
A Appendix

A.1 K-fold Cross Validation

We can perform joint optimization for K-fold cross validation by reformulating the problem.
Let (y,X) be the full data set. We denote the kth fold as (yk,Xk) and its complement as
(y−k,X−k). Then the objective of this joint optimization problem is the average validation
cost across all K folds:

arg minλ∈Λ
1
K

∑K
k=1 L(yk, fθ̂(k)(λ)

(Xk))

s.t. θ̂
(k)

(λ) = arg minθ∈Θ L(y−k, fθ(X−k)) +
J∑
i=1

λiPi(θ) for k = 1, ..., K
(A.1)

A.2 Proof of Theorem 1

Proof. We will show that for a given λ0 that satisfies the given conditions, the validation
loss is continuously differentiable within some neighborhood of λ0. It then follows that if
the theorem conditions hold true for almost every λ, then the validation loss is continuously
differentiable with respect to λ at almost every λ.

Suppose the theorem conditions are satisfied at λ0. Let B′ be an orthonormal set of basis
vectors that span the differentiable space ΩLT (θ̂(λ0),λ0) with the subset of vectors B that
span the model parameter space.

Let L̃T (θ,λ) be the gradient of LT (·,λ) at θ with respect to the basis B:

L̃T (θ,λ) =B ∇LT (·,λ)|θ (A.2)

Since θ̂(λ0) is the minimizer of the training loss, the gradient of LT (·,λ0) with respect to
the basis B must be zero at θ̂(λ0):

B∇LT (·,λ0)|θ̂(λ0) = L̃T (θ̂(λ0),λ0) = 0 (A.3)

From our assumptions, we know that there exists a neighborhood W containing λ0

such that L̃T is continuously differentiable along directions in the differentiable space
ΩLT (θ̂(λ0),λ0). Also, the Jacobian matrix DL̃T (·,λ0)|θ̂(λ0) with respect to basis B is
nonsingular. Therefore, by the implicit function theorem, there exist open sets U ⊆ W
containing λ0 and V containing θ̂(λ0) and a continuously differentiable function γ : U → V
such that for every λ ∈ U , we have that

L̃T (γ(λ),λ) = ∇BLT (·,λ)|γ(λ) = 0 (A.4)

That is, we know that γ(λ) is a continuously differentiable function that minimizes LT (·,λ)
in the differentiable space ΩLT (θ̂(λ0),λ0). Since we assumed that the differentiable space is
a local optimality space of LT (·,λ) in the neighborhood W , then for every λ ∈ U ,

θ̂(λ) = arg min
θ

LT (θ,λ) = arg min
θ∈ΩLT (θ̂(λ0),λ0)

LT (θ,λ) = γ(λ) (A.5)

Therefore, we have shown that if λ0 satisfies the assumptions given in the theorem, the fitted
model parameters θ̂(λ) is a continuously differentiable function within a neighborhood of λ0.
We can then apply the chain rule to get the gradient of the validation loss.

1

A.3 Regression Examples

A.3.1 Elastic Net

We show that the joint optimization problem for the Elastic Net satisfies all three conditions
in Theorem 1:

Condition 1: The elastic net solution paths are piecewise linear (Zou & Hastie 2003),
which means that the nonzero indices of the elastic net estimates stay locally constant
for almost every λ. Therefore, Sλ as defined in Section 2.4.1 is a local optimality space
for LT (·,λ).

Condition 2: We only need to establish that the `1 penalty is twice-continuously
differentiable in the directions of Sλ since the quadratic loss function and the ridge
penalty are both smooth. The absolute value function is twice-continuously differentiable
everywhere except at zero. Hence the training criterion is smooth when restricted to
Sλ.

Condition 3: The Hessian matrix of LT (·,λ) with respect to II(λ) is I>I(λ)X
>
TXTII(λ) +

λ2I. The first summand is positive semi-definite. As long as λ2 > 0, the contribution
of the identity matrix ensures the Hessian is positive definite.

A.3.2 Additive Models with Sparsity and Smoothness Penalties

We use the notation in Section 2.4.2. In addition, let |J(λ)| be the number of elements in
J(λ). Let

U =
[
U (i1) ... U (i|J(λ)|)

]
(A.6)

where i` ∈ J(λ).
The gradient of the validation loss is

∇λL(yV , fθ̂(λ)(XV)) = −

IV ∑
i∈J(λ)

U (i) ∂

∂λ
β̂

(i)
(λ)

>yV − IV ∑
i∈J(λ)

U (i)β̂
(i)

(λ)

(A.7)

where
∂

∂λ
β̂(λ) = H(λ)−1

[
C0(β̂(λ)) C

(
β̂(λ)

)]
(A.8)

The Hessian H(λ) is

H(λ) = U>I>T ITU + λ0diag

{ 1

||U (i)β̂
(i)

(λ)||2

(
I − β̂

(i)
(λ)β̂

(i)>
(λ)

||U (i)β̂
(i)

(λ)||22

)}
i∈J(λ)

+ εI

(A.9)
The vector C0(β̂(λ)) is a vertical stack of the vectors

β̂
(i)

(λ)∥∥∥U (i)β̂
(i)

(λ)
∥∥∥

2

2

for i ∈ J(λ). The matrix C(β̂(λ)) has columns i = 1, ..., p

Ci(β̂(λ)) =

0

U (i)>D(2)>
xi

sgn
(
D(2)
xi
U (i)β̂

(i)
(λ)
)

0

 for i ∈ J(λ)

0 for i 6∈ J(λ)

(A.10)

Now we check that all three conditions are satisfied.

Condition 1: It seems likely that the space spanned by Sλ is a local optimality space,
though we are unable to formally prove this. The training criterion for this problem is
composed of generalized lasso penalties and a group lasso penalties. For the generalized
lasso, Tibshirani et al. (2011) proved that the solution path is smooth almost everywhere.
For the group lasso, there is empirical evidence that the active set is locally constant
almost everywhere with respect to the penalty parameter (Yuan & Lin 2006), but this
has not been formally proven. Vaiter et al. (2012) showed that the active set is locally
constant with respect to the response; we suspect similar techniques could be used to
prove our hypothesis.

Condition 2: We only need to establish that the generalized lasso and group lasso
penalties are twice-continuously differentiable in the directions of Sλ since the rest of
the training criterion is smooth. ‖Dθ‖1 is not differentiable at the points where Dθ
has zero elements. We must therefore restrict the derivatives to be taken in directions
such that the zero elements of Dθ remain constant. The `2 norm is twice-continuously
differentiable everywhere except at the zero vector. Hence the training criterion is
smooth when restricted to the differentiable space Sλ specified in Section 2.4.2.

Condition 3: The Hessian matrix in (A.9) is the sum of positive semi-definite matrices.
As long as ε > 0, the contribution of the last summand εI will make the Hessian matrix
positive-definite.

A.3.3 Un-pooled Sparse Group Lasso

The gradient of the validation loss with respect to the penalty parameters is

∇λL(yV , fθ̂(λ)(XV)) = −
(
XV,I(λ)

∂

∂λ
β̂(λ)

)> (
yV −XV,I(λ)β̂(λ)

)
(A.11)

where
∂

∂λ
β̂(λ) = −H(λ)−1

[
C(β̂(λ)) sgn(β̂(λ))

]
(A.12)

The Hessian H(λ) is

H(λ) =
1

n
X>T,I(λ)XT,I(λ) + diag

(
λm

||θ(m)||2

(
I − θ

(m)θ(m)>

||θ(m)||22

))
+ εI (A.13)

3

The matrix C(β̂(λ)) in (A.12) has columns m = 1, 2...,M

Ci(β̂(λ)) =

 0
β̂
(m)

(λ)

||β̂(m)
(λ)||2

0

 (A.14)

where 0 are the appropriate dimensions.
The logic for checking all three conditions in Theorem 1 is similar to the other examples:

Condition 1: We hypothesize that the differentiable space Sλ is also a local optimality
space, though we have not formally proven this fact. We suspect this is true for the
same reasons discussed in Section A.3.2.

Condition 2: The `1 and `2 penalties are twice-differentiable when restricted to Sλ for
the same reasons discussed in Section A.3.2.

Condition 3: The Hessian matrix in (A.13) is the sum of positive semi-definite matrices.
It is positive definite for any ε > 0 due to the last summand εI.

A.3.4 Low-rank Matrix Completion

Here we derive the differentiable space of the training criterion with respect to Γ. At λ, suppose

the fitted interaction matrix Γ̂(λ) has a singular value decomposition Û (λ)diag(σ̂(λ))V̂
>

(λ).
We denote the ith singular value/vector with subscript i. Then the differentiable space with
respect to Γ at Γ̂(λ) is

Sλ,Γ =
{
B ∈ RN×N

∣∣∣Û>i (λ)BV̂ i(λ) = 0 ∀i s.t. σi = 0
}

(A.15)

= span
({
Û i(λ)b>u + bvV̂

>
i (λ)

∣∣∣bu, bv ∈ RN , σi 6= 0
})

(A.16)

The proof is a direct application of Theorem 1 in Watson (1992). The following lemma adapts
his results for our purposes. Note that if a matrix can be written as a univariate function
Γ̃(ε), its singular values and singular vectors can be numbered such that they are each a
function of ε, e.g. σi(ε), U i(ε), and V i(ε) (Rellich 1969).

Lemma 1. Suppose Γ ∈ RN×N has a singular value decomposition Udiag(σ)V . Let

B =
{
B ∈ RN×N ∣∣U>i BV i = 0 ∀i s.t. σi = 0

}
(A.17)

The directional derivative of the nuclear norm ‖ · ‖∗ at Γ along B ∈ B is

lim
ε→0+

‖Γ + εB‖∗ − ‖Γ‖∗
ε

=
N∑
i=1

U>i BV i1[σi 6=0] (A.18)

Moreover, let the eigenvalues be numbered such that σi,B(ε) denotes the ith singular value
of Γ + εB. Then

B =

{
B ∈ RN×N

∣∣∣∣ dσi,B(ε)

dε

∣∣∣∣
ε=0

= 0 ∀i s.t. σi = 0

}
(A.19)

4

Now we derive the gradient of the validation loss with respect to the penalty parameters.
One approach would be to follow Algorithm 2 exactly, which requires us to find an orthonormal
basis of (A.16). An alternative approach is to use the result in (A.19): the differentiable
space is the set of directions where the zero singular values remain locally constant. Assuming
Condition 1 holds, we only need to consider interaction matrices with rank at most r =
rank(Γ̂(λ)). Hence a locally equivalent training criterion is:

arg min
η,γ

Γ=Udiag(σ)V >

U ,V ∈RN×r,σ∈Rr

1

2

∥∥M −XIr(λ)η1> − (ZIc(λ)γ1>)> − Γ
∥∥2

T
+ λ0 ‖Γ‖∗

+
∑

g∈Jα(λ)

λg‖η(g)‖2 +
∑

g∈Jβ(λ)

λG+g‖γ(g)‖2 +
1

2
ε
(
‖η‖2

2 + ‖γ‖2
2 + ‖Γ‖2

F

) (A.20)

s.t. V >V = I and U>U = I (A.21)

The locally equivalent training criterion is now smooth at its minimizer. The gradient
optimality conditions with respect to Γ can be taken with respect to the basis{

Û i(λ)e>j |i = 1, ..., r; j = 1, ..., N
}
∪
{
ejV̂ i(λ)>|i = 1, ..., r; j = 1, ..., N

}
(A.22)

Note that this basis is quite different from that used in Algorithm 2; it is allowed to vary
with λ and its elements are not orthonormal. The benefit of this alternative approach is that
the gradient optimality condition for Γ is easy to derive. Taking the gradient with respect to
the directions in A.22, we get:

0 = −Û(λ)>
(
M −XIr(λ)η̂(λ)1> − (ZIc(λ)γ̂(λ)1>)> − Û (λ)diag(σ̂(λ))V̂ (λ)>

)
T

+ λ0V̂ (λ)> + εdiag(σ̂(λ))V̂ (λ)>

(A.23)

0 = −
(
M −XIr(λ)η̂(λ)1> − (ZIc(λ)γ̂(λ)1>)> − Û(λ)diag(σ̂(λ))V̂ (λ)>

)
T
V̂ (λ)

+ λ0Û(λ) + εÛ(λ)diag(σ̂(λ))
(A.24)

where (·)T zeroes out matrix elements that are not observed in the training set. The gradient
optimality conditions with respect to η and γ are derived using the usual procedure. To get
the partial derivatives of the fitted values with respect to λ, we implicitly differentiate the
gradient optimality conditions, as well as (A.21), with respect to λ and solve the resulting
system of linear equations. The gradient of the validation loss with respect to the penalty
parameters is straightforward to calculate once the partial derivatives are obtained. However,
we omit this tedious calculation.

We now show that the conditions in Theorem 1 are satisfied.

Condition 1: We hypothesize that the differentiable space Sλ defined in (31) is also
a local optimality space λ. For the group lasso penalties, we use the same reasons
mentioned in A.3.2 to justify this hypothesis. For the nuclear norm penalty, it has

5

been observed empirically that small perturbations in the penalty parameter result in
matrices with similar rank (Mazumder et al. 2010). This supports our belief that Sλ,Γ
is a local optimality space with respect to Γ at λ.

Condition 2: The only non-smooth components of the training criterion are the group
lasso and nuclear norm penalties. The group lasso penalty is twice-differentiable when
restricted to the differentiable space, using the same reasoning in Section A.3.2. From
(A.18), we see that the nuclear norm ‖Γ‖∗ is also twice-differentiable with respect to Γ
when restricted to Sλ,Γ.

Condition 3: The differentiable space for the training criterion with respect to Γ is a
linear space. Therefore there exists some orthonormal basis of the differentiable space.
Since the training criterion is the sum of convex functions with ridge penalties on all
the variables, the Hessian of the training criterion is positive definite for any ε > 0.

A.4 Gradient Descent Details

Here we discuss our choice of step size and convergence criterion in gradient descent.
There are many possible choices for our step size sequence {t(k)} (Boyd & Vandenberghe

2004). We chose a backtracking line, which we describe here briefly. Let the criterion function
be L : Rn → R. Suppose that the descent algorithm is currently at point x with descent
direction ∆x. The algorithm is given below. It depends on constants α ∈ (0, 0.5) and
β ∈ (0, 1). In our examples initial step size was 1, and we backtrack with parameters

Algorithm Backtracking Line Search

Initialize t = 1.
while L(x+ t∆x) > L(x) + αt∇L(x)T∆x do

Update t := βt

α = 0.001 and β = 0.1. During gradient descent, it is possible that the step size will result
in a negative regularization parameter; we reject any step that would set a regularization
parameter to below a minimum threshold of 1e-6.

Our convergence criterion is based on the change in our validation loss between iterates.
More specifically, we stop our algorithm when

L
(
yV , fθ̂(λ(k+1))(XV)

)
− L

(
yV , fθ̂(λ(k))(XV)

)
≤ δ

For the results in this manuscript we use δ = 0.0005.

A.5 Sensitivity to initialization points

Since the results of gradient descent and Nelder-Mead depend on their initialization points,
we ran a simulation to see how sensitive the methods were to where they were initialized and
how many initializations were used.

6

Figure A.1: Error of additive models tuned by Gradient Descent vs. Nelder-Mead. Left:
Validation error of models after as the number of initialization points increases. Right: The
distribution of validation errors. (Gradient Descent = GD, Nelder-Mead = NM)

We tested a smaller version of the joint optimization problem in Section 2.4.2. Here we use
60 training, 30 validation, and 30 test observations and p = 15 covariates. The response was
generated from (34). We initialized λ by considering all possible combinations of (λ0, λ11)
where λ0, λ1 ∈ {10i : i ∈ {−2,−1, 0, 1}}.

In Figure A.1 (left), we plot the validation error as the number of initializations increases.
The validation errors from both methods plateau quickly. Gradient descent manages to
find penalty parameters with lower validation error than Nelder-Mead. Figure A.1 (right)
presents the distribution of validation errors resulting from the random initializations. On
average, gradient descent finds penalty parameters with lower validation error compared to
Nelder-Mead. The plots show that the methods are indeed sensitive to their initialization
points. For example, one could run a very coarse grid search on the two-parameter version of
the joint optimization problem and use the best penalty parameter values.

A.6 Additional simulation results

The simulation results in Section 3 show that joint optimization problems with many penalty
parameters can produce better models than those with only two penalty parameters. One
may wonder if this difference is due to the method used to tune the penalty parameters. Here
we present results from tuning the two-penalty-parameter joint optimization problems from
Sections 3.2, 3.3, and 3.4 using gradient descent, Nelder-Mead, and Spearmint. As shown in
Table A.1, the performance of these methods are very similar to grid search. Regardless of
the method used to tune the two-penalty parameter joint optimization, the resulting models
all have higher validation and test error compared to the models from the joint optimization
problem with many penalty parameters tuned by gradient descent.

7

Table A.1: Two-parameter joint optimization problems for the examples in Section 3.
Standard errors are given in parentheses. We abbreviated the methods as follows: Gradient
Descent = GD, Nelder-Mead = NM, Spearmint = SP, Grid Search = GS

Sparse additive models
Validation Error Test Error # Solves

GD 28.31 (0.89) 29.43 (0.92) 10.13
NM 28.86 (1.04) 29.97 (0.96) 100
SP 29.18 (1.07) 30.09 (1.08) 100
GS 28.71 (0.97) 29.42 (0.96) 100

Sparse Group Lasso
n=90, p=600, M=30

Validation Err Test Err # Solves
GD 46.82 (2.21) 49.33 (1.36) 21.43
NM 46.37 (2.24) 48.95 (1.35) 100
SP 45.70 (2.32) 49.35 (1.56) 100
GS 47.23 (2.26) 50.01 (1.40) 100

n=90, p=900, M=60
Validation Error Test Error # Solves

GD 45.71 (2.26) 50.31 (1.93) 20.77
NM 44.95 (2.24) 50.18 (1.82) 100
SP 49.59 (2.27) 56.54 (2.14) 100
GS 45.70 (2.27) 51.34 (1.86) 100

n=90, p=1200, M=100
Validation Error Test Error # Solves

GD 50.46 (2.30) 57.02 (1.94) 19.80
NM 49.92 (2.33) 55.46 (1.89) 100
SP 49.70 (2.26) 56.51 (2.16) 100
GS 50.00 (2.16) 57.14 (2.18) 100

Low-rank Matrix Completion
Validation Err Test Err Num Solves

GD 0.70 (0.04) 0.71 (0.04) 8.03 (0.79)
NM 0.71 (0.04) 0.71 (0.04) 100
SP 0.73 (0.04) 0.74 (0.04) 100
GS 0.71 (0.04) 0.72 (0.04) 100

8

A.7 Smoothness of the Validation Loss

Since our algorithm depends on the validation loss being smooth almost everywhere, a
potential concern is that the validation loss may not be differentiable at the solution of the
joint optimization problem. We address this concern empirically. Based on the simulation
study below, we suspect that the minimizer falls exactly at a knot (where our validation loss
is not differentiable with respect to λ) with measure zero.

In this simulation we solved a penalized least squares problem with a lasso penalty and
tuned the penalty parameter to minimize the loss on a separate validation set. We considered
a linear model with 100 covariates. The training and validation sets included 40 and 30
observations, respectively. The response was generated data from the model

y = Xβ + σε

where β = (1, 1, 1, 0, ..., 0). ε and X were drawn independently from a standard Gaussian
distribution. σ was chosen so that the signal to noise ratio was 2. For a given λ > 0 our
fitted β minimized the penalized training criterion

β̂(λ) = arg min
β
‖y −Xβ‖2

T + λ‖β‖1

We then chose the λ-value for which β̂(λ) minimized the validation error.
In our 500 simulation runs, the penalty parameter that minimized the validation loss was

never located at a knot: Using a homotopy solver for the lasso, we were able to find the exact
knots (λ-values where variables enter/leave the model), and these points never achieved the
minimum value of the validation loss. While this is only one example, and not definitive
proof, we believe it is a strong indication that it is unlikely for solutions to occur regularly at
knots in penalized problems.

In addition, we believe that the behavior of our procedure is analogous to solving the
Lasso via sub-gradient descent. In the Lasso setting, sub-gradient descent with a properly
chosen step-size will converge to the solution. In addition, if initialized at a differentiable
β-value (ie. with all non-zero entries), then the lasso objective will be differentiable at all
iterates in this procedure with probability one. Admittedly, using the sub-gradient method to
solve the lasso has fallen out of favor. The current gold-standard methods, such as generalized
gradient descent, give sparse solutions at large enough iterates and achieve faster convergence
rates.

References

Boyd, S. & Vandenberghe, L. (2004), Convex optimization, Cambridge university press.

Mazumder, R., Hastie, T. & Tibshirani, R. (2010), ‘Spectral regularization algorithms for
learning large incomplete matrices’, Journal of machine learning research 11(Aug), 2287–
2322.

Rellich, F. (1969), Perturbation theory of eigenvalue problems, CRC Press.

9

Tibshirani, R. J., Taylor, J. et al. (2011), ‘The solution path of the generalized lasso’, The
Annals of Statistics 39(3), 1335–1371.

Vaiter, S., Deledalle, C., Peyré, G., Fadili, J. & Dossal, C. (2012), ‘The degrees of freedom of
the group lasso’, arXiv preprint arXiv:1205.1481 .

Watson, G. A. (1992), ‘Characterization of the subdifferential of some matrix norms’, Linear
algebra and its applications 170, 33–45.

Yuan, M. & Lin, Y. (2006), ‘Model selection and estimation in regression with grouped
variables’, Journal of the Royal Statistical Society: Series B (Statistical Methodology)
68(1), 49–67.

Zou, H. & Hastie, T. (2003), ‘Regression shrinkage and selection via the elastic net, with
applications to microarrays’, Journal of the Royal Statistical Society: Series B. v67 pp. 301–
320.

10

	Appendix
	K-fold Cross Validation
	Proof of Theorem ??
	Regression Examples
	Elastic Net
	Additive Models with Sparsity and Smoothness Penalties
	Un-pooled Sparse Group Lasso
	Low-rank Matrix Completion

	Gradient Descent Details
	Sensitivity to initialization points
	Additional simulation results
	Smoothness of the Validation Loss

