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A Additional results from analysis of kinematic data

One scientifically interesting question about individual motion characteristics that is addressable

in our modeling framework is whether subjects with high baseline motion variance to one target

tend to have high baseline motion variance to other targets. Figure A.1 shows the estimated first

principal component score variance random intercept parameters gil1,int for each subject and each

target for both the left and right hands for the X coordinate of motion, ordered by the average

random intercept for each subject across targets for the right hand. There are clear subject-specific

patterns of variability shared across and within hands, and clearer subject-specific patterns of

variability within each hand across 8 targets. The correlation of average random intercepts for each

subject across the 8 targets, one for the left and one for the right hand, was 0.56, indicating a

positive correlation between baseline motor skill across hands within an individual.

Our model’s point estimate of the correlation between the subject-specific cross-target score

variance random intercept and the subject-specific cross-target score variance random slope is -0.80,

suggesting a relationship between high baseline motion variance and faster decrease in variance with

practice.
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Figure A.1: Estimates of random intercepts. Each panel shows, for the left or the right hand, the
estimated first principal component score variance random intercept parameters gil1,int in model
(10) for each subject i and target l, for the X coordinate of motion. Targets are colored as in
Figure 1, and subjects are ordered by their average random intercept across targets for the right
hand.

B HMC and SE methods applied to kinematic data

We applied the VB, HMC and SE methods to the X coordinate of motions by the right hand to

the target at 0◦, and obtained very similar results. While the estimate and 95% posterior credible

interval for the first FPC slope variance parameter using VB was −0.020 (−0.043, 0.003), the

corresponding estimate and interval for HMC was −0.020 (−0.040,−0.001) and the SE confidence

interval was −0.023 (−0.041,−0.005). The estimates and posterior credible/confidence intervals

for the first FPC intercept variance parameter were also similar: 3.12 (2.81, 3.43) for VB versus

3.18 (2.9, 3.45) for HMC and 3.23 (2.97, 3.49) for SE.

Estimates of random effects were also similar using the three methods, with all pairwise correla-

tions between random intercepts and random slopes estimated using the three methods exceeding

0.85.

To generate these HMC results we ran 4 HMC chains for 2000 iterations each, and discarded

the first 1000 iterations from each chain. The convergence criterion of Gelman and Rubin (1992)

was less than 1.011 for each sampled variable, suggesting convergence of the chains.
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C Bivariate model

To fit our model to bivariate data, we make the following modifications to our model. First, pij

is now a 2D × 1 observed functional outcome, formed by concatenating the X and Y coordinates

of rotated motions. Second, our basis function matrix Θ′ is now the 2D × 2Kθ matrix ( Θ 0
0 Θ ),

where Θ is the D×Kθ basis function matrix from model (5). Third, the covariance matrices in the

multivariate normal distributions for βl, bi and φk are now the matrices (where p* represents the

appropriate parameter)
(
σ2
p∗,x 0

0 σ2
p∗,y

)
⊗ P−1

Kθ
, where ⊗ is the Kronecker product operator, σ2

p∗,x and

σ2
p∗,y are independent with IG [α, β] priors and PKθ is the corresponding penalty matrix from model

(5). Finally, εij is now a 2D×1 vector of independent error terms with a MVN [0, σ2I2D] distribution.

Since the FPCs are bi-dimensional in this model, each FPC represents a deviation from the mean

motion in two dimensions, and each score represents the amount of that bi-dimensional mode of

variation reflected in each motion. We assume independence of the first and last D coordinates of

the functional random effects (each corresponding to a different coordinate of motion); further work

could introduce correlations between them.

Figure A.2 illustrates the FPCs estimated using model (9) fitted to the X and Y coordinates

of right hand rotated motions separately (top panels) and together using bivariate curves (bottom

panels). The FPCs estimated using X and Y coordinates separately are very similar to one another.

The first FPC in the bivariate model is similar to the first FPC from the model fit only to X

coordinate data, and shows little variation in the Y coordinate. The second FPC in the bivariate

model is similar to the first FPC from the model fit only to Y coordinate data, and shows little

variation in the X coordinate. These FPCs therefore show similar patterns of variation but in

different dimensions. The same pattern repeats, to a lesser extent, for the third and fourth PCs

estimated using the bivariate model.

This pattern indicates that deviations from the mean motion profile in each of the dimensions

represented by the X and Y coordinates are for the most part independent. The first FPC, for
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Figure A.2: FPCs from model (9) fit to the univariate and bivariate data. The FPCs on the left
are for the X coordinates of motions, those on the right are for the Y -coordinate. The FPCs in the
top row were estimated using univariate models, and the FPCs in the bottom row were estimated
using bivariate models.

example, which represents a mode of variation in which motions overshoot or undershoot the target

with respect to the line connecting the origin and target, is associated only with a slight systematic

deviation upwards or downwards from this line. Likewise, the second FPC, which represents a mode

of variation in which motions deviate upwards or downwards from the line connecting the origin

and the target, is associated with only a slight systematic deviation in length of motion along this

line. The third and fourth FPCs represent patterns in which motions are slower than average at

the beginning of the motion and then faster than average later (or vice versa). There is slightly
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greater involvement of both dimensions in FPCs 3 and 4.

Figure A.3 shows the change in variability of first and second bivariate FPC scores as a function

of practice at the motion task. For both FPCs and all targets, score variance is estimated to decrease

with motion number.
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Figure A.3: Estimates of bivariate FPC score variances in the right hand for each target. Panels
show the estimates of the score variance as a function of repetition number using the slope-intercept
model (10) in red and orange (first and second FPC, respectively), and using the saturated one-
parameter-per-repetition number model (11), in black and grey (first and second FPC, respectively).
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D Sensitivity Analyses

D.1 Hyperparameters

In our sensitivity analysis we focus on the parameters of principal interest to us in the analysis in

Section 6, the fixed effect parameters γl1,slope, which measure how much the variability of the first

FPC scores decreases with each additional motion. We found that inference for these parameters in

our VB model is not sensitive to the choice of the hyperparameters α and β in the inverse-gamma

priors for the smoothing parameters σ2
βl

, σ2
b and σ2

φk
(we tried various combinations of values of

α and β in the set {0.001, 0.01, 0.1, 1}), or to the number of spline basis functions used (we tried

values in the set {5, 10, 15, 20}).

When the prior for the parameters γl1,int, which measure the baseline variance of scores for the

first FPC, becomes too concentrated around zero, for example, when the variance of the mean-zero

normal prior for this parameter is decreased to 1, then to compensate for the resulting severely

shrunk estimates of these parameters, the estimates of γl1,slope reverse sign. However, inference for

γl1,slope was relatively insensitive to values of the variance of this prior in the set {10, 100, 100} (see

Figures A.4 and A.5).

When using standard prior specifications for the scale matrix parameters of the inverse-Wishart

priors for the random effects gik (like a diagonal identity matrix), we observed that the variance of

the random effects, and credible intervals for the fixed effect parameters γ, showed dependence on

the scale matrix parameters Ψk. For this reason we use the empirical Bayes method described in

Section 4.2.4 to set the value of these priors.

D.2 Mean Structure

We conducted various analyses to critically examine various modeling assumptions inherent in

models (9) and (10). First, model (9) assumes that it is adequate to model the mean of the observed
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Figure A.4: Estimates and 95% credible intervals for γl1,int as a function of the variance of its normal
prior.
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Figure A.5: Estimates and 95% credible intervals for γl1,slope as a function of the variance of its
normal prior.

curves with a functional intercept for each target and random functional effects for each subject-

target combination. If the mean motion to a target systematically changed as a function of repetition

number, then scores at the beginning or end of the training session might be inflated, which could

lead to over- or under-estimation of our parameter of principal interest, the motion number score

variance slopes γl1,slope. To examine this possibility, we conducted an analysis, restricted to data
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for right hand motions to target 0◦, in which we fit 4 separate functional random effects for each

subject, for 4 groups of consecutive motions (motions 1 through 6, motions 7 through 12, et cetera).

We found that inference for the slope parameter γ11,slope was unchanged, suggesting that model (9)

is adequate.

Models (9) and (10) also make several simplifying independence assumptions. First, we assume

independence of functional random effects for motions made by the same subject to different tar-

gets. Analysis of more complex models that modeled correlation between these functional random

effects showed that although taking into account these correlations did shrink together functional

random effects for the same subject, it did not change inference for our parameters of interest in the

model above, the score variance repetition number slope parameters γl1,slope. Second, we assume

independence of functional random effects and score variance random effects. In an ad hoc analy-

sis to check the effects of this simplifying assumption, we included the endpoint of the estimated

functional random effects as a predictor in our score variance model for data for right hand motions

to target 0◦. Although the 95% credible interval for this endpoint parameter did not include 0, its

inclusion in the score variance model did not alter the credible interval for the repetition number

slope parameter. In other contexts, for example, motions by stroke patients, correlations between

functional and score variance model random effects might be stronger, and might need to be taken

into account in order for inference to be correct.

A.8



E Derivations

This section includes derivations of conditional distributions of all quantities in model (5), an

overview of variational Bayes, a derivation of our variational Bayes algorithm, and additional de-

tails on the implementation of our HMC sampler. The derivations of conditional distributions are

included because they are used in the derivation of our variational Bayes algorithm. Throughout

this section we consider a model where each subject has one functional random effect bi. It is

straightforward to extend the derivations below to the case where there are different functional

random effects bim for different sets of curves for each subject.

E.1 Derivation of conditional distributions

Let n =
∑I

i=1 Ji be the total number of motions by all subjects. Let P be the D × n matrix of

functional outcomes, β the Kθ × (L+ 1) matrix of fixed effect coefficient vectors and X the corre-

sponding n × (l + 1) fixed effects design matrix, B the Kθ × I matrix of random effect coefficient

vectors and V the corresponding n× I random effects design matrix, Φ the Kθ×K matrix of prin-

cipal component coefficient vectors and Ξ the corresponding n×K matrix of principal component

scores and E the D × n error matrix of error vectors εi.

We rewrite our model using matrix notation as follows:

P = ΘβXT + ΘBV T + ΘΦΞT +E

We will first derive the posterior distribution of β conditional on the values of the other parameters

in the model. Let σ2
β be the length L+1 vector of prior variances σ2

βl
or, in the model with bivariate

observations, the length 2L+2 vector of prior variances (σ2
βx0
σ2
βy0
, . . . , σ2

βxL
, σ2
βyL

). Let vec (M) be the

vector formed by concatenating the columns of the matrix M . Then the covariance matrix of the

normal prior distribution of vec (β) is Σβ = diag
(
σ2
β

)
⊗Q−1, where diag (c) is the matrix with the
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elements of c on its main diagonal and 0 elsewhere and ⊗ is the Kronecker product operator. The

posterior distribution of vec (β) is then

p(vec (β) |rest) ∝ p(vec (P ) |β,B,Φ,Ξ, σ2)p(vec (β) |Σβ)

∝ exp

{
−1

2

[
1

σ2
‖vec

(
P −ΘβXT −ΘBV T −ΘΦΞT

)
‖2 + vec (β)T Σ−1

β vec (β)

]}

Using the identity

vec (ABC) = (CT ⊗A)vec (B) (A.1)

we see that the exponent in this posterior distribution is a quadratic in vec (β), and so the posterior

distribution is multivariate normal. The inverse of the coefficient of the quadratic term is the

covariance matrix of this posterior distribution:

Σ′β =

[
(X ⊗Θ)T

1

σ2
(X ⊗Θ) + Σ−1

β

]−1

.

This covariance matrix multiplied by the linear term of this exponent gives the mean of this posterior

distribution:

µ′β = Σ′β(X ⊗Θ)T
1

σ2

[
vec
(
P −ΘBV T −ΘΦΞT

)]
.

The derivations of the conditional posterior distributions of B and Φ are similar. Let bi be the

random effect for the ith subject. The covariance matrix of the normal prior distribution of bi is

Σb = diag (σ2
b)⊗((1−π)Q+πI)−1, where, in the model with bivariate observations, σ2

b = (σ2
bx , σ

2
by).

Let P i,X i and Ξi be the submatrices of the matrices P ,X and Ξ corresponding to the observations
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for the ith subject. The posterior distribution of bi is then

p(bi|rest) ∝ p(vec (P i) |β, bi,Φ,Ξi, σ
2)p(vec (bi) |Σb)

∝ exp

{
−1

2

[
1

σ2
‖vec

(
P i −ΘβXT

i −Θbi1
T
Ji
−ΘΦΞT

i

)
‖2 + bTi Σ−1

b bi

]}
,

that is, multivariate normal with covariance matrix

Σ′b =

[
(1Ji ⊗Θ)T

1

σ2
(1Ji ⊗Θ) + Σ−1

b

]−1

and mean

µ′bi = Σ′b(1Ji ⊗Θ)T
1

σ2

[
vec
(
P i −ΘβXT

i −ΘΦΞT
i

)]
.

Letting σ2
Φ be the length K vector of prior variances σ2

φk
(or, in the model with bivariate

observations, the length 2K vector (σ2
φx1
, σ2
φy1
, . . . , σ2

φxK
, σ2
φyK

)), the covariance matrix of the normal

prior distribution of vec (Φ) is ΣΦ = diag (σ2
Φ)⊗Q−1. The posterior distribution of vec (Φ) is then

p(vec (Φ) |rest) ∝ p(vec (P ) |β,B,Φ,Ξ, σ2)p(vec (Φ) |ΣΦ)

∝ exp

{
−1

2

[
1

σ2
‖vec

(
P −ΘβXT −ΘBV T −ΘΦΞT

)
‖2 + vec (Φ)T Σ−1

Φ vec (Φ)

]}
,

that is, multivariate normal with covariance matrix

Σ′Φ =

[
(Ξ⊗Θ)T

1

σ2
(Ξ⊗Θ) + Σ−1

Φ

]−1

and mean

µ′Φ = Σ′Φ(Ξ⊗Θ)T
1

σ2

[
vec
(
P −ΘβXT −ΘBV T

)]
.

To compute the conditional posterior distribution of ξij, the vector of scores for the jth mo-

tion for the ith subject, we let the covariance matrix of the normal prior distribution of ξij be

Σξij = diag
(
σ2
ξij

)
, where σ2

ξij
is the length K vector of prior variances for ξij. Then the posterior
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distribution of ξij is

p(ξij|rest)

∝ p(pij|β, bi,Φ, ξij, σ2)p(ξij|Σξij)

∝ exp

(
−1

2

{
1

σ2
‖pij −Θβxij −Θbi −ΘΦξij‖2 + ξTijΣ

−1
ξij
ξij

})
,

that is, multivariate normal with covariance matrix

Σ′ξij =

{
1

σ2
ΦTΘTΘΦ + Σ−1

ξij

}−1

and mean

µ′ξij = Σ′ξijΦ
TΘT 1

σ2

(
pij −Θβxij −Θbi

)
.

In the model for the variance of the kth principal component scores, let x∗ijk be the length L∗+1

vector of fixed effect coefficients for the jth motion by the ith subject and γk the corresponding

vector of fixed effects, shared across all subjects and motions, and let z∗ijk be the length M∗ vector

of random effect coefficients for the jth motion by the ith subject and gik the corresponding vector

of random effects for the ith subject. If we let σ2
γk

be the vector of the σ2
γlk

, the prior variances of the

components of γk, then the covariance matrix of the prior distribution of γk is Σγk = diag
(
σ2
γk

)
. Let

the covariance matrix of the prior distribution of gik be Σgk . The conditional posterior distribution

of γk and the vectors gik, i = 1, . . . , I is then

p(γk,g1k, g2k, . . . , gIk|rest) ∝

(
I∏
i=1

Ji∏
j=1

p(ξijk|γk, gik)

)
p(γk)

(
I∏
i=1

p(gik)

)

∝

 I∏
i=1

Ji∏
j=1

e−ξ
2
ijk/2e

(γkx
∗
ijk+gikz

∗
ijk)

e(γkx
∗
ijk+gikz

∗
ijk)/2

 exp

[
−1

2

(
γTkΣγkγk +

I∑
i=1

gTikΣgkgik

)]
,

which has the form of the posterior of a gamma generalized linear model with log link, responses

given by ξ2
ijk, shape parameter equal to 1/2 and a mean-zero multivariate normal prior on the
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coefficients γk and gik, i = 1, . . . , I, with covariance matrix determined by Σγk and Σgk .

Now we derive the conditional distributions of the variance parameters, starting with σ2
βl

. The

inverse gamma density is p(x|α, β) = βα

Γ(α)
x−α−1 exp

(
−β
x

)
. Therefore the posterior distribution of

σ2
βl

is

p(σ2
βl
|rest) ∝ p(σ2

βl
|α, β)p(βl|σ2

βl
)

∝
(
σ2
βl

)−α−1

exp

(
− β

σ2
βl

)
1(

σ2
βl

)Kθ/2 exp

(
− 1

2σ2
βl

βTl Qβl

)

∝ IG

[
α +

Kθ

2
, β +

1

2
βTl Qβl

]
.

For this variance parameter and also for the variance parameters σ2
b and σ2

φk
, the conditional

posterior distributions are the same in the model with bivariate observations, except that, for

example, in the conditional posterior distribution of σ2
βxl

, the quadratic form in the expression for

the second parameter of the inverse gamma posterior distribution is computed with respect to only

the first Kθ components of the vector βl. In the conditional distribution of σ2
βyl

, the remaining

components of βl are used. The conditional distribution of σ2
b is similar:

p(σ2
b|rest) ∝ p(σ2

b|α, β)
I∏
i=1

p(bi|σ2
b)

∝
(
σ2
b

)−α−1
exp

(
− β

σ2
b

)
1

(σ2
b)
IKθ/2

exp

(
− 1

2σ2
b

I∑
i=1

bTi ((1− π)Q+ πI)bi

)

∝ IG

[
α +

IKθ

2
, β +

1

2

I∑
i=1

bTi ((1− π)Q+ πI)bi

]
,
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as is the conditional distribution of σ2
φk

:

p(σ2
φk
|rest) ∝ p(σ2

φk
|α, β)p(φk|σ2

φk
)

∝
(
σ2
φk

)−α−1

exp

(
− β

σ2
φk

)
1(

σ2
φk

)Kθ/2 exp

(
− 1

2σ2
φk

φTkQφk

)

∝ IG

[
α +

Kθ

2
, β +

1

2
φTkQφk

]
,

of σ2:

p(σ2|rest) ∝ p(σ2|α, β)p(vec (P ) |β,B,Φ,Ξ, σ2)

∝
(
σ2
)−α−1

exp

(
− β

σ2

)
1

(σ2)nD/2
exp

[
− 1

2σ2
‖vec

(
P −ΘβXT −ΘBV T −ΘΦΞT

)
‖2

]
∝ IG

[
α +

nD

2
, β +

1

2
‖vec

(
P −ΘβXT −ΘBV T −ΘΦΞT

)
‖2

]
,

and of σ2
gk

(this is the case where there is just one scalar random effect):

p(σ2
gk
|rest) ∝ p(σ2

gk
|α, β)

I∏
i=1

p(gik|σ2
gk

)

∝
(
σ2
gk

)−α−1
exp

(
− β

σ2
gk

)
1(

σ2
gk

)I/2 exp

(
− 1

2σ2
gk

I∑
i=1

g2
ik

)

∝ IG

[
α +

I

2
, β +

1

2

I∑
i=1

g2
ik

]
.

In our real data application, we consider a model where two random effects gik,int and gik,slope

have a bivariate, mean-zero normal prior distribution with covariance matrix Σgk . This covariance

matrix has an inverse-Wishart prior distribution. The inverse-Wishart density is p(Σ|Ψ, ν) =

|Σ|− ν+p+1
2 exp

(
−1

2
tr
[
ΨΣ−1

])
, where p is the number of rows and columns of the covariance matrix
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Σ. The conditional posterior distribution of Σgk is therefore

p(Σgk |rest) ∝ p(Σgk)
I∏
i=1

p(gik|Σg)

∝ |Σgk |−
ν+p+1

2 exp

(
−1

2
tr
[
ΨΣ−1

gk

])
|Σgk |−I/2 exp

(
−1

2

I∑
i=1

gTikΣ
−1
gk
gik

)

∝ |Σgk |−
ν+p+I+1

2 exp

[
−1

2

(
I∑
i=1

tr
[
gikg

T
ikΣ

−1
gk

]
+ tr

[
ΨΣ−1

gk

])]

∝ IW

[
Ψ +

I∑
i=1

gikg
T
ik, ν + I

]
.

Straightforward extensions of these derivations apply in the case of nested random effects, as in

model extension (6).

E.2 Overview of variational Bayes

Let y and ζ represent the data and parameters, respectively, in a Bayesian model. Using variational

Bayes, we approximate the posterior p(ζ|y) using q(ζ), where q is a member of a restricted class of

functions Q more easily estimated than the posterior p(ζ|y). To find the best q in this restricted

class, we choose the element q∗ ∈ Q that minimizes the Kullback-Leibler distance from p(ζ|y). The

class Q is often the class of posterior distributions satisfying some factorization property, so that

q(ζ) =
∏H

h=1 qh(ζh), with each qh(ζh) a parametric density function. It can then be shown that the

optimal q∗h densities are given by

q∗h(ζh) ∝ exp [E−ζh log p(ζh|rest)] (A.2)

where E−ζh represents the expectation with respect to the currently estimated values of all param-

eters except ζh, and “rest” represents the observed data plus all parameters other than ζh. This

suggests the use of an iterative algorithm, setting initial values for all parameters and then updating

the optimal density for each parameter ζh in turn, conditionally on the currently estimated values
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for all the other parameters.

Let {σ2
s}s∈S represent the collection of all variance parameters in model (5). Let ξij represent

the vector of scores for the jth motion of the ith subject. The factorization we use to approximate

the posterior distribution q(ζ) for model (5) is

q(β0, . . . ,βL)

{
I∏
i=1

M∏
m=1

q(bim)

}
q(φ1, . . . ,φK)

{
I∏
i=1

Ji∏
j=1

q(ξij)

}{
K∏
k=1

q(γ0k, . . . , g11k, . . . , )

}{∏
s∈S

q(σ2
s)

}

(A.3)

In the case of the model extension (6), each term gik would have its own factor q(gik) in the

factorization above.

The quality of this approximation depends on the extent to which the true posterior distribution

factors as above. It is expected that the parameters in the curve mean µij(t) and the deviation δij(t)

will be correlated, which suggests that assumptions underlying the variational approximation will

be violated for these components of the posterior. Nonetheless, the assumptions related to the score

variance model, which is our main interest, may be sufficiently accurate to provide a reasonable

approximation.

E.3 Derivation of variational Bayes algorithm

To find the optimal q∗(·) distributions for β,B,Φ and Ξ, we use the following result: if the condi-

tional distribution of a parameter ζ is multivariate normal with mean µ and covariance matrix Σ,

then the distribution q∗(ζ) is multivariate normal with covariance matrix Σq(ζ) =
(
E−ζ

[
Σ−1

])−1
and

mean µq(ζ) =
(
E−ζ

[
Σ−1

])−1
E−ζ

[
Σ−1µ

]
, where we use the notation µq(ζ) and Σq(ζ), respectively, to

denote the mean and variance of a parameter ζ under its optimal q∗ distribution.

Throughout this section we make extensive use of the conditional distributions derived in Ap-

pendix E.1.
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For vec (β), the optimal density q∗(vec (β)) is thus multivariate normal with covariance matrix

Σq(vec(β)) =

[
µq( 1

σ2 )((X ⊗Θ)T (X ⊗Θ)) + diag

(
µ
q
(

1/σ2
βl

))⊗Q]−1

and mean

µq(vec(β)) = Σq(vec(β))(X ⊗Θ)Tµq( 1
σ2 )
[
vec
(
P −Θµq(B)V

T −Θµq(Φ)µ
T
q(Ξ)

)]
.

For bi, the optimal density q∗(bi) is multivariate normal with covariance matrix

Σq(bi) =
[
µq( 1

σ2 )(1Ji ⊗Θ)T (1Ji ⊗Θ) + diag
(
µq(1/σ2

b)

)
⊗ ((1− π)Q+ πI)

]−1

and mean

µq(bi) = Σq(bi)(1Ji ⊗Θ)Tµq( 1
σ2 )

[
vec
(
P i −Θµq(β)X

T
i −Θµq(Φ)µq(ΞTi )

)]
.

For vec (Φ), the optimal density q∗(vec (Φ)) is multivariate normal with covariance matrix

Σq(vec(Φ)) =
[
µq(ΞTΞ) ⊗ (ΘTΘ) + diag

(
µq(1/σ2

Φ)

)
⊗Q

]−1

and mean

µq(vec(Φ)) = Σq(vec(Φ))(µq(Ξ) ⊗Θ)Tµq( 1
σ2 )
[
vec
(
P −Θµq(β)X

T −Θµq(B)V
T
)]
.

For ξij, letting µ
q
(

Σ−1
ξij

) represent the expectation under the current distributions of the parame-

ters γlk and gimk of the precision matrix of the ξij, the optimal density q∗(ξij) is multivariate normal

with covariance matrix

Σq(ξij) =

{
µq( 1

σ2 )µq(ΦTΘTΘΦ) + µ
q
(

Σ−1
ξij

)}−1
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and mean

µq(ξij) = Σq(ξij)µ
T
q(Φ)Θ

Tµq( 1
σ2 )
(
pij −Θµq(β)xij −Θµq(bi)

)
.

The expectation µq(ΦTΘTΘΦ) appearing in the above expression for Σq(ξij) is the K ×K matrix

given by µTq(Φ)Θ
TΘµq(Φ) + {Mij} where Mij = tr

[
ΘTΘcov(φi,φj)

]
and cov(φi,φj) is a submatrix

of Σq(vec(Φ)). The expectation µq(ΞTΞ) appearing in the above expression for Σq(vec(Φ)) is the K×K

matrix given by µTq(Ξ)µq(Ξ) +M, where M =
∑

i,j Σq(ξij).

Let (γ, g)k represent the vector (γk, g1k, g2k, . . . , gIk). As in Nott et al. (2012), we use a multi-

variate normal approximation to the density q((γ, g)k). Using a routine from Nott et al. (2012), we

approximate the mean µq((γ,g)k) of the density q((γ, g)k) with the posterior mode of the Bayesian

gamma generalized linear model corresponding to the conditional posterior distribution of (γ, g)k,

using as responses the expectations µq(ξ2
ijk) in place of ξ2

ijk, and we approximate the variance Σq((γ,g)k)

with the negative inverse Hessian of the log posterior at the mode. Let these approximations be

µmode and Σmode. Then, if ξijk has the distribution N [0, exp
(
xT (γ, g)k

)
] for some coefficient vector

x, then by completing the square, we find that the expectation µ
q
(

Σ−1
ξij

) in the expression for Σq(ξij)

above is exp
(
−µTmodex− 1

2
xTΣmodex

)
.

To find the optimal q∗(·) distributions for σ2
βl

, σ2
b, σ

2
φk

and σ2, we use the following result: if

the conditional distribution of a parameter ζ is inverse gamma with parameters α and β, then the

distribution q∗(ζ) is inverse gamma with parameters E−ζ [α] and E−ζ [β], and the expectation µq(1/ζ)

is E−ζ [α] /E−ζ [β] .

For σ2
βl

, the optimal density q∗(σ2
βl

) is inverse gamma with parameters α+Kθ
2

and β+ 1
2
µq(βTl Qβl)

.

For σ2
b, the optimal density q∗(σ2

b) is inverse gamma with parameters α+ IKθ
2

and β+1
2
µq(

∑I
i=1 b

T
i ((1−π)Q+πI)bi).

For σ2
φk

, the optimal density q∗(σ2
φk

) is inverse gamma with parameters α+ Kθ
2

and β+ 1
2
µq(φTkQφk)

.

All of these expectations can be found using the optimal q∗() distributions for βl, bi and φk and

the formula for the expectation of a quadratic form.

For σ2, let xij be the row of the matrix X corresponding to the jth motion of the ith subject.
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Then the optimal density q∗(σ2) is inverse gamma with parameters α + nD
2

and

β +
1

2

I∑
i=1

Ji∑
j=1

[
‖pij −Θµq(β)xij −Θµq(bi) −Θµq(Φ)µq(ξij)‖2

+ xijLx
T
ij +mi + nij

]

where the matrix L is the (l + 1) × (l + 1) matrix whose i, j entry is the trace of ΘTΘ times

the covariance between the ith and jth column of β under the current distribution of β, mi =

tr
[
ΘTΘΣq(bi)

]
, and

nij = µTq(ξij)µq(ΦTΘTΘΦ)µq(ξij) + tr
[
µq(ΦTΘTΘΦ)Σq(ξij)

]
− µTq(ξij)µ

T
q(Φ)Θ

TΘµq(Φ)µq(ξij).

The optimal q∗(Σgk) density is given by

q∗(Σgk) ∼ exp[E−Σgk
log p(Σgk |rest)]

∼ exp

[
E−Σgk

{
−ν + I + p+ 1

2
log |Σ| − 1

2

(
tr

[
(Ψ +

I∑
i=1

gikg
T
ik)Σ

−1

])}]

Therefore the optimal density is inverse-Wishart with parameters ν + I and Ψ +
∑I

i=1 µq(gikgTik).

The expectation µq(gikgTik) in this expression is µq(gik)µ
T
q(gik) + M , where M is the covariance of gik

under the posterior distribution of (γ, g)k. The mean of this density is

µq(Σgk) =
Ψ +

∑I
i=1 µq(gikgTik)

ν + I − p− 1
.

Straightforward extensions of these derivations apply in the case of nested random effects, as in

model extension (6).

A.19



E.4 Details of implementation of HMC sampler

Our HMC samplers in Sections 5 and 6 fit the same models as fit by our VB model, while condi-

tioning on VB estimates of the parameters βl, bim and φk in model (5), and therefore implicitly

also conditioning on the associated variance parameters and on the VB estimate of π. The HMC

samplers estimate all other parameters in these models: the scores ξijk, the fixed effect variance

parameters γlk, the random effect variance parameters gik (and gilk, in model extension (6)), the

random effect variance parameter covariance matrices, and the error variance σ2. The samplers

were implemented in the STAN Bayesian programming language (Stan Development Team, 2013).

STAN implements Hamiltonian Monte Carlo, an MCMC algorithm that uses the gradient of the

log-posterior to avoid random walk behavior and therefore more quickly generate samples from the

posterior (Neal, 2011).

We ran all HMC samplers here using 4 chains and checked for convergence using the convergence

criterion of Gelman and Rubin (1992). We ran the HMC sampler used in Section 5 for 800 iterations

per chain, and discarded the first 400 iterations from each chain, which took about 90 minutes per

chain. We ran the HMC sampler used in Appendix B for 2000 iterations per chain, and discarded

the first 1000 iterations from each chain.

Code implementing the STAN model used in Section 5 is included in the Supplementary Materials.
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F Additional simulation results

Here we present cross-sectional simulations to illustrate the effect of varying the number of curves,

the number of estimated FPCs, the number of spline basis functions and the measurement error on

the quality of estimation using the VB method. In this cross-sectional design, curves are generated

from the model

Pi(t) = 0 +
4∑

k=1

ξikφk(t) + εi(t).

FPCs and group and FPC-specific score variances are as in the simulations in Section 5.

All results are for 200 replicates per simulation scenario. We present one simulation where we fix

the number of estimated FPCs at 4, the number of spline basis functions at 10, and the measurement

error standard deviation at 0.25, and vary the number of curves in the set {20, 40, 80, 160, 320}. In

the other simulations we fix the sample size at 80 and vary one of the other parameters.

For each simulated dataset, we use the methods described in Section 4 to fit the model

pi = Θβ0 +
K∑
k=1

ξikΘφk + εi (A.4)

ξik ∼ N

[
0, exp

(
2∑

m=1

γlkx
∗
il

)]
. (A.5)

The covariates x∗il are defined like the analogous covariates in Section 5.

Figure A.6 shows that accuracy in estimation of FPCs and bias in estimation of variance model

parameters decreases with more curves. Figure A.7 shows that when 2 or 3 FPCs are estimated

instead of the 4 that actually exist, estimates of the quantities that are estimated are not negatively

affected. Figure A.8 shows the result of changing the number of spline basis functions used for

estimation. 5 spline basis functions are not sufficient to adequately capture the relatively fast

variation in FPCs 3 and 4; otherwise, because we induce smoothness in the estimated FPCs using

the penalty matrix Q, using richer spline bases does not negatively affect estimation accuracy.

Figure A.9 shows the result of adding more noise to the simulated curves, keeping the sample size
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fixed. As expected, more noise results in larger errors in estimation, of both the FPCs and the score

variance parameters.

Figure A.10 shows examples of estimates of FPC 2 with varying levels of integrated squared

error. These estimates are from the longitudinal simulation scenario with Ji = 4.
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Figure A.6: Varying the number of curves. Integrated squared errors in estimation of FPCs (first
row) and signed relative error in estimation of variance parameters (second row) decreases with
more curves.
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Figure A.7: Varying the number of estimated FPCs. Integrated squared errors in estimation of FPCs
(first row) and signed relative error in estimation of variance parameters (second row) for FPCs 1
and 2 is mostly invariant to whether additional FPCs and associated score variance parameters are
also estimated.
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Figure A.8: Varying the number of spline basis functions. 5 spline basis functions are not sufficient
to adequately capture the relatively fast variation in FPCs 3 and 4. Otherwise integrated squared
errors in estimation of FPCs (first row) and signed relative error in estimation of variance parameters
(second row) are mostly invariant to the number of spline basis functions used in simulation.
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Figure A.9: Varying the measurement error. We varied the measurement error standard deviation
to 0.5, 1, 2 and 4. FPC integrated squared errors (first row) and signed relative errors in estimation
of the variance parameters (second row) illustrate that results are robust to a significant amount of
noise, but estimation of parameters becomes poorer as the amount of noise increases. Four FPCs
were simulated but only 2 were estimated.
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ISE approx. 0.0051 ISE approx. 0.01 ISE approx. 0.0504

ISE approx. 1e−04 ISE approx. 5e−04 ISE approx. 0.001
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t
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Figure A.10: Examples of estimates of FPC 2 with varying levels of integrated squared error. These
estimates come from the longitudinal simulation scenario with Ji = 4.

A.26


