Appendix A Proofs
A.1 Proof of Theorem 1

We collect some notation. Let Ny :={0,1,...}, and K > 0 a positive constant that may change from
line to line. An empty sum Z{ (i > j) is defined to be zero. All o(p)- and O(p)-symbols are to be
understood with respect to n — oo.

We first give a rough outline of the proof of Theorem 1. In the first step we show that

vk Fan)  \ _ VE O ) )
log(k/(na)) ( Tan 1) ~ log(k/(na)) < 1) [L+0p(1)] +op(1) (A1)

uniformly in ¢ € [tg, 1]. To do so, write
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Lemmas 1 and 2 below will show that (fini1 — pni1)/(on12Y) = Op(n~Y?) and Gpy1/ons1 =

1+ Op(n_l/Q), respectively. Combined with the stationarity of p,41, optr1 > Vw® and the fact that

1 — 0o as n — oo (see Eq. (A.6) below), (A.2) leads to the desired approximation in (A.1). In the

(07

second step, the expansion (see Eq. (A.7) in Hoga (2017b))

vk zY(t) A _ '
log(k/(na)) ( - 1> =Vk (’7(75) - ’7) +op(1) uniformly in ¢ € [to, 1] (A.3)

is the motivation for deriving limit theory for 7, which relies on arguments in Hoga (2017a) and Hoga
(2017b).
We begin with the first step.

Lemma 1. Suppose Assumptions 1-5 hold and o = o, — 0 as n — co. Then

Fntt ~ fnt1 _ oy <1>
On17y vn

Proof: From the recursions in (7) and (8) we obtain, as in the proof of Chan et al. (2007, Thm. 2)

and using +/n-consistency of 0, that

—~ ~ 1
[in+1(60) — pnt1 = Op <\/ﬁ> : (A.4)
Furthermore, almost surely (a.s.),

Tnt1 >V >0 (A.5)



and, by regular variation of U and, e.g., Haan and Ferreira (2006, Prop. B.1.9.1),

Y =U(1/a) — oo. (A.6)

@ (n—o00)

Combining (A.4) — (A.6) gives the desired result. |

The next lemma deals with the estimation of the conditional variance o,,41. For n > 0, let

No() = {0: \0—0°\sjﬁ}, N2 (n) = Na(n)\ {6°}

Define
P q
GH(0) =w®+ > U5l (0)+) BT i(0).
j=1 j=1

Lemma 2. Suppose the assumptions of Theorem 1 hold. Then
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Proof: For 8 € N, (n) write

3721+1(9) 1= 37214-1(9) - 0721+1(9> 4 0721+1(0) - 5r2z+1(9) X 5721+1(0) - 0721+1
2 - 2 2 2
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= (I) + (II) + (III).

(A7)

For (I) we have from Lemma A 1 below that for some r € (0,1)

G2(0) — 0-2(0)‘ <r'V;  foralli€ N and n large enough,

sup i

0N, (n)

where V; > 0 with sup;cy E [Vﬂ < oo for some § > 0. Hence, for n large enough,

P{\/ﬁ sup

GENn(n)

52,,(0) — ogﬂ(a)\ > 5} <P {r”+1Vn+1 > e/\/ﬁ}

< V) B[ V]

< Kn??2(r®)"  supE [VZ‘;] ( — 0,

ieN n—00)

where we have used Markov’s inequality in the second step. Since a% 11 > w® >0 a.s., we conclude

7%(0) — o2(6
sup 7 )2 il )‘:(’)p<n_1/2). (AR)
Now consider (IT). Write
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Observe that by Markov’s inequality and Kim and Lee (2016, Lem. 18) we obtain

|‘7721+1(0) - 5721+1(0)| ’0121+1(9) - 53+1(9)}

P<{\/n sup >Kpy<K'E| sup as \/5\5—00\
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From the displays below Eq. (65) in Kim and Lee (2016) we get
o2
sup | — 1| = op(1). (A.11)
6N, (1) T 11(0)
Now (A.9)—(A.11) yield
2 0) — ~2 9
sup ‘O’n—i—l( )2 Un+1( )’ :(/)P(nfl/2). (A12)
6eN;; (n) Tnt1
Finally, consider (III). Eq. (63) in Kim and Lee (2016) implies
sup 0"21( ) _ 1| = Op(n=1?%). (A.13)
QENn(n) Jn—l—l
Combine (A.7) with (A.8), (A.12) and (A.13) to obtain
sup 0"21( ) _ 1| = Op(n~Y?). (A.14)
0N, (n) | Tn+1

Since, by y/n-consistency from Assumption 4, 0 c Ny,(n) with probability approaching 1 as n — oo
followed by 1 — oo, the conclusion follows from (A.14). [ |

For the second step our first goal is to prove

Theorem 2. Suppose the assumptions of Theorem 1 hold. Then, for any v € [0,1/2) under a Skorohod

construction,
sup supy”/7 [tVE | Fu(t,y) =y ™| — Wity =y W] | 2 o,
te(to,1] y>1 (n—o0)

where W (-,-) is a Brownian sheet.

The proof of Theorem 2 requires the following two propositions, which are proved in Subsection A.2
of this Appendix. Let D([a,b] x [¢,d]) be the space of two-parameter cadlag functions defined on
[a, b] x [e,d], which is equipped with the multivariate extension of the Skorohod metric; see Davidson

(1994).



Proposition 1. Suppose that {U;} is a sequence of i.i.d. r.v.s with distributions satisfying Assump-
tion 5. Then for any ¢« >0 and v € [0,1/2)

[nt]
ot ) :
Mult,y) =y~ Ve = D Lvsy v} — Ut L2y yWi(t,y) in D([te,1] x [0,1 + 1)),

k P (n—o00)

(A.15)

where W (-,+) is a Brownian sheet and 3 := 0.
The next proposition is a weighted version of Proposition 5 in Kim and Lee (2016).

Proposition 2. Under the assumptions of Theorem 1 we have that for any ¢ > 0 and v € [0,1/2)
[nt]

_ 1
sup - sup y V| o > (I{Ui>y_’yU(n/k)} _I{ﬁpy—w(n/k)}) = op(1).

y€(071+L] te[()?l] 1=Mp

Proof of Theorem 2: Combine Propositions 1 and 2 to get
[nt]

y " VE szz (v v} ™ (njo y"W(t.y) in D([to, 1] x [0,1 +]).
Then the conclusion follows as in the proof of Corollary 1 in Hoga (2017a). |

Proof of Theorem 1: Theorem 2 implies

Vi ((t) —7) 2 o5,W(t) in Dlt,1] (A.16)
(n—oo)
for a generic extreme value index estimator based on the sample Umn, .. .,[7 int|- For instance, for

the Hill (1975) estimator 5(t) = Yy (t) (moments ratio estimator 5(t) = Far(t)) we have o5, = v
(05, = V27); see Examples 3 and 4 in Hoga (2017a). To see (A.16) for the Hill estimator (other cases

can be dealt with similarly), recall (19) and write for v € (0,1/2) (under a Skorohod construction)
~ o - -1/ dy
WEGW =) = [ oV (Falt) -y )

1

s 7 1/ 1/ —uiy) 9y
= (W(t,y )=y W (t, 1)+ o(1)y 7) —
1 Y

o

! dz
_ 7/ (W(t,2) = 5W(1,1) + (1))
0
=W (t) +o(1), (A.17)
where, by calculating the covariance function, W (¢ fo [ — 2ZW (t, 1)] % can easily be iden-

tified as a Brownian motion. Note that the weighted convergence in Theorem 2 was required in the

step leading to (A.17).



Hence, by (A.1), (A.3) and (A.16), we get

tVk Ban(t) R in
log(k‘/(na))( Tom 1) (o) 3,W(t) in Dlto, 1]. (A.18)

Using that log(1 4+ z) ~ z as  — 0, claim (23) for z = z follows. The other claims, (24) and (25),
follow from 7(1) — + in probability from (A.16) and a suitable application of the continuous mapping
theorem.

Note that in principle one could use (A.18) directly to construct confidence intervals. Yet, Drees
(2003) and Gomes and Pestana (2007) found a log-transformation, as in (23), to produce a better
agreement of finite-sample and asymptotic distribution for extreme quantile estimators.

For z = S an exact analogue of (A.2) holds, i.e.,

Ant1=pni1 | Oni1 [ S5(1) Gn
§a,n(t) ) Mat114.1ég+1 + anii < SY - 1> + (ﬁ - 1) (A 19)
Secr Funisy +1 | |
Then, similarly as before, Lemmas 1 and 2 yield
g quU
vk S"’"(t)—l = vk S‘*(t)—l +op (1).
log(k/(na)) \  Samn log(k/(na)) \ SE
So it suffices to prove, by (A.3) and (A.16),
QU U
vk Salt) ) __ Vk To®) _ 1) 4 o). (A.20)
log(k/(nav)) \  SE log(k/(na)) \ «f
To do so, write
~ IU
\/E SozU(t)il _ \/E /Z’\g(t) 1_7 ﬁ*l (A21)
log(k/(na)) \ S log(k/(na)) \ 2§ 1-A3(t) SY '
Note that by (A.16)
L—v l—v _ —-1/2
=1+ Op(k ) (A.22)

1-3()  1-7+0p(k1?)
uniformly in t € [tg,1]. Due to Assumption 5 and Haan and Ferreira (2006, Thm. 2.3.9), we may
apply Pan, Leng, and Hu (2013, Thm. 4.2) to obtain

: 1 S§ 1\ _ 1
w3 A (1/(1 - Fay)) (U - 7> RZEDETET) (8.28)

Now by basic properties of inverse functions, we have

Fl)=FF'1-a)>1-a

[e%



so that for sufficiently large n

We conclude, by Assumption 5, that

A= ) = O/ = o1/ V)

which, together with (A.23), implies

Combining (A.21)—(A.24) gives (A.20).

A.2 Proofs of Propositions 1 & 2

Proof of Proposition 1: Theorem 1 in Hoga (2017a) implies

It
. 1 D L .
y Vk EZI{UQWU(R/@} —yt] — y "Wi(ty) in D([to,1] x [0,1+]),
=1

(n—00)

where W (-, ) is a standard Brownian sheet. Hence it suffices to prove

mnp—1
sup yiu k: — I ] _ n — OP(].)
ye[0,144] k ; {Ui>y=U(n/k)}

Setting t,, = m,/n, the left hand-side can be bounded by

[nt)

—v 1 —v

tsup v VE Z g I{Ui>y_WU(n/k)} —yt|+ sup y Vkyt =:(I)+ (II).
E[Ovtn] =1 tE[O,tn}

y€[0,14¢] y€[0,14¢]

(A.24)

(A.25)

The term (I) is op(1) by (A.25) and the uniform continuity of y~*W (¢, y); see also Hoga (2017a,

Prop. 2). That (IT) = op(1) follows easily from m,, = o(v/k). The conclusion follows.

It remains to prove Proposition 2. To do so, we assume throughout that the assumptions of

Proposition 2 hold. The proof relies on results in Kim and Lee (2016). For ease of reference and to

make the proofs more self-contained, we include Lemma 17 and the slightly modified Lemma 19 from

Kim and Lee (2016).

Define U; = o (U;, U;—1, . ..) as the smallest o-field generated by the U;, U;_1, ... and write E; [-] =

E[|t4].

Lemma A 1 (cf. Kim and Lee (2016, Lem. 17)). There exist ro € (0,1) and U;_1-measurable r.v.s



Vi >0, s.t. sup;ey E VY| < 00 for some v > 0, and for sufficiently large n

sup max{\é}(@) —¢i(0)], |5%(6) — 0?(0)\} <7r'V; for alli € N.
OENn (n)

Before stating our version of Kim and Lee (2016, Lem. 19), we have to introduce some additional

notation. In the following IIj 13

1n,i» U5, ; and I3 ; denote non-negative, Uf;_i-measurable r.v.s with

limsup E[TI7 ,, ;| < oo, limsupE |H§7n’i]”°/2 < oo, limsupE|Il3,;|" < oo for some vy > 2;

N300 n—00 n—s00

(A.26)
see p. 264 in Kim and Lee (2016). Note that due to our more stringent moment assumption on
the GARCH errors {¢;} in Assumption 3, we easily obtain stronger moment bounds in (A.26) for
I3, 5, 105 ,, 5, 13 s than Kim and Lee (2016, p. 264). These are required to show (A.28) in Lemma A 2.

1,n,

For np € R and y > 0, define

Ay, 0) = I{ﬁi(e)>y*7U(n/k)}’

Ai(y) = I{UpyﬂU(n/k)} )

2

nolly . ngIs . I . . ’
1,n,7 +Sg1’l(7]0) 0 2,7L,7,>+7]0 \/Ziﬁ,n,z+T6n0w>y7U(n/k)}

Jn

Ai(y,n,mo) =1
{Ui(1+r6noVi) <1+
Lemma A 2 (cf. Kim and Lee (2016, Lem. 19)). Let n > 0, ¢ € (0,1/10), r1 € (r9,1) and

m, — 00, m, <n. Then, there exists ny > 0 such that when 68 € Ny,(n)

(n—00)

wlAl(yv m, _770) < wZAl(yv 0) < wlAl(ya m, 770) fOT’ 1= Mpy..., N, and RS [Oa 1+ L]a

where

Wi = o 1T} Imo 12113 Inp |11 7
1,n,7 2,n,i 3,n,1 i : i
max NV — Tk (<60 rg|nolVi<r}

and fory € [0,1+ (]

. IolTT s oI ol
Wi E; 1 [Ai(y,n,no) — A,(y)] ‘ < Kw;y max {ri’ \/ﬁn17 = ni. \/EU(n;];) ' (A.27)
Furthermore,
n
S (1 - wi) = op(1), (A.28)
1=Mnp
.., Wy, =...= Wy = 1 with probability approaching 1 as n — oco.

Proof: We only show how statements (A.27) and (A.28), that differ slightly from the formulation of
Kim and Lee (2016), can be proved. The insertion of y in the right-hand side of (A.27) follows as



detailed next. Write

Ai(y,mmo) =1 . .  en s\
U>(1 y7 \FOU?nn/iz) Yy Uo(no/m)(l"'ronov) <1+\1rm+sgn(no)02m> y=7U(n/k)

= I{U»CyﬂU(n/k)}

Note that for C > 0 we get from Assumption 5 and arguments in Einmahl, Haan, and Zhou (2016,
p. 46) that

%P {Ui > éy*m(n/k)} = Oy + yO(A(n/k)) =y [CH/V + o(l)} (A.29)

uniformly in y € (0, K] for any K > 0. Then, if w; = 1, we may use (A.29) to obtain

n

1} _P {Ui > U (n/k)|Us—

)

-1 [Ai(yan’nl) - AZ(y))H = % ’P {UZ > Cy_’YU(n/k?) uz—

< Ky(C™Y7 —1).

Now (A.27) follows using the mean value theorem and the definition of C.
To prove (A.28), use Markov’s inequality to deduce

n n

PO (-w)zep < Bl Y (1-w)| <K Y E[l-uwl

1=mMn 1=mn 1=Mn

n * 277*
‘770|H1m' ‘770| 13,
SKE P{”Zeo +P{——"2>¢
S N4 n

+P{\’/@’U(3;l::) } +P{(T0/r1)i‘770‘vi > 1}]

KD [ B 0B, )

1=Mn

—_

+n 72U (n k)™

+ (ro/r1) " BIVi|"]
=o(1),
because of vp > 2 and (A.26). |

We shall need one additional lemma.

Lemma 3. Letn > 0, no € R and B;(y,n,m0) = Ai(y,n,m0) — Ai(y). Then, for any ¢ > 0 and
ve[0,1/2)

[nt)

11
sup  sup —=— Bi(y,n,m0)| = op(1).
ye(0,1+4 te0,1] VE Y Z

=M



Proof: We adapt the proof of Lemma 15 in Kim and Lee (2016). Let R, = L\/Elog nJ and write
Bi(y) = Bi(y,n,mno) for short. There is no loss of generality in setting : = 0. Decompose

= (yjr,yi],  where gy =y, = e I/
=0
Then note that for y € (y;11, ;]
11 1t
\/Ey,,i;nB( \fyjﬂ Z {Ai(y;,mm0) — Ai(yj41) }
[nt] [nt]
fym Z {Bi(yj) — Ei-1Bi(y;) } Vi 2 B 1 Bi(y))
[nt]
\[Z/JH Z { yg+1)}
and
|nt] |nt]
lzm _fyj lZm {Ai(yj1,m,m0) — Ailys)}
[nt] 11 [nt]
fy] sz {Bi(yj+1) — Ei—1 Bi(yj41)} + — \/Eyj Z_ZmnEZ 1 Bi(yj+1)
[nt]
fy] zzm:n{A Yj+1) (?/y)}
Hence, it suffices to show that
[nt]
B iy 2 (91090 B B =) a0
11 [nt]
RS |V 2 B B = or) e
Lt
g s | e 3 (i)~ A} = orl1) (832

First, we verify (A.30). Note for this that {wi {Bi(y;) — Ei-1 Bi(y;)}, Z/lz} is a martingale differ-
ence sequence (m.d.s.). For some r; € (19, 1) we have

[nt]
1 1
P < max sup —— w; 1 Bi(yi) — Ei—1 Bi(y;) | > €
J€No te[0,1] \/Eyj+1 Z:Zm: { 2 ( ])}
[nt]

> 11
w; 1 Bi(y:) — Ei—1 B;(y; > €
Z(:) te[O : \/> y]+1 Z { (y;) 1 (yj)}

IN



Lnt)

o

1 1

SE 7]{:TE sup E wz’{Bz‘(yj)_Ei—lB’i(yj)}
S E R Y tef0,1] |;=,,

2
n

=1 1
< Z T 4-FE Z w; {B;(y;) — Ei—1 Bi(y;) }
j=0 7+1 1=Mn

Z 4. Z [wi{Bi(yj)—Equz’(yj)}r
)

j:O Yj

® " IT; 105, :
< K b l Z Emax{rl,mo’ Lnt ol 2,n,1 |770|H37n,z }

= Vi U (/)
o ; n
e—J/Bn 1
S KZ e—(+1)2v/Ry | Z 3/2 Z E |H1m
]:O 1=Mn 1=Mnp

n

1
+ ) Z E‘Han 3/2U(n/k) Z E‘H3,n,i|

zmn zmn

1\ & j 1 1 1 1
_ (2v—-1)/Rn \" _ _ -
o (75) 3 (=) =0 (77) = =0 () e

o () o () o

where the first step follows by subadditivity, the second by Chebyshev’s inequality, the third by Doob’s

<

inequality (e.g., Davidson, 1994, Thm. 15.15), the fourth by uncorrelatedness of the zero-mean m.d.s.,
the sixth by the law of iterated expectations and Lemma A 2 and the eighth by (A.26). Note for the
fifth step that B;(y;) € {0,1} or {—1,0} according as 19 > 0 or < 0, so that

E [wz‘ {Bi(yj) — Eia1 Bi(yj)}r =E [wiBiQ(yj)] -E [wz‘ {Ei Bi(yj)}Q] < ‘E [wi Bi(y;)] ’ :

The result follows, since w,,,, = ... = w, = 1 with probability tending to 1 by Lemma A 2.
As for (A.31), observe that by Lemma A 2 the left-hand side can be bounded by

Z w max |770|H1nz |770’2H2nz MO‘H?)JW N (1)
i N VI CY/ N

The result follows as before.

Now we show (A.32). Write

[nt] \/E [nt]
Ai( A
\/»yﬁ_l Z { (y;) yj—i—l)} y}'j—l-l Zzn;n (y5)

10



[nt)
Z Ai(yjr1) — yjert | + (5 — yje)t

i=mn
174

Yj Yy y 1

= | = | Ma(t.y;) — Mu(t,yj) + VEZL 2 L

= My(t,y;) — Mu(t,yj41) +op(1),

because (y;/yj+1)” = 1+o0(1) and M, (t,y) = Op(1) (by Proposition 1) uniformly, and v'k/R,, = o(1).

Furthermore, for any § > 0
P{max sup | My(t,y;) — My(t,yjt1)| > ¢
7€No tef0,1]

<P sup  sup [My(t,wr) — My(t,ws)| > &
|wi —w2|<d t€[0,1]

— P sup  sup ‘wf”W(t, wy) — w;”W(t,wg)‘ >ep — 0
(n—o0) w1 —we| <8 t€[0,1] (640)

by continuity of the sample paths of the Brownian sheet W (-, -); see also Hoga (2017a, Prop. 2). Hence,
(A.32) follows and the proof is complete. [

Proof of Proposition 2: The proof resembles that of Proposition 5 in Kim and Lee (2016). We give
it here to convey the main idea. Let n > 0 and m,, — oo with m,, = o(v/k) as n — co. Then, due to
Lemma A 2, there exists ng > 0 such that with probability approaching 1,

Lt Aiwn, —m) — Aw)} < yl {Ai(y,0) — Ai(y)} < yl LAy, m,m0) — Ai(y))

for 8 € N,(n), i = my,...,n. Whence from Lemma 3,

[nt]

sup sup sup — —— Z{A y,0 )} =op(1).
0c N, (n) ye(0,1+] te0,1] Y

Because by Assumption 4, 6 € Ny, (n) with probability tending to 1 as n — oo followed by n — oo,

the result follows. [ ]
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