Evaluating Big Data Frameworks To Simplify
Distributed Task Execution In Apache Airavata

Apoorv Palkar
*Department of Computer Science
University of Illinois at Urbana-Champaign
Champaign, IL 61820
apoorvp2 @illinois.edu

Pervasive

Suresh Marru
fScience Gateways Research Center
Pervasive Technology Institute
Indiana University
Bloomington, IN 47408
smarru@iu.edu

Abstract—Apache Airavata powers users to run scientific
applications on remote computing resources. Airavata integrates
with science gateways to moderate computational jobs on diverse
resources. Some of the job may require to execute multiple tasks.
Newer technology trends such as Cloud Computing, BigData and
Internet of Things are yielding open source software frameworks
which are built for scale and reliability. In this paper we share
our experiences in exploring the use of such frameworks and
adapt for science gateway task management needs implemented
by Apache Airavata.

I. INTRODUCTION

Apache Airavata is middleware that supports science gate-
ways by implementing common features such as job submis-
sion and metadata management [1], [2]. Airavata has several
internal components, including a Registry, an Orchestrator,
and a Task Execution engine, that are accessed through an
API. These components may be implemented using a number
of strategies and communication patterns. The internal com-
ponents, for example, may be implemented as containerized
microservices that communicate through messaging system,
through direct remote procedure calls, or through REST calls
[3], [2]. Components can be replicated for fault tolerance and
load balancing.

Internal operations for even basic Airavata interactions may
be thought of a Directed Acyclic Graph (DAG). We note
here that the DAG may correspond to an scientific workflow
(such as staging data in and out of resources and executing
operations on the remote resources), but we are concerned here
with the internal management of the DAG and how it involves
multiple Airavata components.

Presented at Gateways
Michigan, Ann Arbor, MI,
https://gateways2017.figshare.com/

2017,
October

of
2017.

University
23-25,

Gourav Shenoy
fScience Gateways Research Center

Indiana University
Bloomington, IN 47408
goshenoy @indiana.edu

Ajinkya Dhamnaskar
fScience Gateways Research Center
Pervasive Technology Institute
Indiana University
Bloomington, IN 47408
adhamnas @iu.edu

Technology Institute

Marlon Pierce
tScience Gateways Research Center
Pervasive Technology Institute
Indiana University
Bloomington, IN 47408
marpierc @iu.edu

Real-Time
Monitoring

&

J
Admin Interfaces
Science Gateway

Portals and Desktop
User Interfaces

Composite
Applications

i
‘
‘
‘
iy
Application
NS =
=

AMQP ProcessQueue

= =
‘ App, Experiment ‘
Catalogs

Fig. 1. Apache Airavata conceptual framework.

The challenge for Airavata is to simplify its internal commu-
nications. Can we identify a framework that will manage the
lifecycle of Airavata components and the flow of information
between them without having to implement this ourselves?
That is, we would like to identify a framework that can provide
fault tolerance, load balancing, and elasticity of components
like the Task Executor: if a Task Executor instance fails, start
a new one and route work elsewhere. The desired framework
should also preserve state in the DAG of a particular request
and handle errors. We may term such systems as ‘fabric’or
‘substrate’frameworks.

The current implementation uses a custom distributed task
manager [4]. This, however, presents a significant drawback.
The implementation code required for this section of Airavata
is large. It requires a great deal of maintenance. In addition
to this, it presents a learning curve for future Airavata devel-
opers.We want to keep the distributed task manager as simple
as possible.

There exist many general purpose distributed schedulers

Remote Resources

Apache Airavata =98 HPC
e e e e e e e N =21 Cluster

Cloud

e
: @ -

lII B serveriess

STORM/
FLINKS
SPARK

AIRAVATA

i
d API
Y

Airavata User

€——» ORCHESTRATOR /€—»

Previously GFac, we need a better Immr.'workJ
for managing distnbuted workload

Fig. 2. Where the current work fits in Airavata abstract architecture

[5]; however, none fit our use case perfectly. Such schedulers
include Apache Mesos [6], Yarn, and Spark standalone. Our
use case demands a much more higher level overview. These
schedulers conduct scheduling on a far lower level. As a result,
we have explored other sister frameworks that may fit our
need. Apache Storm [7], Apache Spark [8], and Apache Flink
[9] are examples of popular open source technologies that
solve problems similar to the ones we have outlined above
These three technologies focus primarily on event processing
and batch processing. We are not, however, interested in their
common use cases. All three technologies are able to take
a modified input and then perform black box operations and
execute actions on a cluster. Instead of executing on a cluster,
we want one of these frameworks to take a particular DAG
and manage its internal state and orchestrate its passing to the
task executors for final execution.

This paper examines each of these technologies as a possible
substrate for Apache Airavata components. There is significant
overlap in the high level goals of all three:

o Fault tolerance: It is of the highest essence that there
is fault tolerance in a framework. There will potentially
be situations where tasks executors fail or face issues
regarding server/HPC connections. The most effective
frameworks should handle these cases internally without
external development.

« Ease of Use: The entire point of this effort is to improve
functionality, decrease development effort, and decrease
the amount of extraneous code. A successful framework
that replaces the current implementation should be easy
to deploy and manage in the long term.

o Scalable: It should be easy to increase the length and
amount of tasks and jobs. The increased overhead should
not be an issue.

These three qualities are highly desirable for our use case.
Simplifying the current code and replacing it with one of
these frameworks would promote efficient development, high
reliability, and a small learning curve.

II. APACHE STORM

Apache Storm is a distributed stream processing framework.
It was designed to handle real time data and perform fast data
analytics. Storm performs many of the desired operations of
our required use case. This includes high scalability, ease of

use, robust fault-tolerance, and very thorough documentation.
Storms signature development is through its use of bolts and
spouts. A spout is a source of information input. This can
include information such as Twitter tweets, Facebook posts,
MongoDB, or a simple .txt file. Storm has the ability to deal
with this information efficiently and process it through internal
channels.

Our concern is not actually how Storm achieves this high
availability and efficiency. We are interested in our use case
with Storm. We may think of the flow of information between
Airavata components associated with a task request as a
stream. Internally, a Storm application uses topologies in the
form of a DAG combined with spouts and bolts. A DAG
is called a topology in a Storm context. The topology is
structured to flow similar to a data pipeline. Similar to a
MapReduce job, Storm performs similar steps to perform
calculations. The main difference between MapReduce and
Storm is that Storm performs real time calculations instead of
using small batch processing similar to Hadoop/MapReduce.

We can potentially use Storm to write spouts to take input
data and pass it to bolts which handle the execution. A bolt is
executed via the .setBolt(*) method. Potentially, we can devise
our custom topology from the Airavata use case and pass it to
Storm. A series of setBolt statements will execute and handle
the execution. This is easy to implement.

III. APACHE SPARK

Spark is similar to Storm but has a much broader implication
in its use case. Spark is a general purpose cluster execution
framework. It provides many libraries such as Spark Stream-
ing, GraphX, and MLib. We want to analyze Spark to see if
it can process a DAG and execute the series of tasks and jobs
given to it as input. One can start a Spark context and execute
Java statements to control the flow of input.

Spark provides excellent support particularly for Cassandra.
Cassandra can be used to store and retrieve Airavatas internal
DAGs. Spark provides innate functions such as map(), filter(),
reduceByKey(), and cache(), which allow us to isolate each
segment or task in one job and then execute it. In addition
to this, Spark also meets all our criteria for an effective
framework similar to Storm. The documentation is also one
of the best among Apache projects.

The ease of use is a relative drawback however. Because
Spark is such general purpose framework, it provides many
features that we do not require As a result, its implementation
could prove to be time intensive and costly. In addition to
the extra implementation features, the actual implementation
is not as straightforward as Storm. In Spark, there exists a
data structure known as resilient distributed dataset (RDD).
RDDs are similar to topologies in Storm, but are not opera-
tional DAGs. They are considered to be immutable distributed
collections of objects. The flow pattern is, however, similar
to a graph. It is the job of the programmer to create trans-
formations, and then Spark handles the DAG management,
scheduling, and execution. This seems convenient, but the
innate transformation functions Spark offers are not as flexible.

Spouts - Data Source for Bolts

L] AIRLAMATA AP &
Ak ORCHESTRATOR Input Resocurce User Application
A Files Datails Preferences Dretails
Ajravata User
Planner toplogy Basic Job Execeultion Topology
™ £ ™y
Enw Input files Jol Cutput Output files
—:- Setup Transfer Submission Analysis Transfer
If any infa is missing, plan and
generate the necessary spouts] Boxes abowve are Bolls - Task Executars
s ey s o
Planners basically substiiule missing t
information. Eg: If user does not provide
target resource, planner will predict o~ e
which resource best suits the = n > n l n
application and updaie the Resource _— = A i

spoul accardingly.

Fig. 3. Simple Airavata architectural overview with Apache Storm as task execution framework.

As a result, the programmer has to implement these execution
specific features. Other than these drawbacks, Spark provides
an excellent framework for Airavata jobs/tasks to be executed
in a sequential manner.

IV. APACHE FLINK

Flink, similar to Storm, is a event streaming and processing
framework. Its use case is closer to Storm than it is to Spark.
Flink is very similar to Spark/Storm in that its framework
provides high scalability, high fault tolerance, and relative ease
of use. Flink utilizes pipelining and data parallelization to
execute its workflow in a timely and organized manner. As
a result, it is used extensively for running iterative machine
learning algorithms in real time.

For our use case, we want to analyze Flinks use of DAGs
and their execution. In Flink, DAGs are mapped to streaming
dataflows. Each dataflow starts with a source of data input and
ends with a sink. While the data is in the pipeline, calculations
can be performed on it. These streams can be arranged into a
DAG format to match the desired execution cycle.

Furthermore, Flink provides extensive support for running
Storm and Spark code on Flink clusters. Though Flink has
a different and distinct execution process, one can run Storm
topologies on Flink clusters. The combination of Flink and
Storm is an aspect we will need to evaluate. The control
over functions in Flink is better than Spark. There exist
more functions for our DAG management case. This could
potentially be very positive as ease of use is a major concern
for Airavata.

V. CONCLUSION

In this paper we summarized our efforts in exploring
BigData frameworks as an implementation engine for Apache
Airavata’s distributed task execution needs. We digested the
Apache Storm, Apache Spark and Apache Flink and their

applicability. All three frameworks described above somewhat
meet the criteria for our use case. Among the three, Apache
Spark seems to be the most out of place framework. As of
now, we have not built an operating model for the Spark
use case. The Apache Storm and Flink models have been
meeting expectations and performing as expected. In addition
to this, error and exception handling is a major concern we
need to address. Servers could potentially fail or individual
components could shut down abruptly.

These frameworks need to provide good support for error
and exception handling, which will eventually reduce the
developer overhead and make development easy. Typical errors
in scientific workflows relate to communication with remote
resources such as supercomputers or clouds. All three frame-
works provide basic exception handling mechanism out of
the box, but as per our current literature understanding, they
still lack the desired support. Though Storm seems to provide
minimal exception handling support, it proves to be highly
effective in virtually all other requirements. Flink provides
better error handling, but proves difficult to manage custom
topologies (DAGs). Implementing custom task executors in
Flink, such as submitting a job to a remote cluster, is impossi-
ble. This is because Flinks transformation operators are limited
to generic data processing functions such as MAP, REDUCE,
JOIN, FILTER, etc. In contrast, Airavata needs complicated
task executors, not just input data transformers. It is difficult
to define custom complicated DAGs in Flink and Spark, which
is relatively natural in Storm via topologies. We can also define
complicated task executor logic in Storm via Bolts.

We are investigating the use of Flink in combination with
Storm to amalgamate the best in both these frameworks
benefiting Airavata. Considering the aforementioned analysis,
Apache Storm seems to be a better suited candidate to replace
the current GFac in Airavata to perform distributed Task

Execution.. By the time of the conference, we should have
concrete comparison results.

VI. RELATED WORK

As discussed in section 1, various facets of task execution
challenges have been addressed over time and discussed
extensively in distributed systems literature. Cyberinfrastruc-
ture projects have implemented these concepts in software
systems to varying degree of successes. The larger vision
of Apache Airavata is to leverage on existing systems to
manage distributed task executions. In this paper, we evaluate
existing big data frameworks to manage distributed workloads.
While it is not appropriate at this point to do an ‘apples to
apples’comparison of these frameworks with other platforms,
we briefly discuss the HTCondor [10] project which has
tackled the problem of distributed task execution.

HTCondor offers a robust workload management system
for compute-intensive jobs. It provides a job queueing mech-
anism, scheduling, priority scheme, monitoring, and resource
management. HTCondor employs a matchmaking algorithm
to schedule jobs on particular nodes [11]. It uses ClassAd
mechanism for matching resource requests (jobs) with nodes
[12]. Whenever a job is submitted to Condor, it states both the
requirements and the preferences, such as required memory,
name of the program to run, user who submitted the job, and
a rank for the node that will run the job. Also, nodes advertise
their capacities in terms of RAM, CPU type and speed, current
load with other static and dynamic properties.

HTCondor can be used to build a highly-scalable Grid-style
computing environment. It makes use of cutting edge Grid and
cloud-based computing designs and protocols. HTCondor can
be used to build Grid-style computing environments that cross
administrative boundaries.

ACKNOWLEDGMENT

Apoorv Palkar is supported by the Google Summer of Code
2017 program.

REFERENCES

[11 S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin, M. Pierce,
C. Mattmann, R. Singh, T. Gunarathne, E. Chinthaka, R. Gardler
et al., “Apache airavata: a framework for distributed applications and
computational workflows,” in Proceedings of the 2011 ACM workshop
on Gateway computing environments. ACM, 2011, pp. 21-28.

[2] S. Marru, M. Pierce, S. Pamidighantam, and C. Wimalasena, “Apache
airavata as a laboratory: architecture and case study for component-
based gateway middleware,” in Proceedings of the 1st Workshop on The
Science of Cyberinfrastructure: Research, Experience, Applications and
Models. ACM, 2015, pp. 19-26.

[3] M. E. Pierce, S. Marru, L. Gunathilake, D. K. Wijeratne, R. Singh,
C. Wimalasena, S. Ratnayaka, and S. Pamidighantam, “Apache airavata:
design and directions of a science gateway framework,” Concurrency
and Computation: Practice and Experience, vol. 27, no. 16, pp. 4282—
4291, 2015.

[4] S. Perera, S. Marru, and C. Herath, “Workflow infrastructure for multi-
scale science gateways,” in TeraGrid Conference, 2008.

[5] T. L. Casavant and J. G. Kuhl, “A taxonomy of scheduling in general-
purpose distributed computing systems,” IEEE Transactions on software
engineering, vol. 14, no. 2, pp. 141-154, 1988.

[6] “Apache mesos,” http://mesos.apache.org, 2017, accessed: 2017-03-13.

[7] “Apache storm,” http://storm.apache.org/, 2017, accessed: 2017-03-13.

[8]

[9]
[10]

(11]
[12]

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets.” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

“Apache flink,” http://flink.apache.org, 2017, accessed: 2017-03-13.

T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor: a
distributed job scheduler,” in Beowulf cluster computing with Linux.
MIT press, 2001, pp. 307-350.

N. Coleman, “An implementation of matchmaking analysis in condor,”
Masters’ Project report, University of Wisconsin, Madison, 2001.

N. Coleman, R. Raman, M. Livny, and M. Solomon, “Distributed
policy management and comprehension with classified advertisements,”
Technical Report UW-CS-TR-1481, University of Wisconsin-Madison
Computer Sciences Department, Tech. Rep., 2003.

