
Appendix B Additional Simulations

The aim of this section is twofold. First, we present additional insight into when our method is likely

to work well in terms of bias, RMSE and coverage. Second, we rerun the simulations for the models

of Section 3 and three additional models used in this Appendix with an additional estimator of γ to

further corroborate our main conclusions. We do so using the estimator of Csörgő and Viharos (1998),

given by

γ̂CVζ (t) =

∫ ∞
1

∫ F̂n(t,y)

0
Jζ(s)ds

 dy

y

with Jζ(s) = ζ−1(ζ + 1)[1 − (ζ + 1)sζ ], s ∈ [0, 1], ζ > 0. We remark that Theorem 1 holds verbatim

for this estimator with σ̂2γ̂,γ = (2ζ + 2)/(2ζ + 1)γ̂2CVζ (1). We refer to Hoga (2017, Example 3) for more

detail. In the following, we set ζ = 1 and term the corresponding estimator CV1. Using other values

of ζ (e.g., ζ = 10) did not change the results much.

We consider the following three additional models. For simplicity, we use the GARCH(1,1) spec-

ification in (27), yet we use three different distributions for the innovations Ui now. First, we use

the (standardized) st3(0)-distribution instead of st3(5) to see if coverage improves for a non-skewed

distribution with infinite fourth moment, due to γ = 1/3. As a second and third distribution, we take

equally heavy-tailed Burr distributions, Burr(β, λ, τ), with d.f.

F (x) = 1−
(

β

β + xτ

)λ
, x > 0, β, τ, λ > 0.

The extreme value index is given by γ = 1/(τλ). The function A(·) in Assumption 5 can be chosen

as A(x) = 1/(τλ)x−1/λ. Hence, the smaller λ > 0 the faster A(x) tends to zero, as x→∞. By (15),

this means that the smaller λ the better the approximation to true Pareto behavior, where identically

U(xy)/U(x) = yγ . We set the parameters (β, λ, τ) equal to (1, 1.5, 2) and (1, 1, 3) for i.i.d. r.v.s ξi to

study the effect of a more accurate approximation to the Pareto tail with smaller λ, while keeping the

extreme value index equal to γ = 1/3 in both cases by the appropriate choice of τ . Since the ξi have

positive support, we use the symmetrized innovations Ui = Biξi/
√

E[ξ21 ], where Bi are i.i.d. zero-mean

binary random variables on {−1, 1}, independent of the ξi. Note that E[Ui] = 0 and E[U2
i ] = 1, as

required. The three resulting models will simply be termed st3(0), Burr(1.5) (for (β, λ, τ) = (1, 1.5, 2))

and Burr(1) (for (β, λ, τ) = (1, 1, 3)). As model (27) in the main paper, they will be estimated using

Laplace QMLE.

Table 4 shows the simulation results for these models. We draw the following conclusions:

1. Using the symmetric st3(0)-distribution, instead of the highly skewed st3(5)-distribution as in
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model (27), leads to improved coverage in all cases. This is particularly true for the Hill estimator

and self-normalized intervals, where coverage is very close to the nominal level now. This may be

explained by the better approximation to the Pareto shape of the left tail (that we consider here)

of the st3(0)-distribution. In contrast, the st3(5)-distribution, while theoretically possessing two

tails with the same power-like tail decay (Aas and Haff, 2006), has a left tail that displays

marked deviations from the Pareto shape at finite levels due to the significant skewness. This

result serves to highlight the importance of empirically checking the regular variation assumption

of the innovations using some of the methods discussed in Remark 3 (c). By doing so, one can

possibly identify cases in advance, where coverage may not be accurate.

2. Comparing models Burr(1.5) and Burr(1), we find that for Burr(1) – where the Pareto approxi-

mation is more accurate – the estimators work better. While coverage is similar for both models,

bias (in most cases) and RMSE (in all cases) are reduced and, as it should be, estimation un-

certainty – as measured by the width of confidence intervals – is reduced as well. Additionally,

and also as it should be, our method of choosing k∗ leads to more upper order statistics being

used in the Burr(1) case, as the Pareto shape can be exploited for more tail observations.

It is interesting to note that if the innovation distributions are close to Pareto, as is the case

for the Burr models, the Hill estimator performs consistently better in terms of RMSE than the

MR estimator. This is not the case for st3(0) and the other models considered in Section 3.

This may be explained by the fact that the Hill estimator is the maximum likelihood estimate

of the extreme value index of true Pareto-distributed r.v.s (Hill, 1975) and thus possesses the

usual optimality properties in this distribution class. So the closer the distributional tail of the

innovations is to true Pareto behavior, the better the relative performance of the Hill estimator

can be expected to be.

Tables 2 and 4 reveal that self-normalization quite generally leads to more accurate coverage of

CVaR and CES. Yet, for the MR estimator and extreme CVaR, coverage deteriorated. So Table 5

provides additional simulation evidence in favor of self-normalization. It displays simulation results

for the CV1 estimator for all models considered in Tables 2 and 4. For this particular estimator we

find coverage to be much improved using I0.95sn . Indeed, coverage is even better than for the Hill

estimator and quite often within 1% of the nominal level. The RMSE of the CV1 estimator is roughly

comparable with that of the other two. However, the self-normalized intervals tend to be somewhat

wider.

2



Model Estimator k∗ z α Bias RMSE Coverage Int. length

I0.95na I0.95sn I0.95na I0.95sn

st3(0) Hill 63 CVaR 2.5% 0.18 1.15 66.5 88.3 1.5 3.1
1% 0.08 1.99 87.5 91.5 4.5 6.7

0.5% −0.31 2.74 92.3 94.1 8.3 11.7

CES 2.5% −0.57 2.85 46.3 94.2 2.6 11.1
1% −1.74 5.83 68.1 95.0 7.8 22.5

0.5% −3.21 8.19 73.8 95.4 14.3 36.0

MR 70 CVaR 2.5% 0.64 1.27 63.1 82.2 1.9 3.5
1% 0.95 2.09 84.5 82.3 5.7 6.9

0.5% 1.00 2.84 91.2 84.4 10.3 11.7

CES 2.5% 0.57 2.77 51.3 85.0 3.3 10.9
1% 0.29 5.35 73.7 86.4 9.6 20.7

0.5% −0.33 7.56 81.5 88.0 17.3 34.0

Burr(1.5) Hill 69 CVaR 2.5% 0.10 0.94 70.2 89.4 1.5 3.0
1% 0.09 1.62 87.1 91.6 4.1 6.2

0.5% −0.17 2.77 91.0 93.4 7.5 10.8

CES 2.5% −0.36 2.68 48.0 93.6 2.4 9.8
1% −1.00 4.43 68.3 94.8 6.8 19.2

0.5% −2.02 8.04 75.5 94.7 12.4 30.5

MR 74 CVaR 2.5% 0.47 1.05 70.1 85.6 1.9 3.5
1% 0.74 1.78 86.0 84.1 5.4 6.8

0.5% 0.79 3.15 91.5 85.3 9.7 11.6

CES 2.5% 0.44 2.76 51.3 86.1 3.2 10.7
1% 0.34 4.61 72.0 86.3 8.8 20.0

0.5% −0.11 9.63 80.3 87.5 15.9 32.4

Burr(1) Hill 79 CVaR 2.5% 0.07 0.70 74.4 90.5 1.3 2.6
1% 0.09 1.26 87.4 91.7 3.5 5.3

0.5% 0.01 2.21 89.3 92.7 6.2 9.1

CES 2.5% −0.01 1.78 49.9 92.4 2.1 7.8
1% −0.23 3.27 66.5 92.8 5.5 14.6

0.5% −0.57 5.25 73.3 93.2 9.7 23.0

MR 81 CVaR 2.5% 0.32 0.79 76.3 88.5 1.8 3.1
1% 0.46 1.46 88.8 86.9 4.8 6.2

0.5% 0.53 2.54 91.5 86.4 8.5 10.5

CES 2.5% 0.44 2.05 53.2 86.3 2.8 9.0
1% 0.42 3.72 71.1 86.9 7.5 17.0

0.5% 0.33 6.01 77.6 86.6 13.3 27.0

Table 4: Average of k∗, bias, RMSE, coverage probabilities in % (nominal coverage: 95%) and average
interval lengths for Hill and MR estimator for models st3(0), Burr(1.5) and Burr(1).

3



Model Estimator k∗ z α Bias RMSE Coverage Int. length

I0.95na I0.95sn I0.95na I0.95sn

(27) CV1 81 CVaR 2.5% 0.01 0.74 56.6 82.9 0.33 0.76
1% −0.07 0.90 76.4 87.5 0.70 1.19

0.5% −0.14 1.15 82.0 90.2 1.04 1.65

CES 2.5% −0.06 1.00 46.5 88.1 0.39 1.35
1% −0.12 1.16 64.6 89.9 0.82 2.01

0.5% −0.11 1.39 71.6 91.1 1.23 2.67

(28) CV1 62 CVaR 2.5% 0.95 2.26 59.7 89.0 3.3 8.5
1% 0.72 3.69 87.0 92.8 9.7 15.6

0.5% −0.44 5.02 94.1 94.6 17.2 24.9

CES 2.5% −0.64 4.34 51.6 95.2 5.2 21.8
1% −3.16 8.32 71.8 95.4 15.0 40.1

0.5% −6.65 13.8 76.8 94.6 26.6 61.4

(29) CV1 60 CVaR 2.5% 0.54 1.17 53.9 84.8 1.4 3.4
1% 0.45 1.53 84.7 90.6 3.9 5.8

0.5% −0.00 2.13 93.2 94.1 6.6 9.1

CES 2.5% −0.01 1.63 52.4 93.8 2.0 7.4
1% −0.86 2.83 74.6 95.6 5.3 12.5

0.5% −2.03 4.50 80.0 94.5 9.1 18.7

st3(0) CV1 68 CVaR 2.5% 0.45 1.19 66.3 90.5 1.8 4.1
1% 0.32 2.04 89.1 93.7 5.3 8.4

0.5% −0.14 2.84 94.1 95.0 9.8 14.4

CES 2.5% −0.46 2.98 51.2 95.4 3.2 14.2
1% −1.86 6.47 71.4 95.3 9.4 28.1

0.5% −3.65 9.15 76.5 95.1 17.2 45.4

Burr(1.5) CV1 76 CVaR 2.5% 0.31 0.96 72.6 92.9 1.8 3.9
1% 0.21 1.68 89.6 94.1 4.9 7.9

0.5% −0.19 3.03 93.8 95.4 9.0 13.7

CES 2.5% −0.41 2.82 53.3 95.4 3.0 12.9
1% −1.35 5.00 70.7 95.3 8.4 24.5

0.5% −2.78 9.69 78.1 95.6 15.3 40.1

Burr(1) CV1 87 CVaR 2.5% 0.19 0.74 77.8 94.4 1.6 3.4
1% 0.07 1.35 91.1 95.1 4.3 7.0

0.5% −0.18 2.41 93.1 95.0 7.6 11.6

CES 2.5% −0.16 1.99 55.4 95.4 2.6 10.3
1% −0.74 3.73 71.8 95.4 6.9 19.5

0.5% −1.49 6.07 77.8 95.0 12.2 30.8

Table 5: Average of k∗, bias, RMSE, coverage probabilities in % (nominal coverage: 95%) and average
interval lengths for CV1 estimator for models (27), (28), (29), st3(0), Burr(1.5) and Burr(1). For
models (28) and (29), values of bias, RMSE and interval lengths are premultiplied with 103.
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