameter ε, non-dimensional activation energy and the critical reaction

temperature are related by

ε =
T 2
R

Ê
. (27)

Both relations (22) and (27) are consistent when we consider materials in which onset of signif-

icant plastic work and onset of significant reaction occur over similar timescales, these we refer to

as “reactive shear bands”. For materials in which localisation of plastic work occurs well before

significant reaction (or vice-versa) these relations should be adjusted so that the appropriate plastic

or reaction properties are related through different powers of ε.

3.1 Elastic stage

In the initial stages of deformation the plastic strain-rate is initially exponentially small until the

stress and temperature have risen sufficiently to make the argument of the exponent in (24) positive.

Additionally, the Arrhenius source term is exponentially small until the critical reaction temperature

TR is reached. Thus, for early times the inert elastic solution of (18) – (19) is given by

Te(y, t) = 1 + δ

∫ t

0

e
− y2

4(t−t′)

[π(t− t′)]1/2h(t′) dt′, (28)

se(y, t) = 1 + ωt, (29)

see, for example, [15, p.75]. Here the heat flux inhomogeneity is represented as

q(t) = δh(t), 0 ≤ h(t) ≤ 1. (30)

The scaling of the heat flux is such that 0 < ε� δ � 1, so that δ is sufficiently large to introduce

localisation but still small enough to be negligible in comparison with physical factors that control

the evolution of the shear band. This early time solution will be used as the basis of our asymptotic

analysis.
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3.2 Onset of reactive shear band

Beyond the critical plastic threshold γ̇ becomes large due to the multiplicative scaling. This moti-

vates the definition of a critical time scale tp at which the onset of significant plastic work occurs,

i.e. the time at which the exponential in (24) becomes O(1). Therefore tp is defined by the smallest

solution of

β1[Tp − Te(0, tp)] + β2[sp − se(0, tp)] = 0. (31)

Given that the stimulus for the shear band is placed along the centreline, the plastic work first

becomes significant near y = 0, and occurs at time t = tp. At this stage the solution will be a

perturbation of the elastic solution (28) – (29). The temperature in the shear band will increase

due to plastic work, until the critical reaction temperature is reached. As previously discussed, we

consider the case where the subsequent reaction occurs on a similar timescale to the growth of the

plastic work time. It is possible to consider a model in which the plastic and reactive behaviour

occur on disparate timescales, but we restrict ourselves to the most critical case.

We introduce new independent variables ξ and τ such that

y = εξ, t = tp + ετ , ξ > 0, τ > − tp
ε
→ −∞, (32)

which are appropriate to describe the inner solution in the boundary layer near y = 0, where the

localised plastic straining first begins to occur. In order to identify the onset of the reaction we

define a critical reaction timescale τR (related to the “original time” by tR = tp+ετR) as the solution

of

TR = Te(0, tp + ετR) + εT1(0, τR) + o(ε), (33)

where the function T1 is still to be determined as part of the solution.

In the inner layer we expand the temperature and stress in powers of ε as

T = Te(εξ, tp + ετ) + εT1(ξ, τ) + ε3/2T2(ξ, τ) + · · · , (34)

s = se(εξ, tp + ετ) + εs1(ξ, τ) + ε3/2s2(ξ, τ) + · · · . (35)

Physically we expect the solution in the shear band to be driven by plastic work and the chemical

reaction. The chosen scalings in the expansion allow for the appropriate balance between the

corrections to the temperature and stress and the plastic work and reaction terms in the governing

equations (18) – (19). We expand the elastic parts of the solution as

Te(εξ, tp + ετ) = Te(0, tp) + ε(aτ − bξ) + o(ε), (36)

se(εξ, tp + ετ) = se(0, tp) + εωτ + o(ε), (37)
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where

a = Tet(0, tp) = δ

∫ tp

0
[π(tp − t′)]−1/2h′(t′) dt′, b = −Tey(0, tp) = δh(tp). (38)

Substitution of the expansions for the temperature and stress into (18) – (19) gives[
s1 + ε1/2s2 + · · ·

]
τ

= ρ̂−10

∫ τ

−∞

[
ε−1s1 + ε−1/2s2 + · · ·

]
ξξ

dτ ′ − γ̇, (39)

[
T1 + ε1/2T2 + · · ·

]
τ

=
[
ε−1T1 + ε−1/2T2 + · · ·

]
ξξ

+ λ [se + εs1 + · · · ] γ̇ + Ω̂Â exp

(
−Ê
T

)
, (40)

where the expansions of the plastic strain-rate and Arrhenius source term are given by

γ̇ = γ̇0ε
−1/2 {exp[β3τ − β1bξ + β1T1 + β2s1] + o(1)} , (41)

and

Ω̂Â exp

(
−Ê
T

)
= Ω̂Â0ε

−1/2 exp

{
T 2
R

ε

(
1

TR
− 1

Te(0, tp) + ε(aτ − bξ + T1) + o(ε)

)}
, (42)

respectively. Here β3 = β1a+ β2ω < 0. Using (33) we may rewrite the temperature expansion as a

correction to the reaction temperature TR, that is

T = Te(0, tp) + ε(aτ − bξ + T1) + o(ε)

= Te(0, tp) + ε(aτR + T1(0, τR)) + ε(a(τ − τR)− bξ + T1 − T1(0, τR)) + o(ε)

= TR + ε(a(τ − τR)− bξ + T1 − T1(0, τR)) + o(ε), (43)

so that (42) reads

Ω̂Â exp

(
−Ê
T

)
= Ω̂Â0ε

−1/2 exp {a(τ − τR)− bξ + T1 − T1(0, τR) + o(1)} , (44)

and we observe that the onset of reaction is delayed by the shift in time τR.

We now solve the sequence of boundary value problems which arise from considering powers of

ε. At O(ε−1) we have the problem∫ τ

−∞
s1ξξ dτ = 0, s1ξ(0, τ) = 0, s1(ξ,−∞) = 0, (45)

T1ξξ = 0, T1ξ(0, τ) = 0, T1(ξ,−∞) = 0. (46)
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This has solution

T1(ξ, τ) = f1(τ), f1(−∞) = 0, s1(ξ, τ) = g1(τ), g1(−∞) = 0, (47)

where f1 and g1 are to be determined. We next solve the problem at O(ε−1/2):∫ τ

−∞
s2ξξ dτ = ρ̂0γ̇0 exp[β3τ − β1bξ + β1T1 + β2s1], (48)

s2ξ(0, τ) = 0, s2(ξ,−∞) = 0, (49)

T2ξξ = −λγ̇0(1 + ωtp) exp[β3τ − β1bξ + β1T1 + β2s1]

− Ω̂Â0, exp[a(τ − τR)− bξ + f1(τ)− f1(τR)], (50)

T2ξ(0, τ) = 0, T2(ξ,−∞) = 0, (51)

which has solution

T2(ξ, τ) = −λγ̇0(1 + ωtp)

β1b

(
ξ +

exp(−β1bξ)
β1b

)
exp[β3τ + β1f1(τ) + β2g1(τ)]

− Ω̂Â0

b

(
ξ +

exp(−β1bξ)
β1b

)
exp[a(τ − τR)− bξ + f1(τ)− f1(τR)] + f2(τ), (52)

s2(ξ, τ) =
ρ̂0γ̇0
β1b

(
ξ +

exp(−β1bξ)
β1b

)
d

dτ
{exp[β3τ + β1f1(τ) + β2g1(τ)]}+ g2(τ), (53)

f2(−∞) = 0, g2(−∞) = 0, (54)

where f2 and g2 are to be determined.

In order to satisfy the boundary conditions away from the shear band we consider an outer layer,

in which the appropriate independent variables are

y = ε1/2Y , t = tp + ετ , Y > 0, τ > − tp
ε
→ −∞. (55)

In this region both the plastic straining and reaction are negligible. Motivated by achieving a

balance between the time derivative and diffusive terms in the governing equations [5], we introduce

the expansions

T = Te(ε
1/2Y , tp + ετ) + εTO1 (Y , τ) + ε3/2TO2 (Y , τ) + · · · , (56)

s = se(ε
1/2Y , tp + ετ) + εsO1 (Y , τ) + ε3/2sO2 (Y , τ) + · · · . (57)

For the analysis here we only require the leading order governing equations in the outer layer, which
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read

sO1τ = ρ̂−1
∫ τ

−∞
sO1Y Y dτ ′, sO1 (∞, τ) = 0, sO1 (Y ,−∞) = 0, (58)

TO1τ = TO1Y Y , TO1 (∞, τ) = 0, TO1 (Y ,−∞) = 0. (59)

No boundary conditions are imposed at Y = 0. Instead we must perform an asymptotic matching

between the inner and outer solutions. The inner expansion is expressed in terms of the outer

variables and equated to the outer expansion in order to derive matching relations at Y = 0. The

result is

εTO1 (Y , τ) + ε3/2TO2 (Y , τ) + · · · = εT1(ε
−1/2Y , τ) + ε3/2T2(ε

−1/2Y , τ) + · · ·

= ε

[
f1(τ)− λγ̇0(1 + ωtp)Y

β1b
exp(β3τ + β1f1(τ) + β2g1(τ))

− Ω̂Â0Y

b
exp(a(τ − τR)− bξ + f1(τ)− f1(τR))

]
+O(ε3/2), (60)

εsO1 (Y , τ) + ε3/2sO2 (Y , τ) + · · · = εs1(ε
−1/2Y , τ) + ε3/2s2(ε

−1/2Y , τ) + · · ·

= ε

[
g1(τ) +

ρ̂0γ̇0Y

β1b

d

dτ
exp(β3τ + β1f1(τ) + β2g1(τ))

]
+O(ε3/2), (61)

which provides the boundary conditions

TO1 (0, τ) = f1(τ), sO1 (0, τ) = g1(τ), (62)

TO1Y (0, τ) = −λγ̇0(1 + ωtp)

β1b
exp(β3τ + β1f1(τ) + β2g1(τ))

− Ω̂Â0

b
exp(a(τ − τR) + f1(τ)− f1(τR)), (63)

sO1Y (0, τ) =
ρ̂0γ̇0
β1b

d

dτ
exp(β3τ + β1f1(τ) + β2g1(τ)). (64)

Solution of the leading order equations (58) – (59) subject to the boundary and flux conditions

gives

TO1 (Y , τ) =

∫ τ

−∞

{
λγ̇0(1 + ωtp)

β1b
exp

[
β3τ
′ + β1f1(τ

′) + β2g1(τ
′)
]

+
Ω̂Â0

b
exp[a(τ − τR) + f1(τ)− f1(τR)]

}
× exp

[
− Y 2

4(τ − τ ′)

]
dτ ′

[π(τ − τ ′)]1/2 , (65)

sO1 (Y , τ) = − ρ̂
1/2
0 γ̇0
β1b

exp

[
β3(τ − ρ̂1/20 Y ) + β1f1(τ − ρ̂1/20 Y ) + β2g1(τ − ρ̂1/20 Y )

]
. (66)

Imposing matching conditions between the inner and outer solution at Y = 0 gives a pair of coupled
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nonlinear equations for the leading order temperature and stress perturbations in the shear band,

namely

f1(τ) =

∫ τ

−∞

{
λγ̇0(1 + ωtp)

β1b
exp

[
β3τ
′ + β1f1(τ

′) + β2g1(τ
′)
]

+
Ω̂Â0

b
exp[a(τ − τR) + f1(τ)− f1(τR)]

}
dτ ′

[π(τ − τ ′)]1/2 , (67)

g1(τ) = − ρ̂
1/2
0 γ̇0
β1b

exp [β3τ + β1f1(τ) + β2g1(τ)] . (68)

We note that f1(τ) ≥ 0 and g1(τ) ≤ 0 which is consistent with the physical observation that plastic

deformation leads to an increase in the temperature and a decrease in the stress [5]. In particular,

rapid growth (decay) of the temperature (stress) is associated with the formation of a shear band.

4 Results

In order to analyse the coupled equations (67) and (68) we introduce the new variables

f(η) = β1f1(τ), g(η) = −β2g1(τ), η = β3τ + log

[
λγ̇0(1 + ωtp)

bβ
1/2
3

]
, (69)

and the parameters

Λp =
β2(ρ̂0β3)

1/2

β1λ(1 + ωtp)
, ΛR =

Ω̂Â0

bβ
1/2
3

, Λt =
a

β3
. (70)

Now (67) and (68) take the simplified form

f(η) =

∫ η

−∞
[π(η − η′)]−1/2

{
exp

[
η′ + f(η′)− g(η′)

]
+ ΛR exp

[
Λt(η

′ − η′R) + β−11 (f(η′)− f(η′R))
]}

dη′, (71)

g(η) = Λp exp [η + f(η)− g(η)] , (72)

and correspond to the magnitudes of the temperature and stress perturbations, respectively. The

parameters Λp and Λt relate to the material properties, applied shearing motion and heat flux

inhomogeneity, whereas the parameter ΛR relates to the properties of the chemical reaction.

We first consider the case of vanishing reaction, ΛR, as treated in [5]. Typically, equations (71)

and (72) must be solved numerically to determine the behaviour of f(η) and g(η). However, there

are a few cases which allow for analytical solution. When Λp = 0 it follows that g(η) = 0, and it

12
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can be shown that

f(η) = −1

2
log(η∗ − η)−

[
η∗ + log

2

π1/2

]
+ o(1), η → η∗, (73)

at some η∗ <∞. This analysis corresponds to a problem in combustion theory in which a half-space

is heated by some constant thermal flux [16]. For the special case Λp = 1 (and ΛR = 0) we have

the exact solution f(η) = g(η) = eη for any Λt and β1.
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Figure 2: Magnitude of the perturbations to the temperature f(η) and stress g(η).

Figure 2 shows the numerical solutions of (71) and (72) for various values of the parameter Λp,

along with the exact solution with Λp = 1. For Λp = 1 the magnitudes of the perturbations undergo

exponential growth, with the growth becoming more rapid as Λp is decreased. In [5] it is argued that

Λp < 10 provides a useful criterion for the onset of shear banding. This is motivated by adopting

the position that the perturbations should remain O(1) at the critical plastic time for plastic work

t = tp (τ = 0). Upon inclusion of a chemical reaction we will continue to use the solution given

by Λp = 10 and ΛR = 0 = Λt as our criterion for formation of a shear band, and investigate how

varying the properties of the reaction affects the solution.

In order to simplify the analysis to follow we note that β1 ∼ O(1), and through an appropriate

choice of scaling we can always set β1 = 1. Further, we note that the parameter Λt, which is

approximately the ratio of the growth rate of the centreline elastic solution to the non-dimensional

shear rate, is typically O(10−2). We choose to fix Λt = 0.01 and study a simplified two parameter

system. Doing so allows us to focus on how the reaction properties affect the initiation of a shear

band.

When ΛR 6= 0 the equations governing the behaviour of f(η) and g(η) require numerical solution.

Equations (71) and (72) are to be solved using an iterative numerical scheme, along with (33) to

determine the critical reaction time ηR = β3τR + log[λγ̇0(1 + ωtp)b−1β−1/23 ]. The numerical results
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Figure 3: Magnitude of the perturbations to the temperature f(η) and stress g(η). Panels (a) and (b) show results
for fixed Λp = 10 and various ΛR, and panels (c) and (d) show results for fixed Λp = 100 and various ΛR. In all panels
the thick dashed line shows solution associated with the shear band criterion Λp = 10, ΛR = 0 = Λt.
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are shown in Figure 3, with the shear band criterion shown as a thick dashed line. Panels (a) and

(b) show the behaviour of f(η) and g(η) for fixed Λp = 10 and varying ΛR. Using the criterion

in [5] we would expect to see a shear band in the case of an inert material. Here we observe that

increasing ΛR has the effect of initiating a shear band at an earlier time. Increasing ΛR beyond

a value of approximately 10 we can initiate a shear band for η < 0. Panels (c) and (d) show the

numerical results for an increased value of Λp = 100. For ΛR < 10 we observe that the growth

of the temperature perturbation is slow when compared with the Λp = 10 criterion, and that the

magnitude of the stress perturbation is of a similar size at η ∼ 7. However, as ΛR is increased

to 15 we see a significant increase in the growth rate of both the temperature and stress, clearly

demonstrating that the inclusion of a chemical reaction can cause shear bands to initiate in a reactive

material in conditions where no shear band would be seen in an inert material with similar material

properties.

Figure 4 shows a sketch of the boundary in the Λp − ΛR plane which separates the region in

parameter space where a shear band occurs and the region where a shear band does not occur, with

fixed Λt = 0.01. For Λp < 10 a shear band is always initiated (using the criterion in [5]), irrespective

of the reaction properties. However, the reaction may affect the growth rate of the temperature

and stress perturbations once the band has formed. For Λp > 10 a shear band is not observed when

there is no reaction, but it is found that a shear band may be initiated by sufficiently increasing ΛR.

That is, for a sufficiently strong/fast reaction a shear band may be initiated in a material which

would not otherwise undergo shear banding under the same load. The solid dashed line in Figure 4

may be viewed as a criterion for the onset of shear banding in reactive materials.

Figure 5 shows representative profiles of the centreline temperature T (0, t) and stress s(0, t) as

a function of time t for a material in which the critical plastic and reaction temperatures are

similar: Tp = 1.01 and TR = 1.02, respectively. In this case the critical plastic and reaction times

are calculated as tp = 0.02 and tR = 0.0419, respectively. The process can clearly be split into

three distinct stages: the elastic stage, t < tp where the is no significant plastic strain or reaction;

the plastic stage, tp ≤ t < tR; and the reaction stage, t ≥ tR. The results agree well with a full

numerical solution of (1) – (5) using a so-called “cohesive scheme”, see [17] for details. In particular,

the critical times for plastic work and reaction are well predicted by the asymptotic solution.

5 Conclusion

Here we have developed a model for shear bands occurring in reactive in materials motivated by

the boundary layer analysis of [5]. The analysis allows for the full system of governing equations

to be reduced to three coupled equation used to describe the behaviour of the perturbations to the

centreline temperature and stress, as well as the critical reaction time. In contrast to the inert case,

we find that the initiation of shear banding is controlled by three parameters instead of one. The

simplified equations allow for the parameter space to be explored, and a criterion for the initiation
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held fixed at a typical value of 0.01.
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Figure 5: The centreline temperature T (0, t) = Te(0, t) + εT1(t) and stress s(0, t) = se(0, t) + εs1(t) as a function
of time t = tp + ετ . Here the critical plastic and reaction temperatures are Tp = 1.01 and TR = 1.02, giving critical
times tp = 0.02 and tR = 0.0419, respectively. The value of the small parameter was ε = 10−2.
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of shear bands based on known physical parameters has been suggested.

The usefulness of this analysis is primarily in assessing the tendency of a reactive material to form

shear bands based on its material properties and the shear rate of the deformation. As an example

we consider the reactive material LX-14. Using the parameter values given in [18], we have in SI

units ρ = 1.849× 103, G = 3.520× 109, c = 1.130× 103, κ = 4.390× 10−1, M ≈ 0.1, P ≈ 1, β = 1,

ω̃ = 103, T̃0 = 3× 102, s̃0 = 4× 107, Ω = 5.950× 106, A = 5× 1019, E = 2.206× 105 and R = 8.314.

By further assuming that T̃p ≈ T̃0 and s̃p ≈ s̃0, we find that Λp ≈ 1.4 and ΛR ≈ 10, which is well

within the range of values for which a shear band would be observed, even in the absence of any

reaction. However, if the material were less sensitive to thermal softening, say P = 0.1, then we

would find Λp ≈ 14. In this case we would not expect a shear band if the material were inert, but we

do expect a shear band when we take the reaction into consideration. From this we conclude that

considering the behaviour of the reaction can be critical in determining whether or not localised

plastic deformation will occur in an explosive material. The boundary layer analysis may also help

to explain the charring and partial reaction observed in high explosives during experiments (e.g.

[19]).

In this study it was assumed that the critical temperature for plastic work and reaction were

similar in magnitude, so that the reaction occurs soon after the band has formed. In fact, the

scalings are such that the onset of significant plastic work and onset of reaction effectively occur

simultaneously. In reality this may not be the case and some adjustment to the analysis would be

required. For the case where reaction occurs before significant plastic work (i.e. reactive materials

which do not exhibit significant shear localisation) it can be shown that the problem reduces to

that of [16]. In this instance the reaction is confined to a thin zone around the centreline, and

the problem is effectively equivalent to the heating of a half-space of material with the boundary

layer playing the role of a thermal flux applied at the boundary. On the other hand, if the reaction

is significantly weak it may be observed that the shear band becomes fully developed before the

reaction occurs. Solution of this problem would require imposing initial conditions consistent with

those found inside a developed shear band and looking for a perturbation about the critical reaction

temperature.
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