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Abstract 

A meta-study was conducted of chlorinated volatile organic compounds (CVOC) detections in 
environmental monitoring wells, as reported in California’s Groundwater Ambient and 
Monitoring Assessment (GAMA) database. The list of CVOCs assessed included 1,1-
dichloroethane (1,1-DCA), 1,1-dichloroethene (1,1-DCE), cis-1,2-dichloroethene (cis-1,2-DCE), 
trans-1,2-dichloroethen (trans-1,2-DCE), tetrachloroethene (PCE), 1,1,1-trichloroethane (1,1,1-
TCA), 1,1,2-trichloroethane (1,1,2-TCA), trichloroethene (TCE), vinyl chloride, and, 
additionally, 1,4-dioxane. A machine learning technique – DBSCAN cluster analysis – was used 
to delineate approximately 17,000 monitoring wells, distributed across the state of California, 
into 1,183 “sites” with one or more or CVOC groundwater contaminant plumes, based on well 
coordinates. The total number of computed sites was found to depend on the specified maximum 
search radius parameter of the DBSCAN method: too large of a search radius resulted in a 
merging of sites, while too small of a search radius generated more outlier wells that were 
excluded from cluster assignment, thereby reducing the number of small sites featuring only a 
minimal number of monitoring wells. As a subsequent step, Delaunay triangulation was used to 
quantify the spatial extents of the monitoring well networks at each site and to estimate CVOC 
mass per unit aquifer depth. The study illustrates how aggregate groundwater contaminant plume 
behavior can be readily quantified, given the availability of current environmental databases and 
accessible data analysis tools. 

Keywords: Groundwater contaminant plumes, machine learning, cluster analysis 

Introduction 

Meta-studies of groundwater contaminant plumes, entailing statistical analyses of compiled data 
summaries from multiple sites, can be useful for identifying broad trends in contaminant 
behavior that can be difficult to extrapolate from individual sites. Meta-study results can be used 
to assess the efficacy of both engineered as well as natural attenuation remedies, behavioral 
comparisons between contaminants, and benchmarks for the extent, and therefore cost, of plume 
characterization in comparison to other similar conditions. Past efforts to identify and apply 
insights from plume meta-studies first focused on fuel hydrocarbons and methyl tert-butyl ether 
(MTBE), and in some case attempts to quantify impacts of biodegradation (e.g., Rice et al., 
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1995; Mace t al., 1997; Mace and Choi, 1998; Connor et al., 2015). Subsequent applications of 
meta-analyses for quantifying CVOC plume behavior included studies by McNab et al. (2000), 
McNab (2001), Newall et al. (2006), and Faybishenko and Hazen (2009). More recently, 
Adamson et al. (2014, 2015) reviewed data from multiple California and Air Force sites to 
characterize frequency of co-detections of 1,4-dioxane with other CVOCs and characterized 
plume length, while Lee et al. (2016) employed a machine learning scheme to predict the 
efficacy of engineered bioremediation based on data collected across 35 sites. 

The availability of (1) online groundwater quality databases in the public domain, and (2) new 
tools to facilitate the assimilation and processing of such data, provides a means for 
expeditiously conducting meta-studies on a broader scale than was previously possible. In this 
study, groundwater chlorinated volatile organic compound (CVOC) concentrations reported from 
the California Stae Water Resources Control Board’s Groundwater Ambient Monitoring and 
Assessment (GAMA) database were compiled and quantitatively evaluated using open-source 
data analysis tools. The assessment entailed groundwater samples from all wells in the database 
across all sample dates where at least one CVOC was detected above the applicable laboratory 
analytical detection limit; the list of CVOCs included 1,1-dichloroethane (1,1-DCA), 1,1-
dichloroethene (1,1-DCE), cis-1,2-dichloroethene (cis-1,2-DCE), trans-1,2-dichloroethen (trans-
1,2-DCE), tetrachloroethene (PCE), 1,1,1-trichloroethane (1,1,1-TCA), 1,1,2-trichloroethane 
(1,1,2-TCA), trichloroethene (TCE), vinyl chloride, and/or 1,4-dioxane. The groundwater sample 
dataset was parsed into individual “sites” and CVOC plumes using density-based spatial-
clustering-of-applications-with-noise (DBSCAN) cluster analysis. This exercise yielded almost 
1,200 putative sites across the state, each with one or more CVOCs. Site and plume metrics 
quantified for this parsed dataset included monitoring well network length and associated area, 
maximum historic concentrations of individual CVOCs, and integrated CVOC mass per unit 
aquifer thickness. 

The methodology and example findings of this meta-study are summarized below. 

Methodology 

Data from the GAMA database for all 58 California counties, representing a reporting period 
from approximately 2000 through the present, were used in the assessment. The data were 
limited to those flagged as being reported under the Electronic Data Format, or EDF, a means 
through which environmental monitoring well data (as opposed to public water supply well data) 
are submitted to GAMA. Data from individual counties were first downloaded from the GAMA 
website (http://geotracker.waterboards.ca.gov/gama/datadownload) as individual text files. These 
were compiled into a single dataframe structure using a python-language script, along with the 
pandas data processing package (http://pandas.pydata.org/). The data were filtered by individual 
sample event in each well so that at least one CVOC from the list provided above was reported 
as a detection. Duplicate detections were averaged; non-detects were designated as missing data 
(i.e., as “NA” items within the dataframe). Assessments conducted on this individual reported 

http://geotracker.waterboards.ca.gov/gama/datadownload
http://pandas.pydata.org/
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detection dataset included a graphical analysis of the frequency of co-detections between 
individual CVOCs, and identifying possible evidence for the impact of reductive dehalogentation 
reactions on the TCE  cis-1,2-DCE  vinyl chloride sequence. The latter analysis involved 
using co-detections of manganese, also reported in the GAMA database for the same individual 
groundwater samples, as a proxy for local oxidation-reduction conditions. 

Separately, individual sites were then identified from among all the wells in the GAMA database 
representing the individual CVOC detection dataset. This was conducted using DBSCAN cluster 
analysis, as implemented in the scikit-learn machine learning package for python (http://scikit-
learn.org/stable/). In summary, DBSCAN clustering assigns points – in this case, spatial survey 
coordinates for the wells in two-dimensions – to clusters based on whether or not the points can 
be connected to other points directly or indirectly (via a pathway through other cluster members) 
within a specified search radius (Ester et al., 1996). All data from a particular well were dropped 
from this analysis if (1) the well was not assigned to a cluster (i.e., the well was labelled as an 
isolated geographic outlier), or (2) the cluster was comprised of less than five wells. Beyond this 
computational binning of individual wells into sites, no attempt was made to compare the posited 
clustering assignments against specific reported site histories as described in characterization or 
remediation report databases. Such a validation effort would have been infeasible, given the 
number of reports and the geographic distribution of monitoring well data across the entire state. 

A local example of the resultant clustering of monitoring well data using the DBSCAN method 
is shown on Figure 1. In general, this machine learning technique groups the data points in a 
manner that visually appeals to intuition, in the absence of any further data about the individual 
“sites” that are implied. However, the maximum search radius for cluster membership is a key 
parameter determining cluster compositions. At distances that are too large, clusters that would 
otherwise be delineated as distinct are instead merged. At distances that are too short, an 
increasing number of wells are labelled as isolated and removed from the analysis, therefore 
deleting some candidate sites that fail to meet the minimum number of wells to qualify as a 
cluster. This effect is illustrated by a sensitivity analysis summary to the maximum search radius 
as shown on Figure 2. Note that the maximum search radius is expressed as degrees, (i.e., 
latitude-longitude), as the analysis encompasses the entire state and planar projection systems 
such as Universal Transverse Mercator or the state plane use different baselines for various 
portions of the state. 

The sensitivity analysis indicates that the optimal maximum search radius which generates the 
largest number of clusters, and hence furnishes the best discriminating power, is approximately 
0.00075 degrees. This is equivalent to approximately 80 meters along the north-south direction 
and to somewhat shorter distances in the east-west direction, depending on location with the 
state. The example clusters shown on Figure 1 are based on this inferred optimal maximum 
search distance. 

 

http://scikit-learn.org/stable/
http://scikit-learn.org/stable/
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Figure 1: Example assignments of wells (circular symbols) to “sites” based upon DBSCAN clustering (indicated by 
color). Such assignments do not necessarily reflect any association of a particular well with any regulatory 
designation or remediation effort but are instead attributable purely to geographical placement. 
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Figure 2: Response of DBSCAN cluster number count to maximum search radius for cluster membership. 

 

Once monitoring wells were assigned to clusters, or sites, the latitude-longitude coordinates were 
converted to a Cartesian coordinate system using the pyproj geospatial computations library 
(https://pypi.python.org/pypi/pyproj). This step facilitated: 

1. Calculation of maximum distances between monitoring well networks at each site; and, 
2. Calculation of the areas encompassed by the site monitoring wells. 

Both calculations were accomplished using the python scipy spatial package 
(https://www.scipy.org/). The first entailed computing the distance matrix for all monitoring well 
combinations with at least one historic CVOC detection at each site and then extracting the 
maximum value from the matrix. The second calculation involved using Delaunay triangulation 
to delineate each site into triangles, with the monitoring well survey points serving as the 
vertices. Summation of the areas associated with each triangle yields the area encompassed by 
the convex hull of the respective monitoring well sets. An example application of the Delaunay 
triangulation approach for two adjacent sites is shown on Figure 3. Note that this figure also 
illustrates the delineation of monitoring well survey points into separate clusters by DBSCAN 
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analysis: each well within a given cluster is within approximately 80 meters of another cluster 
member well, whereas the gap between the two sites exceeds the maximum search radisu for all 
possible well pairs. 

 

 

Figure 3. Results of Delaunay triangulation applied to two adjacent sites in an urban area; the figure also illustrates 
the efficacy of the DBSCAN algorithm in delineating sites, as constrained by the maximum search radius. 

 

For each CVOC at each site, mass per unit depth can be estimated by multiplying the areas of 
each triangle by the median historical concentration of the vertices, and then subsequently 
summing the areas while multiplying by an assumed value for porosity. Mass per unit aquifer 
depth is the appropriate CVOC site-impact metric, as opposed to total CVOC integrated mass, 
because well screen interval data are not provided in the GAMA database. As a consequence, the 
three-dimensional component of the CVOC distribution is implicitly mapped into two 
dimensions. 

  



7 
 

Findings 

Using DBSCAN, a total of 1,183 sites with at least one CVOC plume were identified from the 
GAMA database using the optimal maximum search radius. The distribution of these sites across 
California is shown on Figure 4. Unsurprisingly, these sites reside primarily in major urban areas 
such as Los Angeles, San Diego, the San Francisco Bay Area, and Sacramento, with scattered 
sites also found along the south central coast and in the San Joaquin Valley. This reflects the 
density of industrial sites, dry cleaners, and other potential sources of CVOCs in these areas. 

 

 

Figure 4: Locations of 1,183 sites with one or more CVOC plumes identified by DBSCAN cluster analysis. 

 

The 1,1,83 sites represent 16,951 individual monitoring wells, or, in some instances, other 
surveyed groundwater sample locations, with unique survey coordinates. From among this 
population of wells, a total of 150,245 sample events were reported which featured at least one 
CVOC detection. 
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Patterns Among Sample Event Populations 

The total number of reported detections of individual CVOCs among the sample event 
population is shown on Figure 5. Over 100,000 detections of TCE are represented in the dataset, 
with slightly fewer numbers of detections of two other chloroethenes – cis-1,2-DCE and PCE – 
with over 80,000 reported detections each. The least frequently reported detections include the 
two trichloroethane isomers (1,1,1-TCA and 1,1,2-TCA) and 1,4-dioxane, each with fewer than 
20,000 detections. 

 

 

Figure 5: Total number of samples from filtered GAMA database indicating positive reported detections of 
individual CVOCs. 

 

Co-detections of CVOC pairs are summarized on the graph shown on Figure 6, with the nodes 
representing the number of detections per analyte and the edges representing the number of co-
detections. The graph indicates, for example, that the three most commonly detected CVOCs 
also tend to be commonly co-detected in individual samples (i.e., TCE with cis-1,2-DCE and/or 
PCE). Normalizing the number of co-detections by the number of detections of a given CVOC 
pair member yields an estimate of the co-detection frequency. For example, the co-detection 
frequencies for 1,4-dioxane with respect to the other CVOCs are summarized on Figure 7, 
indicating that 1,4-dioxane is more likely to be found with 1,1,1-TCA or its two potential 
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degradation products, 1,1-DCE and 1,1-DCA, than the other CVOCs. This finding is consistent 
with the use of 1,4-dioxane as a stabilizing agent for 1,1,1-TCA (Adamson et al., 2014). 

Inclusion of additional analytes that are indicative of the local geochemical environment can 
provide additional insights into processes impacting CVOC concentrations. Specifically, 
reported co-detections of oxidation-reduction condition indicators, such as dissolved manganese 
concentrations, can be used to assess the impact of reductive dehalogenation on some CVOCs. 
For example, concentrations of vinyl chloride and manganese are compared on Figure 8; the 
highest concentrations of vinyl chloride are associated with elevated concentrations of 
manganese, whereas much scatter exists in the relationship at lower concentrations. A plausible 
explanation is that very reducing conditions are necessary for the generation of high vinyl 
chloride concentrations in what are presumably wells located proximal to plume source areas, 
whereas lower concentrations may be from more proximal plume areas and are thus impacted 
more by transport processes as opposed to local oxidation-reduction conditions. In contrast, a 
comparison of TCE and manganese concentrations from the same data set exhibits no discernible 
relationship. In this case, high TCE concentrations appear to be associated with low 
concentrations of manganese in some samples, presumably because the introduction of TCE at 
high concentrations from nearby sources does not require reducing conditions. 

 

 

Figure 6: Graph representing the number of detections (nodes) and the number of co-detections (edges) of CVOCs 
in filtered individual sample dataset. Graph generated using the networkx package (https://networkx.github.io/) for 
python. 

 

https://networkx.github.io/
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Figure 7: Fraction of individual samples characterized by co-detection of 1,4-dioxane. 
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Figure 8: Relationship between vinyl chloride and manganese (as an indicator of oxidation-reduction conditions), 
top, and TCE and manganese, bottom, in samples with co-detections of all three species across multiple sites 
throughout California. 
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Patterns Among Plume Populations 

Among the 1,183 sites, a variety of monitoring well network summary CVOC statistics can be 
extracted. The distribution of maximum well-to-well distances, a proxy for plume length, across 
the site population is summarized on Figure 9. Similarly, the distribution of areas associated with 
the convex hulls of the site monitoring well networks, or plume extent, is shown on Figure 10. 
Both distributions exhibit approximate lognormal shapes. The number of historic monitoring 
wells per unit area of each site is summarized on Figure 11. These results indicate a median 
value close to 10 wells per hectare, although a small subset of sites are characterized by higher 
densities (e.g., 20-40 wells/hectare). These sites may include monitoring wells that sample across 
multiple aquifers, or may feature high-concentration source areas that have been subject to 
additional characterization or remediation. 

Assuming a classical idealized ellipsoidal shape for CVOC plumes, where the plume area is 
given by the product of the semi-major and semi-minor axes, and π, a distribution of lumped 
plume “widths” (per site) can be inferred from the corresponding lengths and areas. The 
relationship between inferred plume widths and lengths is shown on Figure 12. Regression of 
these data indicates that, on average, plume width is on the order of one-fifth of plume length, 
albeit with much scatter in the relationship. Commonly, the major axes of plumes tend to align 
with the prevailing groundwater flow direction, as would be expected (Figure 13). 

Some trends in the overall site data pertaining to relationships between various CVOCs are also 
apparent. For example, the distributions of maximum historic site concentrations of CVOCs 
belonging to the chloroethene reductive dehalogenation sequence TCE  cis- and trans-1,2-
DCE  vinyl chloride is shown on Figure 14. Given the prevalence of TCE in the individual 
sample event dataset, frequent detections of the respective reductive dehalogenation daughter 
products suggests that dechlorination reactions are widespread, either stemming from natural 
conditions or as a product of engineered bioremediation. cis-1,2-DCE is the most common 
member of the sequence, and occurs at the highest concentrations, followed by vinyl chloride 
and then trans-1,2-DCE. Associations between various CVOCs are also apparent in overall site 
plume metrics. Maximum concentrations of CVOC that are associated through degradation 
reactions, such as the abiotic conversion of 1,1,1-TCA to 1,1-DCE (Figure 15), appear as 
correlations in the data across sites where both CVOCs are found, whereas those that are 
presumably unrelated by either degradation reaction or use exhibit little or no obvious correlation 
(Figure 16). Similarly, the mass per unit aquifer depth of 1,4-dioxane is correlated with both 
1,1,1-TCA (Figure 17) and 1,1-DCE (Figure 18), but less so with respect to PCE (Figure 19), 
with which it has no known use-relationship. 

 

  



13 
 

 

Figure 9: Distribution of maximum extent of respective monitoring well networks among the 1,183 sites identified 
by cluster analysis. 
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Figure 10: Distribution of integrated areal footprints of respective monitoring well networks, computed via 
Delaunay triangulation, across the site population identified by cluster analysis. 
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Figure 11: Computed monitor well density across the population of sites (for sites with areas greater than 1 hectare). 
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Figure 12. Inferred plume width, based on idealized ellipse shape, versus corresponding plume length. 
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Figure 13. Configurations of multiple individual plumes identified by the cluster analysis – indicated by different 
color symbols marking well locations – near the southern end of San Francisco Bay. Groundwater flow direction is 
generally northerly. Posited assignments of wells to plumes do not necessarily reflect any regulatory designation or 
remediation plan but are instead attributable purely to geographical placement. 
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Figure 14: Distributions of maximum historic concentrations, among the population of sites, of the chloroethenes 
comprising the commonly recognized reductive dehalogenation sequence. 
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Figure 15: Comparison between maximum concentrations of 1,1-DCE and 1,1,1-TCA among the population of sites, 
with the former often presumably existing as an abiotic degradation product of the latter. 
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Figure 16: Comparison between maximum concentrations of 1,1-DCA and PCE among the population of sites; 
reference example where no particular use- or degradation reaction relationship is known to exist. 
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Figure 17: Comparison between mass/aquifer depth of 1,4-dioxane and 1,1,1-TCA across the population of sites. 
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Figure 18: Comparison between mass/aquifer depth of 1,4-dioxane and 1,1-DCE across the population of sites. 
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Figure 19: Comparison between mass/aquifer depth of 1,4-dioxane and tetrachloroethene across the population of 
sites. 

 

Discussion 

Application of accessible machine learning tools to public groundwater quality databases permits 
complex plume meta-analysis with relative ease compared to more labor-intensive past data 
gathering efforts. For databases consisting of hundreds of thousands of individual groundwater 
samples, tens of thousands of wells, and hundreds to thousands of sites/plumes, a key 
requirement is a capability to parse wells into sites based on survey coordinates. DBSCAN 
cluster analysis is ideal, provided that maximum search distance is optimized. This approach has 
been demonstrated for California’s GAMA database, which lists CVOC concentration histories 
and survey locations for environmental monitoring wells distributed throughout the state. 
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Subsequent site-specific analyses can take advantage of methods such as Delaunay triangulation 
to automate the summary of putative site-specific data. Example features in both the raw, 
individual groundwater sample data from the GAMA database and the parsed site dataset have 
been extracted from the data that are consistent with expected trends in the data, including 
associations between 1,1-DCE and 1,1,1-TCA, 1,4-dioxane and 1,1,1-TCA and its daughter 
products, and probability distributions describing monitoring well network spacing. 

The python code used for this assessment, and an extraction of CVOC data from the GAMA 
database across all 58 counties, can be found at, 
https://github.com/NumericalEnvironmental/VOC_Plume_Meta-analysis_with_Python. 

Limitations to this machine learning-based approach to lumping environmental data from such 
large datasets are numerous and should be recognized. Clearly, the assignment of individual 
monitoring wells to clusters is not equivalent to properly matching every well to the correct 
corresponding site, where site-specific historical operations information and hydrogeologic data 
would more precisely characterize plume behavior at the local scale. This type of mis-assignment 
error would be more common in urban or industrial areas where sites may be closely juxtaposed, 
the results shown on Figures 1 and 2 notwithstanding. However, other sources of error also exist, 
including, at a minimum: 

• Biases and/or extensive information omission inherent in ignoring non-detections; 
• Temporal changes in both plume characterization – in particular the number of wells 

sampled – as well as plume movement over time; 
• Inability to identify impacts and timing of various remediation approaches at individual 

sites; 
• Historic sampling biases, as CVOC data, provided as EDF, are generally from 2000 or 

later in the GAMA database; and, 
• As noted, three-dimensional data distribution information, which may be critically 

important for some sites, is not listed in GAMA and so cannot be represented. 
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