
Appendix A Proofs

A.1 Proof of Theorem 1

We collect some notation. Let N0 := {0, 1, . . .}, and K > 0 a positive constant that may change from

line to line. An empty sum
∑j

i (i > j) is defined to be zero. All o(P )- and O(P )-symbols are to be

understood with respect to n→∞.

We first give a rough outline of the proof of Theorem 1. In the first step we show that

√
k

log(k/(nα))

(
x̂α,n(t)

xα,n
− 1

)
=

√
k

log(k/(nα))

(
x̂Uα (t)

xUα
− 1

)[
1 + oP (1)

]
+ oP (1) (A.1)

uniformly in t ∈ [t0, 1]. To do so, write

x̂α,n(t)

xα,n
− 1 =

µ̂n+1 + σ̂n+1x̂
U
α

µn+1 + σn+1xUα
− 1

=

µ̂n+1−µn+1

σn+1xUα
+ σ̂n+1

σn+1

(
x̂Uα (t)
xUα
− 1
)

+
(
σ̂n+1

σn+1
− 1
)

µn+1

σn+1xUα
+ 1

. (A.2)

Lemmas 1 and 2 below will show that (µ̂n+1 − µn+1)/(σn+1x
U
α ) = OP (n−1/2) and σ̂n+1/σn+1 =

1 +OP (n−1/2), respectively. Combined with the stationarity of µn+1, σn+1 ≥
√
ω◦ and the fact that

xUα → ∞ as n → ∞ (see Eq. (A.6) below), (A.2) leads to the desired approximation in (A.1). In the

second step, the expansion (see Eq. (A.7) in Hoga (2017b))

√
k

log(k/(nα))

(
x̂Uα (t)

xUα
− 1

)
=
√
k
(
γ̂(t)− γ

)
+ oP (1) uniformly in t ∈ [t0, 1] (A.3)

is the motivation for deriving limit theory for γ̂, which relies on arguments in Hoga (2017a) and Hoga

(2017b).

We begin with the first step.

Lemma 1. Suppose Assumptions 1–5 hold and α = αn → 0 as n→∞. Then

µ̂n+1 − µn+1

σn+1xUα
= OP

(
1√
n

)
.

Proof: From the recursions in (7) and (8) we obtain, as in the proof of Chan et al. (2007, Thm. 2)

and using
√
n-consistency of θ̂, that

µ̂n+1(θ̂)− µn+1 = OP
(

1√
n

)
. (A.4)

Furthermore, almost surely (a.s.),

σn+1 ≥
√
ω◦ > 0 (A.5)
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and, by regular variation of U and, e.g., Haan and Ferreira (2006, Prop. B.1.9.1),

xUα = U(1/α) −→
(n→∞)

∞. (A.6)

Combining (A.4) – (A.6) gives the desired result. �

The next lemma deals with the estimation of the conditional variance σn+1. For η > 0, let

Nn(η) :=

{
θ : |θ − θ◦| ≤ η√

n

}
, N−n (η) := Nn(η) \ {θ◦} .

Define

σ̃2i (θ) = ω◦ +

p∑
j=1

ψ◦j ε
2
i−j(θ) +

q∑
j=1

β◦j σ̃
2
i−j(θ).

Lemma 2. Suppose the assumptions of Theorem 1 hold. Then

σ̂n+1(θ̂)

σn+1
= 1 +OP

(
1√
n

)
.

Proof: For θ ∈ Nn(η) write

σ̂2n+1(θ)

σ2n+1

− 1 =
σ̂2n+1(θ)− σ2n+1(θ)

σ2n+1

+
σ2n+1(θ)− σ̃2n+1(θ)

σ2n+1

+
σ̃2n+1(θ)− σ2n+1

σ2n+1

(A.7)

=: (I) + (II) + (III).

For (I) we have from Lemma A 1 below that for some r ∈ (0, 1)

sup
θ∈Nn(η)

∣∣∣σ̂2i (θ)− σ2i (θ)
∣∣∣ ≤ riVi for all i ∈ N and n large enough,

where Vi ≥ 0 with supi∈N E
[
V δ
i

]
<∞ for some δ > 0. Hence, for n large enough,

P

{
√
n sup

θ∈Nn(η)

∣∣∣σ̂2n+1(θ)− σ2n+1(θ)
∣∣∣ > ε

}
≤ P

{
rn+1Vn+1 > ε/

√
n
}

≤ (ε/
√
n)−δ E

[
rn+1Vn+1

]δ
≤ Knδ/2(rδ)n+1 sup

i∈N
E
[
V δ
i

]
−→

(n→∞)
0,

where we have used Markov’s inequality in the second step. Since σ2n+1 ≥ ω◦ > 0 a.s., we conclude

sup
θ∈Nn(η)

∣∣σ̂2i (θ)− σ2i (θ)
∣∣

σ2n+1

= OP
(
n−1/2

)
. (A.8)

Now consider (II). Write

σ2n+1(θ)− σ̃2n+1(θ)

σ2n+1

=
σ2n+1(θ)− σ̃2n+1(θ)

σ2n+1(θ)
·
σ2n+1(θ)

σ2n+1

. (A.9)
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Observe that by Markov’s inequality and Kim and Lee (2016, Lem. 18) we obtain

P

√n sup
θ∈N−n (η)

|σ2n+1(θ)− σ̃2n+1(θ)|
σ2n+1(θ)

> K

 ≤ K−1 E

 sup
θ∈N−n (η)

∣∣σ2n+1(θ)− σ̃2n+1(θ)
∣∣

|θ̂ − θ◦|σ2n+1(θ)

√
n|θ̂ − θ◦|


= K−1O(1) −→

(K→∞)
0,

i.e.,

sup
θ∈N−n (η)

∣∣σ2n+1(θ)− σ̃2n+1(θ)
∣∣

σ2n+1(θ)
= OP (n−1/2). (A.10)

From the displays below Eq. (65) in Kim and Lee (2016) we get

sup
θ∈N−n (η)

∣∣∣∣∣ σ2n+1

σ2n+1(θ)
− 1

∣∣∣∣∣ = oP (1). (A.11)

Now (A.9)–(A.11) yield

sup
θ∈N−n (η)

∣∣σ2n+1(θ)− σ̃2n+1(θ)
∣∣

σ2n+1

= OP (n−1/2). (A.12)

Finally, consider (III). Eq. (63) in Kim and Lee (2016) implies

sup
θ∈Nn(η)

∣∣∣∣∣ σ̃2n+1(θ)

σ2n+1

− 1

∣∣∣∣∣ = OP (n−1/2). (A.13)

Combine (A.7) with (A.8), (A.12) and (A.13) to obtain

sup
θ∈Nn(η)

∣∣∣∣∣ σ̂2n+1(θ)

σ2n+1

− 1

∣∣∣∣∣ = OP (n−1/2). (A.14)

Since, by
√
n-consistency from Assumption 4, θ̂ ∈ Nn(η) with probability approaching 1 as n → ∞

followed by η →∞, the conclusion follows from (A.14). �

For the second step our first goal is to prove

Theorem 2. Suppose the assumptions of Theorem 1 hold. Then, for any ν ∈ [0, 1/2) under a Skorohod

construction,

sup
t∈[t0,1]

sup
y≥1

yν/γ
∣∣∣∣t√k [F̂n(t, y)− y−1/γ

]
−
[
W (t, y−1/γ)− y−1/γW (t, 1)

]∣∣∣∣ a.s.−→
(n→∞)

0,

where W (·, ·) is a Brownian sheet.

The proof of Theorem 2 requires the following two propositions, which are proved in Subsection A.2

of this Appendix. Let D([a, b] × [c, d]) be the space of two-parameter càdlàg functions defined on

[a, b]× [c, d], which is equipped with the multivariate extension of the Skorohod metric; see Davidson

(1994).
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Proposition 1. Suppose that {Ui} is a sequence of i.i.d. r.v.s with distributions satisfying Assump-

tion 5. Then for any ι > 0 and ν ∈ [0, 1/2)

Mn(t, y) := y−ν
√
k

1

k

bntc∑
i=mn

I{Ui>y−γU(n/k)} − yt

 D−→
(n→∞)

y−νW (t, y) in D([t0, 1] × [0, 1 + ι]),

(A.15)

where W (·, ·) is a Brownian sheet and 0
0

:= 0.

The next proposition is a weighted version of Proposition 5 in Kim and Lee (2016).

Proposition 2. Under the assumptions of Theorem 1 we have that for any ι > 0 and ν ∈ [0, 1/2)

sup
y∈(0,1+ι]

sup
t∈[0,1]

y−ν
√
k

∣∣∣∣∣∣1k
bntc∑
i=mn

(
I{Ui>y−γU(n/k)} − I

{
Ûi>y−γU(n/k)

}
)∣∣∣∣∣∣ = oP (1).

Proof of Theorem 2: Combine Propositions 1 and 2 to get

y−ν
√
k

1

k

bntc∑
i=mn

I{
Ûi>y−γU(n/k)

} − yt
 D−→

(n→∞)
y−νW (t, y) in D([t0, 1]× [0, 1 + ι]).

Then the conclusion follows as in the proof of Corollary 1 in Hoga (2017a). �

Proof of Theorem 1: Theorem 2 implies

t
√
k
(
γ̂(t)− γ

) D−→
(n→∞)

σγ̂,γW (t) in D[t0, 1] (A.16)

for a generic extreme value index estimator based on the sample Ûmn , . . . , Ûbntc. For instance, for

the Hill (1975) estimator γ̂(t) = γ̂H(t) (moments ratio estimator γ̂(t) = γ̂MR(t)) we have σγ̂,γ = γ

(σγ̂,γ =
√

2γ); see Examples 3 and 4 in Hoga (2017a). To see (A.16) for the Hill estimator (other cases

can be dealt with similarly), recall (19) and write for ν ∈ (0, 1/2) (under a Skorohod construction)

t
√
k
(
γ̂(t)− γ

)
=

∫ ∞
1

t
√
k
(
F̂n(t, y)− y−1/γ

) dy

y

a.s.
=

∫ ∞
1

(
W (t, y−1/γ)− y−1/γW (t, 1) + o(1)y−ν/γ

) dy

y

= γ

∫ 1

0

(
W (t, z)− zW (t, 1) + o(1)zν

) dz

z

= γW (t) + o(1), (A.17)

where, by calculating the covariance function, W (t) :=
∫ 1
0

[
W (t, z)− zW (t, 1)

]
dz
z can easily be iden-

tified as a Brownian motion. Note that the weighted convergence in Theorem 2 was required in the

step leading to (A.17).
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Hence, by (A.1), (A.3) and (A.16), we get

t
√
k

log(k/(nα))

(
x̂α,n(t)

xα,n
− 1

)
D−→

(n→∞)
σγ̂,γW (t) in D[t0, 1]. (A.18)

Using that log(1 + x) ∼ x as x → 0, claim (23) for z = x follows. The other claims, (24) and (25),

follow from γ̂(1)→ γ in probability from (A.16) and a suitable application of the continuous mapping

theorem.

Note that in principle one could use (A.18) directly to construct confidence intervals. Yet, Drees

(2003) and Gomes and Pestana (2007) found a log-transformation, as in (23), to produce a better

agreement of finite-sample and asymptotic distribution for extreme quantile estimators.

For z = S an exact analogue of (A.2) holds, i.e.,

Ŝα,n(t)

Sα,n
− 1 =

µ̂n+1−µn+1

σn+1SUα
+ σ̂n+1

σn+1

(
ŜUα (t)
SUα
− 1

)
+
(
σ̂n+1

σn+1
− 1
)

µn+1

σn+1SUα
+ 1

. (A.19)

Then, similarly as before, Lemmas 1 and 2 yield

√
k

log(k/(nα))

(
Ŝα,n(t)

Sα,n
− 1

)
=

√
k

log(k/(nα))

(
ŜUα (t)

SUα
− 1

)
+ oP (1) .

So it suffices to prove, by (A.3) and (A.16),

√
k

log(k/(nα))

(
ŜUα (t)

SUα
− 1

)
=

√
k

log(k/(nα))

(
x̂Uα (t)

xUα
− 1

)
+ oP (1). (A.20)

To do so, write

√
k

log(k/(nα))

(
ŜUα (t)

SUα
− 1

)
=

√
k

log(k/(nα))

 x̂Uα (t)

xUα
· 1− γ

1− γ̂(t)
·
xUα
1−γ
SUα
− 1

 . (A.21)

Note that by (A.16)

1− γ
1− γ̂(t)

=
1− γ

1− γ +OP (k−1/2)
= 1 +OP (k−1/2) (A.22)

uniformly in t ∈ [t0, 1]. Due to Assumption 5 and Haan and Ferreira (2006, Thm. 2.3.9), we may

apply Pan, Leng, and Hu (2013, Thm. 4.2) to obtain

lim
n→∞

1

A
(
1/(1− F (xUα ))

) (SUα
xUα
− 1

1− γ

)
=

1

(1/γ − 1)(1/γ − 1− ρ)
. (A.23)

Now by basic properties of inverse functions, we have

F (xUα ) = F (F−1(1− α)) ≥ 1− α,
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so that for sufficiently large n

1

1− F (xUα )
≥ 1

α

(22)

≥ n

k
.

We conclude, by Assumption 5, that

A

(
1

1− F (xUα )

)
= O(A(n/k)) = o(1/

√
k),

which, together with (A.23), implies

SUα
xUα
1−γ

= 1 + o(1/
√
k). (A.24)

Combining (A.21)–(A.24) gives (A.20). �

A.2 Proofs of Propositions 1 & 2

Proof of Proposition 1: Theorem 1 in Hoga (2017a) implies

y−ν
√
k

1

k

bntc∑
i=1

I{Ui>y−γU(n/k)} − yt

 D−→
(n→∞)

y−νW (t, y) in D([t0, 1]× [0, 1 + ι]), (A.25)

where W (·, ·) is a standard Brownian sheet. Hence it suffices to prove

sup
y∈[0,1+ι]

y−ν
√
k

∣∣∣∣∣∣1k
mn−1∑
i=1

I{Ui>y−γU(n/k)}

∣∣∣∣∣∣ = oP (1).

Setting tn = mn/n, the left hand-side can be bounded by

sup
t∈[0,tn]
y∈[0,1+ι]

y−ν
√
k

∣∣∣∣∣∣1k
bntc∑
i=1

I{Ui>y−γU(n/k)} − yt

∣∣∣∣∣∣+ sup
t∈[0,tn]
y∈[0,1+ι]

y−ν
√
kyt =: (I) + (II).

The term (I) is oP (1) by (A.25) and the uniform continuity of y−νW (t, y); see also Hoga (2017a,

Prop. 2). That (II) = oP (1) follows easily from mn = o(
√
k). The conclusion follows. �

It remains to prove Proposition 2. To do so, we assume throughout that the assumptions of

Proposition 2 hold. The proof relies on results in Kim and Lee (2016). For ease of reference and to

make the proofs more self-contained, we include Lemma 17 and the slightly modified Lemma 19 from

Kim and Lee (2016).

Define Ui = σ (Ui, Ui−1, . . .) as the smallest σ-field generated by the Ui, Ui−1, . . . and write Ei [·] =

E [·|Ui].

Lemma A 1 (cf. Kim and Lee (2016, Lem. 17)). There exist r0 ∈ (0, 1) and Ui−1-measurable r.v.s
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Vi ≥ 0, s.t. supi∈N E |V v
i | <∞ for some v > 0, and for sufficiently large n

sup
θ∈Nn(η)

max
{
|ε̂i(θ)− εi(θ)|, |σ̂2i (θ)− σ2i (θ)|

}
≤ riVi for all i ∈ N.

Before stating our version of Kim and Lee (2016, Lem. 19), we have to introduce some additional

notation. In the following Π∗1,n,i, Π∗2,n,i and Π3,n,i denote non-negative, Ui−1-measurable r.v.s with

lim sup
n→∞

E |Π∗1,n,i|v0 <∞, lim sup
n→∞

E |Π∗2,n,i|v0/2 <∞, lim sup
n→∞

E |Π3,n,i|v0 <∞ for some v0 > 2;

(A.26)

see p. 264 in Kim and Lee (2016). Note that due to our more stringent moment assumption on

the GARCH errors {εi} in Assumption 3, we easily obtain stronger moment bounds in (A.26) for

Π∗1,n,i,Π
∗
2,n,i,Π3,n,i than Kim and Lee (2016, p. 264). These are required to show (A.28) in Lemma A 2.

For η0 ∈ R and y > 0, define

Ai(y,θ) = I{
Ûi(θ)>y−γU(n/k)

},
Ai(y) = I{Ui>y−γU(n/k)},

Ai(y, η, η0) = IUi(1+ri0η0Vi)

(
1+

η0Π∗
1,n,i√
n

+sgn(η0)
η2
0Π∗

2,n,i
n

)
+
η0Π3,n,i√

n
+ri0η0Vi>y−γU(n/k)


.

Lemma A 2 (cf. Kim and Lee (2016, Lem. 19)). Let η > 0, ε0 ∈ (0, 1/10), r1 ∈ (r0, 1) and

mn −→
(n→∞)

∞, mn < n. Then, there exists η0 > 0 such that when θ ∈ Nn(η)

wiAi(y, η,−η0) ≤ wiAi(y,θ) ≤ wiAi(y, η, η0) for i = mn, . . . , n, and y ∈ [0, 1 + ι],

where

wi := Imax

{
|η0|Π∗1,n,i√

n
,
|η0|2Π∗

2,n,i
n

,
|η0|Π3,n,i√
nU(n/k)

}
<ε0, ri0|η0|Vi<ri1


,

and for y ∈ [0, 1 + ι]

n

k
wi

∣∣∣Ei−1 [Ai(y, η, η0)−Ai(y)
]∣∣∣ ≤ Kwiymax

{
ri1,
|η0|Π∗1,n,i√

n
,
|η0|2Π∗2,n,i

n
,
|η0|Π3,n,i√
nU(n/k)

}
. (A.27)

Furthermore,

n∑
i=mn

(1− wi) = oP (1), (A.28)

i.e., wmn = . . . = wn = 1 with probability approaching 1 as n→∞.

Proof: We only show how statements (A.27) and (A.28), that differ slightly from the formulation of

Kim and Lee (2016), can be proved. The insertion of y in the right-hand side of (A.27) follows as
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detailed next. Write

Ai(y, η, η0) = IUi>
(
1−yγ

η0Π3,n,i√
nU(n/k)

−yγ
ri0η0Vi
U(n/k)

)
(1+ri0η0Vi)

−1

(
1+

η0Π∗
1,n,i√
n

+sgn(η0)
η2
0Π∗

2,n,i
n

)−1

y−γU(n/k)


=: I{Ui>Cy−γU(n/k)}

Note that for C̃ > 0 we get from Assumption 5 and arguments in Einmahl, Haan, and Zhou (2016,

p. 46) that

n

k
P
{
Ui > C̃y−γU(n/k)

}
= C̃−1/γy + yO(A(n/k)) = y

[
C̃−1/γ + o(1)

]
(A.29)

uniformly in y ∈ (0,K] for any K > 0. Then, if wi = 1, we may use (A.29) to obtain

n

k

∣∣∣Ei−1 [Ai(y, η, η0 −Ai(y))
]∣∣∣ =

n

k

∣∣∣∣P {Ui > Cy−γU(n/k)
∣∣∣Ui−1}− P {Ui > y−γU(n/k)

∣∣∣Ui−1}∣∣∣∣
≤ Ky(C−1/γ − 1).

Now (A.27) follows using the mean value theorem and the definition of C.

To prove (A.28), use Markov’s inequality to deduce

P


n∑

i=mn

(1− wi) ≥ ε

 ≤ 1

ε
E

∣∣∣∣∣∣
n∑

i=mn

(1− wi)

∣∣∣∣∣∣ ≤ K
n∑

i=mn

E |1− wi|

≤ K
n∑

i=mn

P { |η0|Π∗1,n,i√
n

≥ ε0

}
+ P

{
|η0|2Π∗2,n,i

n
≥ ε0

}

+P

{
|η0|Π3,n,i√
nU(n/k)

≥ ε0
}

+ P
{

(r0/r1)
i|η0|Vi ≥ 1

}]

≤ K
n∑

i=mn

[
n−v0/2 E |Π∗1,n,i|v0 + n−v0/2 E |Π∗2,n,i|v0

+n−v0/2U(n/k)−v0 E |Π3,n,i|v0 +
(
r0/r1

)vi
E |Vi|v

]
= o(1),

because of v0 > 2 and (A.26). �

We shall need one additional lemma.

Lemma 3. Let η > 0, η0 ∈ R and Bi(y, η, η0) := Ai(y, η, η0) − Ai(y). Then, for any ι > 0 and

ν ∈ [0, 1/2)

sup
y∈(0,1+ι]

sup
t∈[0,1]

1√
k

1

yν

∣∣∣∣∣∣
bntc∑
i=mn

Bi(y, η, η0)

∣∣∣∣∣∣ = oP (1).
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Proof: We adapt the proof of Lemma 15 in Kim and Lee (2016). Let Rn =
⌊√

k log n
⌋

and write

Bi(y) = Bi(y, η, η0) for short. There is no loss of generality in setting ι = 0. Decompose

(0, 1] =

∞∑
j=0

(
yj+1, yj

]
, where yj := yj,n := e−j/Rn .

Then note that for y ∈ (yj+1, yj ]

1√
k

1

yν

bntc∑
i=mn

Bi(y) ≤ 1√
k

1

yνj+1

bntc∑
i=mn

{
Ai(yj , η, η0)−Ai(yj+1)

}
=

1√
k

1

yνj+1

bntc∑
i=mn

{
Bi(yj)− Ei−1Bi(yj)

}
+

1√
k

1

yνj+1

bntc∑
i=mn

Ei−1Bi(yj)

+
1√
k

1

yνj+1

bntc∑
i=mn

{
Ai(yj)−Ai(yj+1)

}
and

1√
k

1

yν

bntc∑
i=mn

Bi(y) ≥ 1√
k

1

yνj

bntc∑
i=mn

{
Ai(yj+1, η, η0)−Ai(yj)

}
=

1√
k

1

yνj

bntc∑
i=mn

{
Bi(yj+1)− Ei−1Bi(yj+1)

}
+

1√
k

1

yνj

bntc∑
i=mn

Ei−1Bi(yj+1)

+
1√
k

1

yνj

bntc∑
i=mn

{
Ai(yj+1)−Ai(yj)

}
.

Hence, it suffices to show that

max
j∈N0

sup
t∈[0,1]

∣∣∣∣∣∣ 1√
k

1

yνj+1

bntc∑
i=mn

{
Bi(yj)− Ei−1Bi(yj)

}∣∣∣∣∣∣ = oP (1), (A.30)

max
j∈N0

sup
t∈[0,1]

∣∣∣∣∣∣ 1√
k

1

yνj+1

bntc∑
i=mn

Ei−1Bi(yj)

∣∣∣∣∣∣ = oP (1), (A.31)

max
j∈N0

sup
t∈[0,1]

∣∣∣∣∣∣ 1√
k

1

yνj+1

bntc∑
i=mn

{
Ai(yj)−Ai(yj+1)

}∣∣∣∣∣∣ = oP (1). (A.32)

First, we verify (A.30). Note for this that
{
wi
{
Bi(yj)− Ei−1Bi(yj)

}
, Ui

}
is a martingale differ-

ence sequence (m.d.s.). For some r1 ∈ (r0, 1) we have

P

max
j∈N0

sup
t∈[0,1]

∣∣∣∣∣∣ 1√
k

1

yνj+1

bntc∑
i=mn

wi
{
Bi(yj)− Ei−1Bi(yj)

}∣∣∣∣∣∣ > ε


≤
∞∑
j=0

P

 sup
t∈[0,1]

∣∣∣∣∣∣ 1√
k

1

yνj+1

bntc∑
i=mn

wi
{
Bi(yj)− Ei−1Bi(yj)

}∣∣∣∣∣∣ > ε


9



≤
∞∑
j=0

1

ε2k

1

y2νj+1

E

 sup
t∈[0,1]

∣∣∣∣∣∣
bntc∑
i=mn

wi
{
Bi(yj)− Ei−1Bi(yj)

}∣∣∣∣∣∣
2


≤
∞∑
j=0

1

ε2k

1

y2νj+1

4 · E

 n∑
i=mn

wi
{
Bi(yj)− Ei−1Bi(yj)

}2

=

∞∑
j=0

1

ε2k

1

y2νj+1

4 ·
n∑

i=mn

E
[
wi
{
Bi(yj)− Ei−1Bi(yj)

}]2
≤ K

∞∑
j=0

1

k

1

y2νj+1

n∑
i=mn

∣∣∣E [wiBi(yj)]∣∣∣
≤ K

∞∑
j=0

yj
y2νj+1

1

n

n∑
i=mn

E max

{
ri1,
|η0|Π∗1,n,i√

n
,
|η0|2Π∗2,n,i

n
,
|η0|Π3,n,i√
nU(n/k)

}

≤ K
∞∑
j=0

e−j/Rn

e−(j+1)2ν/Rn

 1

n

n∑
i=mn

ri1 +
1

n3/2

n∑
i=mn

E |Π∗1,n,i|

+
1

n2

n∑
i=mn

E |Π∗2,n,i|+
1

n3/2U(n/k)

n∑
i=mn

E |Π3,n,i|


= O

(
1√
n

) ∞∑
j=0

(
e(2ν−1)/Rn

)j
= O

(
1√
n

)
1

1− e(2ν−1)/Rn
= O

(
1√
n

)
1

1−2ν+o(1)
Rn

= O
(
Rn√
n

)
= O

(√
k log n√
n

)
= o(1),

where the first step follows by subadditivity, the second by Chebyshev’s inequality, the third by Doob’s

inequality (e.g., Davidson, 1994, Thm. 15.15), the fourth by uncorrelatedness of the zero-mean m.d.s.,

the sixth by the law of iterated expectations and Lemma A 2 and the eighth by (A.26). Note for the

fifth step that Bi(yj) ∈ {0, 1} or {−1, 0} according as η0 > 0 or < 0, so that

E
[
wi
{
Bi(yj)− Ei−1Bi(yj)

}]2
= E

[
wiB

2
i (yj)

]
− E

[
wi
{

Ei−1Bi(yj)
}2] ≤ ∣∣∣E [wiBi(yj)]∣∣∣ .

The result follows, since wmn = . . . = wn = 1 with probability tending to 1 by Lemma A 2.

As for (A.31), observe that by Lemma A 2 the left-hand side can be bounded by

K
1√
k

n∑
i=mn

k

n
wi max

{
ri1,
|η0|Π∗1,n,i√

n
,
|η0|2Π∗2,n,i

n
,
|η0|Π3,n,i√
nU(n/k)

}
= oP (1).

The result follows as before.

Now we show (A.32). Write

1√
k

1

yνj+1

bntc∑
i=mn

{
Ai(yj)−Ai(yj+1)

}
=

√
k

yνj+1


1

k

bntc∑
i=mn

Ai(yj)− yjt


10



−

1

k

bntc∑
i=mn

Ai(yj+1)− yj+1t

+ (yj − yj+1)t


=

(
yj
yj+1

)ν
Mn(t, yj)−Mn(t, yj+1) +

√
k
yj − yj+1

yνj+1

t

= Mn(t, yj)−Mn(t, yj+1) + oP (1),

because (yj/yj+1)
ν = 1+o(1) and Mn(t, y) = OP (1) (by Proposition 1) uniformly, and

√
k/Rn = o(1).

Furthermore, for any δ > 0

P

{
max
j∈N0

sup
t∈[0,1]

∣∣Mn(t, yj)−Mn(t, yj+1)
∣∣ > ε

}

≤ P

{
sup

|w1−w2|<δ
sup
t∈[0,1]

∣∣Mn(t, w1)−Mn(t, w2)
∣∣ > ε

}

−→
(n→∞)

P

{
sup

|w1−w2|<δ
sup
t∈[0,1]

∣∣∣w−ν1 W (t, w1)− w−ν2 W (t, w2)
∣∣∣ > ε

}
−→
(δ↓0)

0

by continuity of the sample paths of the Brownian sheet W (·, ·); see also Hoga (2017a, Prop. 2). Hence,

(A.32) follows and the proof is complete. �

Proof of Proposition 2: The proof resembles that of Proposition 5 in Kim and Lee (2016). We give

it here to convey the main idea. Let η > 0 and mn →∞ with mn = o(
√
k) as n→∞. Then, due to

Lemma A 2, there exists η0 > 0 such that with probability approaching 1,

1

yν
{
Ai(y, η,−η0)−Ai(y)

}
≤ 1

yν
{
Ai(y,θ)−Ai(y)

}
≤ 1

yν
{
Ai(y, η, η0)−Ai(y)

}
for θ ∈ Nn(η), i = mn, . . . , n. Whence from Lemma 3,

sup
θ∈Nn(η)

sup
y∈(0,1+ι]

sup
t∈[0,1]

1

yν
1√
k

∣∣∣∣∣∣
bntc∑
i=1

{
Ai(y,θ)−Ai(y)

}∣∣∣∣∣∣ = oP (1).

Because by Assumption 4, θ̂ ∈ Nn(η) with probability tending to 1 as n → ∞ followed by η → ∞,

the result follows. �
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