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A Proofs

We present the proofs of the results that are not clear in the main article.

Lemma 5. Proof. Let H and H′ be such that P{Y ∈ H(X)|Y = y} = P{Y ∈

H′(X)|Y = y} = 1− αy, and P{y ∈ H′(X)|Y 6= y} ≥ P{y ∈ H(X)|Y 6= y}, for all y.

Multiplying this expression by P(Y 6= y) we obtain P{y ∈ H′(X), Y 6= y} ≥ P{y ∈

H(X), Y 6= y}, which can be rewritten as∑
l 6=y

P{y ∈ H′(X)|Y = l}πl ≥
∑
l 6=y

P{y ∈ H(X)|Y = l}πl, (9)

which holds for all y. On the other hand we have∑
y

P{Y ∈ H′(X)|Y = y}πy =
∑
y

P{Y ∈ H(X)|Y = y}πy =
∑
y

(1− αy)πy.

Adding Expression (9) over all y and combining with the last expression leads to∑
y

∑
l

P{y ∈ H′(X)|Y = l}πl ≥
∑
y

∑
l

P{y ∈ H(X)|Y = l}πl,

which by the law of total probability and Remark 4 is equivalent to E{|H′(X)|} ≥

E{|H(X)|}. �

Theorem 6. Proof. First, notice that logit{p(y|x)} = log{p(x|y)/p(x|yc)} +

logit(πy), where p(x|yc) ≡
∑

j 6=y p(x|Y = j)πj/
∑

j 6=y πj. Given that the log and

logit functions are monotonically increasing, this expression implies that the de-

cision regions Cy can alternatively be based on level sets of the likelihood ratios
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Λy(x) = p(x|y)/p(x|yc), that is Cy = {x : Λy(x) ≥ `y} with `y chosen so that

P(Cy|Y = y) = 1− αy. The region Cc
y therefore corresponds to the Neyman-Pearson

rejection region for testing the null hypothesis H0 : Y = y versus H1 : Y 6= y. By the

Neyman-Pearson lemma we have that the classifier H induced by the sets Cy maxi-

mizes the probabilities P{y /∈ H(X)|Y 6= y}, or equivalently P{y ∈ H(X)|Y 6= y} is

minimized. Finally, by Lemma 5 we have that this decision rule H also minimizes

the ambiguity. �

Theorem 8. Proof. Firstly, since Ã is the optimal value of problem (3), Ã ≤

A(H†). Now, A(H†) = E
[
I{X ∈ N (H∗)}|H†(X)|

]
+ E

[
I{X /∈ N (H∗)}|H†(X)|

]
=

P{N (H∗)} + A(H∗), and the result follows from A(H∗) ≤ Ã given that (2) is a

relaxation of (3). �

Theorem 14. Proof. The first part is essentially the same as in Lei (2014). We

prove the second part. Let Ĝy be the empirical distribution of p(y|Xy,1), ..., p(y|Xy,ny)

where Xy,1, ..., Xy,ny are sample points in class y. Let P̂y(·) be the probability measure

corresponding to Ĝy. Define Ly(t) = {x : p(y|x) ≤ t}, L̂y(t) = {x : p̂(y|x) ≤ t}.

We focus on the event

E =

{
sup
y,x
|p̂(y|x)− p(y|x)| ≤ εn , sup

y,t
|Ĝy(t)−Gy(t)| ≤ c

√
log n

n
,

sup
y
|π̂y − πy| ≤ c

√
log n

n

}
,

which has probability at least 1−Kδn− n−1 if c is chosen large enough and K grows

slowly with n. Here the first inequality in E is given by our assumption in (4) and

the other two follow from standard empirical process theory.

Recall that for total coverage we use the same threshold for all classes. Let t∗ = G−1(α)

be the ideal cut-off value for p(y|x). If t ≤ t∗ − εn − {(K + 1)cc−11

√
log n/n}1/γ , then
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we have

P̂y{L̂y(t)} ≤P̂y{L(t+ εn)} = Ĝy(t+ εn) ≤ Gy(t+ εn) + c

√
log n

n

≤Gy

[
t∗ − {(K + 1)cc−11

√
log n/n}1/γ

]
+ c

√
log n

n
≤ Gy(t

∗)− cK
√

log n

n
.

Therefore,

t̂ > t∗ − εn −
{

(K + 1)cc−11

√
log n/n

}1/γ

, (10)

because otherwise we have

K∑
y=1

π̂yP̂y{L̂y(t̂)} ≤
K∑
y=1

π̂y{Gy(t
∗)− cK

√
log n/n}

≤α +
K∑
y=1

|π̂y − πy|Gy(t
∗)− cK

√
log n/n < α .

Similarly we can obtain

t̂ ≤ t∗ + εn + {(K + 1)cc−11

√
log n/n}1/γ , (11)

and combining (10) and (11) we have |t̂ − t∗| ≤ εn + {(K + 1)cc−11

√
log n/n}1/γ .

(It is worth noting that a rigorous argument of this would require p̂(y|x) to have

distinct values at the sample points X1, ..., Xn. This is a minor issue because one

can always add very small random perturbations such as p̂(y|X) + ξ with ξ ∼

Unif(−n−2, n−2).)

Then

Py
(
Ĉy\C∗y

)
=Py

{
p̂(y|X) ≥ t̂, p(y|X) < t∗

}
≤Py

[
t∗ − 2εn −

{
(K + 1)cc−11

√
log n/n

}1/γ

≤ p(y|X) < t∗
]

≤c′
(
εγn +K

√
log n/n

)
,
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for some constant c′ depending on c, c1, γ. Similarly we can obtain Py(C∗y\Ĉy) ≤

c′(εγn +K
√

log n/n), and hence Py(Ĉy4C∗y ) ≤ c′(εγn +K
√

log n/n). Summing over y

we have

P
(
Ĥ4H∗

)
=

K∑
y=1

πyPy(Ĉy4C∗y ) ≤ c′
(
εγn +K

√
log n/n

)
.

�

B Simulation Studies

B.1 Univariate Scenarios

We start with a simple setting to illustrate the fundamental differences between

classifiers with reject option (CWRs) and LABEL classifiers. In this comparison

we simulate samples of size n = 4000, drawing Y from {1, 2, 3} with probabilities

that change in three simulation scenarios, summarized in Table 2. We take X to be

univariate with distributions (X|Y = y) being normal with means −2, 0, and 2, and

variances equal to 1. We estimate p(y|x) using p̂(y|x) = p̂y(x)π̂y/
∑

l p̂l(x)π̂l, where

π̂y =
∑

i I(Yi = y)/n and p̂y(x) being a Gaussian density. We use total coverage of

0.95 for the plug-in LABEL and CWR classifiers. For each scenario we repeat the

simulation 1000 times, and in Table 2 we report the average ambiguity and class

coverages across simulations.

From Table 2 we can see that, across the three scenarios that we considered, the

LABEL classifier has smaller average ambiguity than the CWR. In fact, the ambiguity

of the LABEL classifier was smaller in all 1000 simulation replicates within each simu-

lation scenario, not only on average. This is rather natural, since in our construction

of LABEL classifiers assigning the output {1, 2, 3} to a sample point is penalized
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CWR LABEL

Class Probs. Ambiguity Class Coverage Ambiguity Class Coverage

(.45, .10, .45) 1.28 (1.00, 0.53, 1.00) 1.21 (0.98, 0.64, 0.98)

(.33, .33, .34) 1.94 (0.98, 0.89, 0.98) 1.51 (0.96, 0.93, 0.96)

(.60, .30, .10) 1.78 (0.99, 0.89, 0.92) 1.41 (0.98, 0.91, 0.88)

Table 2: Comparing LABEL classifiers with total coverage control to CWRs in

a three-class problem. Simulation details are given in the main text. Quantities

reported here are averages over 1000 simulation replicates.

more than an output containing only two labels. CWRs effectively assign the output

{1, 2, 3} to all ambiguous sample points, and therefore do not specify which labels

are plausible for a given instance. In the scenarios explored in our simulation study,

classes 1 and 3 are relatively well separated, and therefore the LABEL classifier

assigns the outcomes {1, 2} and {2, 3} to the sample points in the overlap of classes 1

and 2, and 2 and 3, respectively. To such cases, the CWR assigns {1, 2, 3}, which is

less informative and leads to larger ambiguity. LABEL classifiers are therefore more

informative in reporting ambiguous cases as they indicate the set of plausible labels

for each instance.

We also conclude from Table 2 that controlling total coverage can lead to very

uneven class coverage with both LABEL classifiers and CWRs. Notwithstanding, our

framework can also be used to control class-specific coverage, something that cannot

be done using CWRs.
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Ambiguity Class Coverage

CWR 3.64 (0.87, 0.98, 0.93, 0.92, 0.97)

LABEL 1.87 (0.90, 0.99, 0.97, 0.69, 0.53)

Table 3: Comparing LABEL classifiers and CWRs under total coverage control in

a multivariate problem. Simulation details are given in the main text. Quantities

reported here are averages over 1000 simulation replicates.

B.2 Data-Based Multivariate Scenario

To explore the performance of LABEL classifiers in comparison with CWRs under

more complex scenarios, we use the Abalone data analyzed in Section 5.4 to create

a synthetic population from which we simulate. The goal here is to construct a

synthetic population based on real data, not necessarily study the repeated sample

performance of the analysis in Section 5.4. We start by creating K = 5 classes

using the age variable (unlike in Section 5.4, where we took K = 3 to ease the

presentation). We then use the seven numeric features in the Abalone data to obtain

a mean vector and a covariance matrix within each class. The population is then

defined as a five-component mixture of seven-dimensional normal distributions, with

means, covariance matrices, and population proportions obtained from the abalone

data.

Each of the 1000 replicates in this simulation study consists of n = 4000 draws from

the aforementioned mixture. The estimator of p(y|x) is a simple multinomial logistic

regression. We controlled the total coverage of the classifiers at 0.95. For CWRs

this means that we chose the cost of the reject option ρ so that its total coverage is

greater or equal to 0.95.

In Table 3 we compare the ambiguity and class coverages that we obtain on average
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Figure 7: Comparison of ambiguity obtained from LABEL and CWR across 1000

simulation replicates in multivariate scenario.

from LABEL and CWR. Similarly as with the other examples and simulation scenarios,

LABEL classifiers provide smaller ambiguity values, meaning that these are more

informative than CWRs as the latter provide larger outputs. Indeed, in Figure 7

we show that LABEL ambiguity is smaller than CWR ambiguity in all simulation

replicates.

In Table 3 we can also see that LABEL classifiers tend to give very imbalanced class

coverages. In this simulation scenario this occurs because three of the classes have
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very small class probabilities (classes 1, 4 and 5), and in addition two of these are not

very well separated from a third one (classes 4 and 5 are very close to class 3). This

phenomenon was illustrated in Example 3. Regarding CWRs, their larger outputs

lead in this case to higher and more balanced class coverages given that instances

receive all labels when they get assigned the reject option. Nevertheless, balance

of class coverage cannot be guaranteed with CWRs, whereas LABEL classifiers can

indeed be used under class-specific coverage control.
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