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1 Introduction - Context

1.1 Context

The full datasets, R code, and raw results output related to this document are available in a public figshare
repository : https://figshare.com/s/865e87feaad34c095bbd

This report presents the detailed analyses performed for the following paper : Chronic and cumulative toxicity
for honey bees of the fungicide boscalid revealed with a time-to-death approach but not with the standard 10
days test
by Noa Simon-Delso, Gilles San Martin, Etienne Bruneau, Louis Hautier

The context of this study is twofold :

1. the evaluation of the methodologies used to assess the (chronic) toxicity of pesticides on adult bees
2. a specific fungicide (boscalid) whose toxicity for honey bees has started to attract attention in recent

years

Methods to estimate toxicity of pesticides on bees

• It is important to find international agreements on the methodologies in order to make the ecotoxico-
logical studies used for risk assessment comparable between labs and between products.

• However existing methods might need evaluation, validation and improvement.
• It might be argued that it is better (at least from a regulatory point of view) to have a standardized,

stable, but maybe imperfect method than to gradually improve existing methods with a continuously
changing protocol that makes the studies not comparable. However, even in that case, it might be
useful to understand the limitations of existing protocols.

Many questions can arise, in particular concerning oral chronic toxicity tests :

• Is the standard duration of 10 days for chronic tests on adults enough to detect chronic troxicity ?
• How to detect cumulative toxicity or “time reinforced toxicity” caused by bioaccumulation or other

mechanisms?
• Instead of a fixed time evaluation (eg mortality after 10 days) how can the kinetics of the toxicity

improve our evaluation of the environmental risk of a pesticide ?
• How does the syrup consumption change over time and between treatments and what is the impact on

the ecotoxicological results ?
• What is the impact of evaporation on the evaluation of the dose consumed by the bees ?

Boscalid

• Boscalid is a persistent, systemic and widely used fungicide.
• It is one of the most frequently found pesticides within beehives in Belgium.
• It has also been found in pollen pellets collected by bees very late in the season (October) at periods of

the year where the pesticide is unlikely to be used in the field.

–> Hence, it seems that bees are frequently exposed and during extended periods to this pesticide. The
question of its chronic toxicity is therefore legitimate.

• A former observative field study has shown a positive relationship between unexplained winter colony
health problems and the fungicides load (mainly boscalid) found within the beehive.

• It is however only a correlation and it remained unclear whether boscalid itself has a direct, causal
effect in the observed relationship.

A few lab studies have been recently performed that allow to explore a potential causal relationship between
the presence of boscalid and the health problem observed in the field :
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• Only the acute toxicity of boscalid on bees has been evaluated before commercialization
• A recent study has shown no (or limited) chronic toxicity of pure boscalid on honey bees larvae
• A recent study has shown a synergist effect of boscalid on a neo-nicotinoid. Previous monitoring studies

done in the region to know the level of contamination of beehives did not detect many residues of
neonicotinoids, but the sensitivity of the analyses used was not good enough. Therefore, bearing in
mind the amounts of neonicotinoids sold in Belgium (official data, not shown), a potential exposure
cannot be excluded.

• Several studies have shown no or limited synergist effect of boscalid on acaricides on honey bees or
other arthropods

1.2 Aims of this project

1. Test the chronic oral toxicity of the fungicide boscalid (as a formulated product) on adult bees during
a longer period than the classical 10 days duration of standard chronic tests

2. Test potential bioacculation of the product using different methodological approaches proposed in the
literature

3. Compare the feeding rate over time, between treatments and evaluate the levels of syrup evaporation
and their consequences on the results

1.3 Methods and data analysis

We used Cantus as commercial formulation of boscalid (50% w/w). Hence, the toxicity we observe here could
be due to the co-formulants, not boscalid itself. . . It was not possible to use pure boscalid in this study
because it was impossible to dilute it efficiently. In a former study on larvae, we used pure boscalid diluted
in royal jelly that showed no or limited toxicity on larvae.

In the whole study, we make the distinction between

• Concentration which is the concentration of the product within the syrup provided to the bees. The
units are mg a.i./l syrup.

• Dose which is the quantity of product really consumed by the bees through their food. It can be
expressed as average mg a.i./(bee*day) for the daily average dose or total mg a.i./bee for the
total cumulative dose.

We computed 4 types of dose or time to effect (mortality here) statistics.

• LTx (days): Lethal Time based on the model : Mortality vs Time
• LCx (mg a.i./l syrup) : Lethal Concentration based on the model : Mortality vs Concentration
• LDDx (average mg a.i./(bee*day)): Lethal Dietary Dose based on the model : Mortality vs Average

Dose consumed per bee and per day
• LCDx (total mg a.i./bee): Lethal Cumulative Dose based on a model of Mortality vs Cumulative

(total) Dose consumed per bee since D0

x represent the intended mortality rate (10%, 20%,. . . ). NB : for the sake of simplicity, we will some time use
“EDx” (Effect Dose) as a generic describer of LCx, LDDx, LCDx and even LTx, in line with the terminology
used in the drc package.

We chose a 3 parameters Weibull 2 model (sensu Ritz et al. 2010) to model the uncorrected mortality vs
time of concentration/doses. Three other types of models have been tested for all relationships : logistic,
log-logistic and Weibull 1 (sensu Ritz et al. 2010), all with 3 parameters. The Weibull 2 and logistic models
performed most of the time better (better fit, lower AIC) than the two other types of models. The Weibull
2 model was more stable than the logistic models for which the standard errors of the EDx were often
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impossible to compute. Both models provided very similar estimates of EDx in any cases.
See section 6 for more details on the comparison of the 4 types of models and on the structure of these
models. The raw_output directory provides the detailed results for the 4 types of models at each time, each
concentration and for ED10 up to ED90 (by step of 10%).

The LCx, LDDx and LCDx estimates are corrected for the mortalities in the control because we use a 3
parameters model that estimates a parameter for the lower asymptote of the sigmoïd dose response curve
(estimating the mortality when the concentration/dose is 0) and we compute the LCx, LDDx and LCDx
relative to this asymptote.

For LTx we also use a 3 parameters model, however the lower asymptote in that case estimates the mortality
at D0 which is always 0. Hence, the LTx values as we calculate them here are not corrected for mortality in
the control.

Applying correctly a mortality correction might be difficult because the total number of bees are not exactly
equal at the start of the experiment. Abbott’s formula is applicable in such unbalanced cases. However
binomial models require that the response variable (the % of dead bees - corrected or not) is a ratio of two
integers which will most of the time not be the case after Abbott’s correction when the sample sizes are
unequal. This is the reason why we prefer to use 3 parameters models on uncorrected mortalities rather than
the more classical 2 parameters models on corrected mortalities. NB : a 3 parameters model on uncorrected
mortalities gives very similar results (in terms of Effect Dose estimates) than a 2 parameters model on
corrected mortalities (see section 7 for more details and an empiric demonstration).
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2 Raw data and computations

The data from the last day (D33) have been removed because there is no data about syrup consumption on
this last day

Raw data :

• Treat : Treatment : CANTUS (= commercial name of the fungicide containing boscalid) - 2CNA (not
used here) - TS (Toxic Standard) - CONTROL

• Rep : Replicate
• Conc (mg a.i./l syrup) : concentration of the a.i. in the syrup (sugar solution)

The syrup is a 50% w/v sugar solution (e.g 1 kg sugar in 1 l water).
This solution has a density of 1.23 g/ml for : 50% sugar with a purity of 100% at ~25°C, source.
This Conc value is used to compute the LCx (Lethal Concentration x%).

• Eff (bees) : Total number of Bees on D0 (Effectif in French). Generally Eff=10. In few cases eff = 9
because some bees died btween the moment they were collected for the test and the moment to start
the test (and there were no other available bees of the same age)

• Day (days): Experiment day starting at Day 0
• Alive (bees): number of living bees on day d
• Dead (bees): number of dead bees since day D0
• Abnormal (bees) : number of bees showing an abnormal behavior
• Weightt0 (g) : measure on day d of the weight of the new syrup seringue provided
• Weightt1 (g) : measure on day d+1 of the Weight of the old syrup seringue provided on day d

The rest of the columns are calculated on the basis of these first columns

• Time (days) : the day number starting at 0 (numeric version of Day)
• MortRate : mortality rate = Dead/Eff
• AliveRate : “living rate” = Alive/Eff (not used)
• Conso (g/cage): syrup consumption per cage on a specific day = Weightt0-Weightt1 (and = 0 when

the data are not available, because all bees were already dead)
• ConsoBee : syrup consumption by the living bees on a specific day = Conso/Alive (g/living bee)
• Dose = (mg a.i./cage) Dose of ai ingested per cage by the living bees on a specific day (mg ai/cage) =

Conc*Conso/(1.23*1000) (taking into account the syrup density)
• DoseBee (mg ai/living bee) = Dose of ai ingested per living bees on a specific day

= Conc*ConsoBee/(1.23*1000)
• CumDose (total mg ai/ cage) = total amount of a.i. consumed by the bees taht are dead on day d

since D0 = cumsum(Dose) - Dose for each combination of Treatment, concentration and replicate The
dose consumed on day d is consumed by the living bees but not by the dead bees noted on that day.
This is the reason why we remove the dose from dau d in the calculations. Otherwise said for day d, we
compute the cumulative dose up to day -1 and the dose on D0 is 0

• CumDoseBee (total mg ai/ dead bee) : the same per bee = cumsum(DoseBee) - DoseBee. these values
are used for the computations of LCDx (Lethal Cumulated Doses x%)

• MeanDose (average mg ai / (cage * day) ): Average Dose in a whole cage consumed by the dead bees
on day d since D0 (ie this is a kind of cumulated average). Basically this is = CumDose/Day for each
replicate and each treatment. However the first value is not divided by 0 but by 1 to obtain an average
dose = 0 at D0. And once the mortality reaches 100% the mean dose consumed remains constant.

• MeanDoseBee (average mg ai / (bee * day) ) : The same but per bee i.e. average dose consumed per
bees that are dead on day d since D0. Basically this is = CumDoseBee/Day with the same restrictions
as MeanDose.
MeanDoseBee is used to compute the LDDx (Lethal Dietary Dose x%)
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## Treat Rep Conc Eff Day Alive
## 2CNA :495 Min. :1 Min. : 0.000 Min. : 9.000 D0 : 36 Min. : 0.00
## CANTUS :495 1st Qu.:1 1st Qu.: 1.208 1st Qu.:10.000 D1 : 36 1st Qu.: 2.00
## CONTROL: 99 Median :2 Median : 181.500 Median :10.000 D10 : 36 Median : 8.00
## TS : 99 Mean :2 Mean : 2936.930 Mean : 9.972 D11 : 36 Mean : 6.33
## 3rd Qu.:3 3rd Qu.: 2812.500 3rd Qu.:10.000 D12 : 36 3rd Qu.:10.00
## Max. :3 Max. :18000.000 Max. :10.000 D13 : 36 Max. :10.00
## (Other):972
## Dead Abnormal Weightt0 Weightt1 Time
## Min. : 0.000 Min. : 0.000 Min. :3.061 Min. :2.889 Min. : 0
## 1st Qu.: 0.000 1st Qu.: 0.000 1st Qu.:4.365 1st Qu.:3.913 1st Qu.: 8
## Median : 1.000 Median : 0.000 Median :4.392 Median :4.029 Median :16
## Mean : 3.642 Mean : 1.438 Mean :4.331 Mean :4.000 Mean :16
## 3rd Qu.: 8.000 3rd Qu.: 2.000 3rd Qu.:4.416 3rd Qu.:4.134 3rd Qu.:24
## Max. :10.000 Max. :10.000 Max. :4.746 Max. :4.446 Max. :32
## NA's :271 NA's :271 NA's :271
## MortRate AliveRate Conso ConsoBee Dose
## Min. :0.0000 Min. :0.0000 Min. :0.0000 Min. :0.00000 Min. :0.000000
## 1st Qu.:0.0000 1st Qu.:0.2000 1st Qu.:0.0918 1st Qu.:0.01711 1st Qu.:0.000000
## Median :0.1111 Median :0.8889 Median :0.2714 Median :0.03533 Median :0.000806
## Mean :0.3647 Mean :0.6353 Mean :0.2555 Mean :0.03264 Mean :0.266437
## 3rd Qu.:0.8000 3rd Qu.:1.0000 3rd Qu.:0.3964 3rd Qu.:0.04691 3rd Qu.:0.161545
## Max. :1.0000 Max. :1.0000 Max. :0.8466 Max. :0.15621 Max. :6.418829
##
## DoseBee CumDose CumDoseBee MeanDose
## Min. :0.0000000 Min. : 0.00000 Min. :0.00000 Min. :0.000000
## 1st Qu.:0.0000000 1st Qu.: 0.00143 1st Qu.:0.00019 1st Qu.:0.000122
## Median :0.0000931 Median : 0.25055 Median :0.02709 Median :0.011834
## Mean :0.0409656 Mean : 6.43732 Mean :0.88338 Mean :0.557201
## 3rd Qu.:0.0236415 3rd Qu.: 9.22429 3rd Qu.:1.00324 3rd Qu.:0.642262
## Max. :1.5758780 Max. :33.46229 Max. :6.42030 Max. :3.625707
##
## MeanDoseBee
## Min. :0.0000000
## 1st Qu.:0.0000123
## Median :0.0012209
## Mean :0.0738076
## 3rd Qu.:0.0673039
## Max. :0.5762436
##
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3 Syrup consumption and evaporation

3.1 Evaporation data

We collected partial data about the difference of syrup weight that might be due to simple evaporation by
adding syringes with syrup into cages without bees or with 10 dead bees during some days of the experiment
(when cages were free because all bees were dead).

One rather extreme data seems to be a transcription or measurement error. If we don’t take this outlier into
consideration, it appears that the weight loss due to evaporation is between 0.04 and 0.1 g per cage and per
day. There is clear variation from day to day so it appears that a daily measurement would be better to
correct for evaporation for each day. The presence of dead bees does not seem to affect the values however
the presence of living bees might change the evaporation.

We compared the results with and without correction for evaporation (using the average evaporation value
after excluding the outlier). The impact of this correction of the daily consumption is discussed in section 3.2.
For the rest of the analyses (ea LCx, LDDx, LCDx,. . . and cumulative toxicity) there were little differences
when we applied the correction or not (results not shown here). In the rest of the document we show the
results without evaporation consumption because such kind of ecotoxicilogical studies have historically not
corrected for evaporation. A more detailed study about the daily evaporation with different number of living
be should be performed separately.

Note : As the consumption is generally measured as a consumption per bee, the measurement error caused
by evaporation will have a higher impact when the mortality is high (ie when there are few living bees).
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3.2 Consumption of syrup between doses and over time

3.2.1 Kinetics of the consumption without evaporation correction

In the following graph, we look at the consumption of syrup (not the dose of a.i.) consumed by the
bees (without evaporation correction). Each gray line represent the data of one cage (replicate) for each
concentration (each facet of the graph) of boscalid/cantus. The red line is a loess smoother (locally weighted
polynomial regression) hat shows the general trend. The data displayed are the mean syrup consumption per
bee and per day without evaporation correction.

Main results :

• There is a very large variation of consumption from day to day
• At most concentrations (but not in the control), there is a strong increase of syrup consumption per

bee at the end of the experiment, above 0.08 g/bee
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Here we look at the same response (syrup consumption per bee) but against the number of living bees. The
very high levels of syrup consumption (above 0.08 g/bee) occur only when there are only 1 or 2 living bee(s)
left (and this case never occurs in the control).
So this increase of consumption at the end of the test could be due to the stress of the only bee left. An
important contributing factor could also be the evaporation that has been measured so be between 0.04
and 0.1 g per cage (in empty cages - see section 3.2). When there are 10 bees in the cage, the maximum
measurement error (over estimation) of syrup consumption per bee due to evaporation would then be
between 0.004 and 0.01 g per bee but when there are only one or 2 bee(s) left this can have a stronger effect
on the measurement.
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Figure 4:

3.2.2 Kinetics of the consumption with evaporation correction

If we use the data corrected for evaporation, most of the peak consumption at the end of the test disappear.
However there are still a few cases of peaking consumption at the doses 4500 mg/l and 18000 mg/l associated
with low number of bees. So it seems that these observed peaks might be due to a combination of measurement
error due to evaporation (and more important when there are few bees) and the mere fact that the bees are
in low number.
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3.2.3 Kinetics of the consumption up to 50% of mortality

The question of the difference of consumption over time and between doses is mainly important up to 50%
mortality (eg for application of the cumulative toxicity test proposed by EFSA, for ED50 calculations . . . ).
We can then look at the consumption data after removing the data corresponding to more than 50% of
mortality. NB : the results hereafter are almost identical with or without correction for evaporation. We
show the data without evaporation correction.

There is here a clear pattern of increased consumption at the beginning of the test followed by a decrease.
The colored lines are loess smoothers (locally weighted polynomial regression).
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We can group the loess curves on the same graph. The kinetics of the consumption is clearly different with a
peak at different moments and with a trend toward a higher consumption at lower doses
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This visual observation is confirmed by statistical testing.
We used a gaussian mixed model with the consumption per bee per day as response and as fixed explanatory
variable the Concentration, a second order polynomial of the time (to take into account the bell shaped
relationship) and their first level interactions. The cage was used as random effect. The Time was centered
before the analysis (mean day = 12.5) to limit problems of correlations between coefficients. We used only
the consumption data when there were at least 5 living bees in the cage (i.e. 50% mortality).
library(lme4)
tmp2 <- tmp
tmp2$Time <- scale(tmp2$Time, scale = FALSE)
m <- lmer(ConsoBee ~ Conc + Time + I(Time^2) + Time:Conc + I(Time^2):Conc + (1 |Rep),

data = tmp2[tmp2$Alive >=5,])
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The model quality is correct as revealed by residual plots, eg a second order polynomial is sufficient to model
the bell shaped relationship. A model without the second order polynomial shows clear problem of non
linearity between the consumption and time (as can be expected based the above plots).
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Figure 10:

Likelihood ratio test (Type II)
The time x concentration interactions are significant meaning that the kinetics of the consumption (consump-
tion vs time) is different between the concentrations. The fact that the main Conc (concentration) effect is
highly significant means that even without considering these interactions (type II test) the consumption at
the average day (~12.5 days) is different between the treatments (concentrations).

NB a model without centering the time still shows clear differences of consumption at day 0 (ie the intercept
for non centered data) at least between the control and the 2 highest concentrations.

LR df p(>Chisq)

Conc 30.11 5 1.4e-05 ***
Time 1.194 1 0.275

I(Timeˆ2) 68.47 1 1.11e-16 ***
Conc:Time 33.48 5 3.02e-06 ***

Conc:I(Timeˆ2) 11.87 5 0.0366 *

15



## Linear mixed model fit by REML ['lmerMod']
## Formula: ConsoBee ~ Conc + Time + I(Time^2) + Time:Conc + I(Time^2):Conc + (1 | Rep)
## Data: tmp2[tmp2$Alive >= 5, ]
##
## REML criterion at convergence: -2056.4
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -2.82938 -0.60213 0.02695 0.59812 2.81305
##
## Random effects:
## Groups Name Variance Std.Dev.
## Rep (Intercept) 2.931e-06 0.001712
## Residual 9.098e-05 0.009539
## Number of obs: 357, groups: Rep, 18
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 4.724e-02 1.720e-03 27.457
## Conc1125 -7.667e-03 2.548e-03 -3.009
## Conc2250 -7.773e-03 2.603e-03 -2.986
## Conc4500 -5.413e-03 2.641e-03 -2.050
## Conc9000 -1.627e-02 6.042e-03 -2.693
## Conc18000 -4.156e-02 2.809e-02 -1.479
## Time 6.425e-04 1.306e-04 4.921
## I(Time^2) -6.543e-05 1.267e-05 -5.162
## Conc1125:Time -8.252e-04 1.937e-04 -4.259
## Conc2250:Time -1.061e-03 2.316e-04 -4.581
## Conc4500:Time -1.427e-03 5.163e-04 -2.764
## Conc9000:Time -2.182e-03 1.923e-03 -1.135
## Conc18000:Time -7.400e-03 6.622e-03 -1.117
## Conc1125:I(Time^2) -2.189e-05 2.420e-05 -0.905
## Conc2250:I(Time^2) -8.110e-05 3.087e-05 -2.627
## Conc4500:I(Time^2) -1.053e-04 5.563e-05 -1.892
## Conc9000:I(Time^2) -1.431e-04 1.381e-04 -1.036
## Conc18000:I(Time^2) -4.092e-04 3.718e-04 -1.101

However the day to day variability is quite high as can be seen here when we compare the consumption just
during the first 4 days of the experiment.
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Figure 11:

3.2.4 Average consumption (without taking the time into account)

In most bee tests we compare simply the average consumption between the treatment (without taking into
account the time / kinetics).

NB on the following graph the black dots represent the mean and the bars their standard deviation.
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Figure 12:

We can test if there is a significant difference between the treatments with a gaussian mixed model with the
concentration as fixed effect and the cage as random effect.
The overall difference test is not significant :
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Table 2: Analysis of Deviance Table (Type II Wald F tests
with Kenward-Roger df)

F Df Df.res Pr(>F)

Conc 2.289 5 12.2 0.1104

The absence of significant difference might be due to the somewhat extreme consumption values observed
when the mortality is high.

Here we use only the consumption data up to 10 days as in a classical chronic test. There is still no difference
(NB choosing other time point does not change the results). This is due to the high variability including the
variability due to time that is not taken into account here.
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Figure 13:

Table 3: Analysis of Deviance Table (Type II Wald F tests
with Kenward-Roger df)

F Df Df.res Pr(>F)

Conc 1.974 5 11.98 0.1553

If you keep only the data up to 50% of mortality, then you can see a significant difference between the
concentrations. A post-hoc all pairwise comparison test (multcomp package - single step method for p-values
adjustment) shows that the consumption is lower in all doses relative to the control excepted at 4500 mg/l.
The significant differences are displayed on the graph with letters (concentrations sharing the same letter are
not significantly different).

Table 4: Analysis of Deviance Table (Type II Wald F tests
with Kenward-Roger df)

F Df Df.res Pr(>F)

Conc 10.65 5 12.8 0.0003313
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##
## Simultaneous Tests for General Linear Hypotheses
##
## Multiple Comparisons of Means: Tukey Contrasts
##
##
## Fit: lmer(formula = ConsoBee ~ Conc + (1 | Rep), data = tmp[tmp$Alive >=
## 5, ])
##
## Linear Hypotheses:
## Estimate Std. Error z value Pr(>|z|)
## 1125 - 0 == 0 -0.008406 0.002226 -3.776 0.00216 **
## 2250 - 0 == 0 -0.009707 0.002276 -4.266 < 0.001 ***
## 4500 - 0 == 0 -0.005339 0.002370 -2.252 0.21070
## 9000 - 0 == 0 -0.013858 0.002572 -5.388 < 0.001 ***
## 18000 - 0 == 0 -0.017503 0.002887 -6.064 < 0.001 ***
## 2250 - 1125 == 0 -0.001301 0.002337 -0.557 0.99354
## 4500 - 1125 == 0 0.003067 0.002429 1.262 0.80258
## 9000 - 1125 == 0 -0.005452 0.002626 -2.076 0.29590
## 18000 - 1125 == 0 -0.009097 0.002935 -3.100 0.02326 *
## 4500 - 2250 == 0 0.004368 0.002475 1.765 0.48398
## 9000 - 2250 == 0 -0.004150 0.002668 -1.555 0.62385
## 18000 - 2250 == 0 -0.007796 0.002973 -2.622 0.09000 .
## 9000 - 4500 == 0 -0.008519 0.002750 -3.098 0.02351 *
## 18000 - 4500 == 0 -0.012164 0.003046 -3.994 < 0.001 ***
## 18000 - 9000 == 0 -0.003646 0.003205 -1.137 0.86359
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Adjusted p values reported -- single-step method)
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3.3 Conclusions

Note : the raw consumption data are provided in the file raw_results/raw_data_with_computed_doses.csv

Evaporation

• The evaporation is quite variable from day to day and may also be influenced by the presence living
bees (here we measured the evaporation in empty cages or cages with dead bees for only a subset of
days).

• The effect of evaporation is mainly important in the evaluation of the daily consumption when there
are only 1 or 2 living bees left. However the impact of the evaporation (as measured here, ie not very
precisely) on the overall results (kinetics of the toxicity and kinetics of the consumption during most of
the test) seem very minor.

• Taking into account the evaporation might however improve the estimation of the dose to effect statistics
and reduce the day to day measured variability in consumption.

Consumption

• The daily consumption seems to increase strongly when there are only 1 or 2 living bee left. This
might be partially due to the measurement error induced by evaporation but even after correcting for
evaporation we still observe some large peaks of consumption when there are only a few bees left

• there is a huge day to day variation in consumption even in the control but some general patterns are
nevertheless visible.

• Even when there are more than 5 bees per cage, the consumption is not stable over time. In the control,
the consumption slowly increases to reach a maximum between 15 and 20 days and then decreases
slowly.

• A similar pattern is observed at the different concentrations but with a different kinetics : the higher
the concentration the sooner the maximum and the steeper the increase and then decrease.

• The bees tend to have a lower overall consumption in the higher concentrations at a given point in time
• These differences of consumption between treatments are only visible if you take into account the time

and/or if you do not use the consumption data after 50% of mortality. Otherwise the variability of the
consumption between days masks the differences.
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4 Kinetics of the toxicity : LTx, LCx, LDDx, LCDx at different time or
concentration

4.1 Raw mortality rates

Mortality rate over time for the different doses of boscalid/cantus, the control and toxic standard. The first
vertical dashed line at day 10 shows when the test should have been stopped according to the standard
protocol.
The second vertical dashed line shows the time (day 20) where the mortality rate in the control reached 15%
i.e. the validity criterion of the 10 day test.
The test was stopped at 33 days when the mortality in the control reached 50%.

The mortality at the highest concentration is higher than 50% only at Day 8. Before that date it is
complicated to estimate any LC50 or LDD50. On day 10 the mortality has reached almost 100% at the
highest concentration while all the other doses are below 50% and most of hem close to 0%. On Day 20 when
the mortality in the control has reached 15%, the mortality in the 3 highest doses is 100% or close to 100%.
And on day 31, the mortality of all concentrations has reached 100% while the control is still just below 50%.
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4.2 LTx vs Concentration
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4.3 LCx vs time
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4.4 LDDx vs Time
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4.5 LCDx vs Time
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4.6 Conclusion

The Lethal Times are shorter when the concentration is higher and the Lethal Concentrations and Lethal
Daily Doses are decreasing when the exposure time is increasing. This is not very surprising. The question
here is to know if this decrease is as expected according to Haber’s rule (ie when there is no cumulative
toxicity). This question is explored in section 5.1. However it seems to be not very pratical that these
standard toxicity estimates depend so much on the exposure time. . .

The Lethal Cumulated Dose show however a different and interesting pattern : The LCDx is more or less
stable up to ~ day 17 and then suddenly starts to decrease. This is a first clue that there might be some
cumulative toxicity or change in the capacities of the bees to detoxify the product. The fact that the LCDx
is stable during the first part of the tes seems however to be an interesting feature because it means that you
can have an estimate of toxicity that is relatively independent of the test duration providing that there is no
cumulative toxicity (you need however to maintain the test long enough to reach 50% of mortality in some of
the doses).
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5 Testing for cumulative toxicity (= “time reinforced toxicity”)

We have explored three main ways to check for cumulative toxicity properties of boscalid as described in the
literature :

1. Log-Log relationships between concentration and time. If there is no cumulative toxicity, the slope of
this linear relationship is expected to be = -1. There are 3 main possibilities :

• 1a log(Concentration) vs log(LTx)
• 1b log(LCx) vs log(Time)
• 1c log(LDx) vs log(Time)

2. Comparing cumulative doses between concentrations (EFSA protocol - EFSA 2013). If there is no
cumulative toxicity, you expect to observe the same level of cumulative dose to reach a given level of
mortality whatever the concentration.

3. Estimation of α and β : two exponents describing the kinetics between the concentration and the time
(method proposed by Miller 2000). Their ratio is expected to be = 1 when there is no cumulative
toxicity

5.1 Log-log relationship between concentration and time

According to Haber’s rule, if there is no cumulative toxicity, when the concentration/dose is divided by 2 the
time of exposure to reach the same level of mortality should be doubled.

There are two main traditional ways to see if the concentration ~ time relationship follows Haber’s rule :

1. fit a model of log(Concentration) vs log(LTx)
2. fit a model of log(LCx) vs log(Time) or log(LDDx) vs log(Time)

If the toxicity follows Haber’s rule, the slope of these models should be ~= -1. If there is cumulative toxicity,
the slope should be lower than -1.

NB : strictly speaking it would be more correct to fit a model of log(LTx) vs log(Concentration) because the
LTx is the value estimated with a certain error and this error should be on the y axis. However then the
interpretation of the coefficient is reversed : the slope should be higher than -1 when there is cumulative
toxicity. This would make the comparison and interpretation less straightforward and this is why we keep
the time and LT as X axis for all approaches.

We also estimated a log(LCDx) vs log(Time) model for comparison however this should not be used in
the classical way to test if the Haber’s rule holds because LCD already includes time accumulation (it is a
cumulative dose).
With this model, you expect a slope = 0 under Haber’s rule. On the contrary, if there is cumulative toxicity,
you expect a slope significantly lower than 0 (and not -1).

We have estimated the slope for each type of model and each level of expected mortality (by steps of 10%).
The following graph shows the slope estimates (black dots) and their confidence interval. The vertical dashed
line shows the value expected under Haber’s rule. (-1).
The confidence intervals are larger (lower precision) for the log(Concentration) vs log(LTx) models because
they are based on a lower number of points : 5 points (one for each dose). The control dose has been excluded.
The slope is always significantly different from -1 excepted for LT90 (confidence interval : -3.378 -0.995)
however the upper bound is very close to -1 and the CI is the largest of all estimates.

As expected the slopes of the log(LCDx) vs log(Time) models are not significantly less than -1 but they are
significantly lower than 0.
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Figure 20:

In conclusion : there is little doubt based on these results that the concentration vs time relationship does
not follow Haber’s rule and this implies that there is some level of cumulative toxicity.
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However, even if all the slopes are significantly smaller than -1, these slopes are just a rough summary of the
results and again an interesting pattern appears when we plot for example the log(LDDx) vs log (Time) and
compare to the line expected under Haber’s rule. NB : the Haber’s rule line is a linear regression with a fixed
-1 slope (the model estimates only the intercept).
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Figure 21:

The log-log LDDx vs Time relationship seems to follow closely Haber’s rule up to day 17-18 with a slope
of ~ -1 (i.e. when the Dietary Dose is divided by 2, the time to reach the same mortality is doubled). At
day 17-18 the slope abruptly decreases and the relationship clearly deviates from Haber’s rule. This pattern
is more marked for lower levels of mortality (LDD10, LDD20, etc) and tend to disappear at higher levels
of mortality (LDD90). For the LDD90 the points are almost perfectly aligned on a straight line without
inflection point. However even for the LDD90 where the observed regression line seems to be quite close to
the theoretic Haber’s slope, the slope is significantly lower than the expected -1 (estimate = -1.359 with a
95% confidence interval of [-1.492,-1.226]).

This pattern is not visible on the LTx vs Concentration Log-Log graphs and is less marked on the LCx
vs Time graphs. However the LTx vs Concenration regression are based on only 5 points (one for each
concentration) and it might be therefore difficult to visualise the sudden change visible on the LDDx plot.

All the graphs are provided below
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5.1.1 log(Concentraton) vs log(LTx)
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5.1.2 log(LCx) vs log(Time)
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5.1.3 log(LDDx) vs log(Time)
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5.1.4 log(LCDx) vs log(Time)
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Figure 28:

Only with LCD10, LCD50 and LCD90 with free y scales
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Raw results of the model (slope and confidence intervals) :

Method EDx Slope CIlower CIupper

Conc vs LTx LT10 -1.858 -2.521 -1.194
Conc vs LTx LT20 -1.959 -2.586 -1.333
Conc vs LTx LT30 -2.019 -2.665 -1.373
Conc vs LTx LT40 -2.061 -2.753 -1.368
Conc vs LTx LT50 -2.093 -2.847 -1.339
Conc vs LTx LT60 -2.12 -2.948 -1.292
Conc vs LTx LT70 -2.142 -3.057 -1.227
Conc vs LTx LT80 -2.162 -3.184 -1.14
Conc vs LTx LT90 -2.18 -3.35 -1.009
LCx vs Time LC10 -2.445 -3.016 -1.873
LCx vs Time LC20 -2.283 -2.728 -1.838
LCx vs Time LC30 -2.182 -2.549 -1.814
LCx vs Time LC40 -2.104 -2.414 -1.794
LCx vs Time LC50 -2.038 -2.302 -1.775
LCx vs Time LC60 -1.978 -2.202 -1.754
LCx vs Time LC70 -1.919 -2.108 -1.73
LCx vs Time LC80 -1.856 -2.016 -1.697
LCx vs Time LC90 -1.779 -1.92 -1.638
LDDx vs Time LDD10 -2.702 -3.454 -1.95
LDDx vs Time LDD20 -2.375 -2.969 -1.782
LDDx vs Time LDD30 -2.171 -2.667 -1.676
LDDx vs Time LDD40 -2.015 -2.435 -1.594
LDDx vs Time LDD50 -1.882 -2.24 -1.524
LDDx vs Time LDD60 -1.76 -2.061 -1.459
LDDx vs Time LDD70 -1.642 -1.888 -1.395
LDDx vs Time LDD80 -1.515 -1.707 -1.323
LDDx vs Time LDD90 -1.359 -1.492 -1.226
LCDx vs Time LCD10 -1.561 -2.331 -0.792
LCDx vs Time LCD20 -1.283 -1.891 -0.6738
LCDx vs Time LCD30 -1.108 -1.617 -0.5995
LCDx vs Time LCD40 -0.9749 -1.408 -0.5421
LCDx vs Time LCD50 -0.8615 -1.23 -0.4928
LCDx vs Time LCD60 -0.7578 -1.069 -0.447
LCDx vs Time LCD70 -0.6564 -0.9116 -0.4012
LCDx vs Time LCD80 -0.5485 -0.7468 -0.3503
LCDx vs Time LCD90 -0.4155 -0.5507 -0.2803
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5.2 Comparing cumulative dose between concentrations (EFSA protocol)

To test for cumulative toxicity the EFSA (2013) propose to :

• determine the LC50 at 48h
• launch a test with bees fed at a high dose = LC50 and others fed at a low dose = 0.25*LC50
• measure the total active substance consumed when 50% mortality occured for both the high dose and

the low dose
• compare these values with a t test (with a power of 80% to detect a difference of 35%)
• You can express the difference as a % of the high dose consumption : 100* (high dose consumption -

low dose consumption)/high dose consumption
• if there is cumulative toxicity, you expect that the low dose total consumption to reach 50% of mortality

will be lower than the total consumption of the higher dose

Here the LC50 at 48h is impossible to estimate. However we can apply the same idea by comparing the
cumulated dose consumed when the mortality reaches 50%.

We compare between the concentration the cumulative dose consumed per bee once the cage reached 50%
mortality. We use a simple analysis of variance folowed by all pairwise post-hoc comparisons (similar to a
Tukey test here using multcomp package single-step p-value correction method). Here the LC50 at 10 days is
~ 10000 mg ai/l (close to our 9000 dose). However if Haber’s rule holds and that you want to test a quarter
of this dose you expect to have to wait ~ 40 days to reach the same mortality. . .

If there is no cumulative toxicity, no differences in total doses between the treatments (concentrations) are
expected.

5.2.1 With raw mortalities

The global differences are highly significant. If you compare the 3 highest concentrations they are all
significantly different from concentrations four times lower. NB : a student test would also be significant as
the student t test is more powerfull than this corrected p-value test. So applying the EFSA protocol could
have worked here but the toxicity was undetectable at 2 days.

NB : these are non corrected mortalities. This could impact the results because the honey bees will finally
die even with very low doses of the product.

Another potential problem is that some times (quite often in fact) you do not observe an exact mortality of
50%. For example you have 4 dead bees one day and then you have 6 or 7 dead bees the next day. You could
expect that the cumulated dose from the cages with more than 5 dead bees might be higher but it does not
seem to be the case here (see on the graph below)
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Anova table :

Table 6: Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

Conc_f 4 8.304 2.076 212 1.279e-09
Residuals 10 0.09795 0.009795 NA NA

Graph : concentrations with different letters are significantly different (post-hoc Tukkey like test). Some
horizontal noise has been added to the points position to avoid overplotting.
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Figure 30:

Raw data for the record :

Treat Rep Conc Eff Day Alive CumDoseBee

CONTROL 1 0 10 D30 5 0
CONTROL 2 0 10 D30 5 0
CANTUS 1 1125 10 D24 5 0.8199
CANTUS 2 1125 10 D28 4 0.8296
CANTUS 3 1125 10 D24 5 0.7563
CANTUS 1 2250 10 D20 3 1.3
CANTUS 2 2250 10 D23 5 1.416
CANTUS 3 2250 10 D24 4 1.38
CANTUS 1 4500 10 D17 5 2.232
CANTUS 2 4500 10 D18 4 2.385
CANTUS 3 4500 10 D16 5 2.421
CANTUS 1 9000 10 D12 3 2.745
CANTUS 2 9000 10 D12 3 2.465
CANTUS 3 9000 10 D12 5 2.469
CANTUS 1 18000 10 D7 3 2.608
CANTUS 2 18000 10 D7 5 2.765
CANTUS 3 18000 10 D8 5 2.762
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5.2.2 With corrected mortalities

Applying a mortality correction adequately is not straightforward.
Ideally we should group the data from the 3 replicates and have identical initial number of bees. How-
ever as here we use only the mortality rate to select when we should stop looking at cumulated con-
sumption, one of the forms of Abbot’s correction seems appropriate : CorMortRate = (MortRate -
MortRateControl)/(1-MortRateControl) where MortRate is the mortalitay rate on a given day in a
given replicate and MortRateControl is the global mortality rate of the 3 control replicates pooled on the
same day.

The results are quite similar excepted that the difference of total consumption between concentration 18000
and 4500 is no more significant.
Note however that this difference would be borderline significant with a single student t test (without
correction of the p-values - as recommended by the EFSA protocol) with p-value = 0.057.

Anova table :

Table 8: Analysis of Variance Table

Df Sum Sq Mean Sq F value Pr(>F)

Conc_f 4 8.351 2.088 119.5 2.128e-08
Residuals 10 0.1747 0.01747 NA NA

Graph : concentrations with different letters are significantly different (post-hoc Tukey like test). Some
horizontal noise has been added to the points position to avoid overplotting.
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Raw data for the record :

Treat Rep Conc Day Eff Dead CumDoseBee MortRateControl CorMortRate

CANTUS 1 1125 D25 10 6 0.8547 0.1667 0.52
CANTUS 2 1125 D30 10 8 0.883 0.4333 0.6471
CANTUS 3 1125 D25 10 6 0.7798 0.1667 0.52
CANTUS 1 2250 D20 10 7 1.3 0.1 0.6667
CANTUS 2 2250 D24 10 8 1.452 0.1667 0.76
CANTUS 3 2250 D24 10 6 1.38 0.1667 0.52
CANTUS 1 4500 D18 10 8 2.33 0.03333 0.7931
CANTUS 2 4500 D18 10 6 2.385 0.03333 0.5862
CANTUS 3 4500 D18 10 6 2.722 0.03333 0.5862
CANTUS 1 9000 D12 10 7 2.745 0 0.7
CANTUS 2 9000 D12 10 7 2.465 0 0.7
CANTUS 3 9000 D12 10 5 2.469 0 0.5
CANTUS 1 18000 D7 10 7 2.608 0 0.7
CANTUS 2 18000 D7 10 5 2.765 0 0.5
CANTUS 3 18000 D8 10 5 2.762 0 0.5

Mean cumulative dose for each treatment :

Conc CumDoseBee

1125 0.8392
2250 1.378
4500 2.479
9000 2.56
18000 2.712

Another way to look at these data is to plot the cumulative doses consumed by the bees and visualize
when you reach e.g. 50% mortality. The black dots show the LT50 for each concentration. If there were
no cumulative toxicity, one would expect that the LT50 will be reached at similar cumulative doses (or at
similar time as the control). It is not the case here : we observe that the cumulative dose leading to 50% of
mortality at the lowest concentration (1125 mg a.i./ml) is less than half the cumulative dose killing 50% of
the bees at 4500, 9000 and 18000 (mg a.i/ml).
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5.3 Estimation of α and β

The idea here is to use a more general form of the C vs t relationship :

Cαtβ = k

That relationship can be simplified into

C = k1/αt−β/α = k′tγ

where γ is equivalent to the b of the classical equation and should be = 1 when Haber’s rule holds. According
to Miller et al. (2000) we could estimate α and β with a probit model : Y = m+ αlog(C) + βlog(t) where Y
are the observed mortalities.

We used a binomial GLM with a probit link (estimated by quasilikelihood to take into account overdispersion).
Because of the presence of 0 values we used a log(x+1) transformation for both Concentration and Time.

We tested other link functions (logit, cloglog which is equivalent to a weibull, cauchit) but the probit was the
one that provided the best fit (lowest QAICc).
m <- glm(MortRate ~ log(Conc+1) + log(Time+1), weights = Eff,

family = quasibinomial(link = "probit"),
data = d[d$Treat %in% c("CONTROL", "CANTUS"),])

summary(m)

##
## Call:
## glm(formula = MortRate ~ log(Conc + 1) + log(Time + 1), family = quasibinomial(link = "probit"),
## data = d[d$Treat %in% c("CONTROL", "CANTUS"), ], weights = Eff)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -4.8033 -0.8298 -0.0007 1.2270 5.0995
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -9.43785 0.37518 -25.16 <2e-16 ***
## log(Conc + 1) 0.32348 0.01737 18.63 <2e-16 ***
## log(Time + 1) 2.45941 0.10535 23.34 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 2.760164)
##
## Null deviance: 6191.8 on 593 degrees of freedom
## Residual deviance: 1745.0 on 591 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 7
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# confint(m)
# diagplot(m)
# diagplot2(m)
# coef(m)[3] / coef(m)[2] # b = beta / alpha

The regression coefficient for the concentration (α) is 0.323 and the regression coefficient for time (β) is 2.459
and γ = b = β/α = 7.603. This would indicate a high level of cumulative toxicity, however this value is very
different from the value calculated with the more classical approach above (~ 1.5 - 2).

However this model does not fit the real data very well. It is quite clear that this model tends to underestimate
toxicity at higher concentrations and to overestimate toxicity at low concentrations. The black line should be
less steep.

In the graph below the two predictive variables, Concentration and time, are represented on y and x axes and
the color represent the predicted values for the response (mortality). The line represent the 50% mortality
predicted values. The points (for the 3 replicates) show wen we observed 50% mortality in each cage.
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We can apply the same method on the average daily dose instead of the concentration. The fit is better
(lower QAICc than the previous model)
m <- glm(MortRate ~ log(MeanDoseBee+1) + log(Time+1), weights = Eff,

family = quasibinomial(link = "probit"),
data = d[d$Treat %in% c("CONTROL", "CANTUS"),])

summary(m)

##
## Call:
## glm(formula = MortRate ~ log(MeanDoseBee + 1) + log(Time + 1),
## family = quasibinomial(link = "probit"), data = d[d$Treat %in%
## c("CONTROL", "CANTUS"), ], weights = Eff)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
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## -2.9522 -0.2933 0.0000 0.2968 4.2266
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -12.797 2.412 -5.306 1.59e-07 ***
## log(MeanDoseBee + 1) 16.690 3.364 4.961 9.19e-07 ***
## log(Time + 1) 3.769 0.724 5.205 2.68e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 38.29148)
##
## Null deviance: 6191.84 on 593 degrees of freedom
## Residual deviance: 564.12 on 591 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 8

• Concentration coefficient : α = 16.69
• Time coefficient : β = 3.769
• γ = b = β/α = 0.226

This is now much lower than the b value estimated before but also much lower than b=1 expected under
Haber’s rule. . .

Compared to the real data this model seems to do a better job. NB in the following graph the points might
be slightly moved vertically to limit overplotting.
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Figure 34:

Interestingly if instead of using the observed mortalities, we use the LCx data with the intended mortality
rate x as the response and Time and the LC estimate instead of the concentration, the beta calculated is
more similar to what could be expected.
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m <- glm(PctMort/100 ~ log(Estimate+1) + log(Time+1),
family = quasibinomial(link = "probit"), data = LC[LC$Model == "Weibull2",])

summary(m)

##
## Call:
## glm(formula = PctMort/100 ~ log(Estimate + 1) + log(Time + 1),
## family = quasibinomial(link = "probit"), data = LC[LC$Model ==
## "Weibull2", ])
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -0.60002 -0.17560 0.01587 0.18940 0.67590
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -21.67090 1.14794 -18.88 <2e-16 ***
## log(Estimate + 1) 1.49501 0.07808 19.15 <2e-16 ***
## log(Time + 1) 3.25344 0.18921 17.19 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for quasibinomial family taken to be 0.07961514)
##
## Null deviance: 47.752 on 161 degrees of freedom
## Residual deviance: 10.337 on 159 degrees of freedom
## AIC: NA
##
## Number of Fisher Scoring iterations: 4

• Concentration coefficient : α = 1.495
• Time coefficient : β = 3.253
• γ = b = β/α = 2.176
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Figure 35:

Conclusion
The results obtained with this method are puzzling. Using the concentration or the dose gives very different
results and both results seem to be unlikely.

There is also something strange from the theoretical point of view. If

Cαtβ = k

then
αlog(C) + βlog(t) = log(k)

(where k is a given level of mortality) but here we model instead

αlog(C) + βlog(t) = k

. This would be OK if used a log link but here we use a probit (after the recommendation of Miller et al.
2000)

42



6 Comparison of the 4 types of models

NB : the aim of this rather long section is to explain why we choose a Weibull 2 model in all the analyses
shown above.
In most of the studies the type of model is chosen a priori and without justification.

We compare 4 types of dose response curves (logistic, loglogistic, weibull 1 and weibull 2) for each day
between D8 and D25 and for each type of effect : LC, LDD, LCD. A similar approach is used to compute the
LT (using the data from all days). The aim is to choose the model with the best fit (most of the time) and
best statistical properties.

We compare the quality of the fit of each model by extracting the AIC value and computing the difference
between the best model (with lowest AIC) and the other AIC values for a given time (for LC, LDD, LCD) or
a given concentration (for LT). We have also computed a goodness of fit test (modelFit function from drc
package) for each model (available in the raw outputs). We compare also graphically the differences of LCx,
LDDx, LCDx and LTx computed with each model.

Here are the formulas of the 4 models (see Ritz et al. 2010 for more details):

3 parameters Logistic Model (with d = 1) :

f(x) = c+ d− c

(1 + exp(b(x− e)))

3 parameters Log-Logistic Model (with d = 1)

f(x) = c+ d− c

(1 + exp(b(log(x) − log(e))))

3 parameters Weibull 1 Model (with d = 1)

f(x) = c+ (d− c) exp(− exp(b(log(x) − log(e))))

3 parameters Weibull 2 Model (with d = 1)

f(x) = c+ (d− c)(1 − exp(− exp(b(log(x) − log(e)))))

6.1 Main results

Here are the main conclusion for the data analysis below.

The logistic model and Weibull2 model are almost always the best models (the ones with the lowest AIC).
The logistic has some times a much lower AIC than the Weibull2 model (particularly after Day 20) however
logistic model is often unable to estimate the standard errors of the parameters while the Weibull2 models
has almost always standard errors. In addition LCx, LDDx, LCDx and LTx estimates from both models are
often very close and the standard errors are quite similar.

So we decided to the the Weibull2 model as a good compromise for the this study.
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6.2 Lethal concentrations (LCx) at each time

First lines of the AIC and goodness of fit results (note that ED50 stands for LC50 here):

Time Model df Chisq p AIC DeltaAIC ED50 LowerCI UpperCI

8 Logistic 12 11.92 0.452 35.72 0 14818 NA NA
8 Weibull2 9 11.46 0.245 36.5 0.78 14729 12056 17402
8 LogLogistic 12 12.38 0.416 37.6 1.882 14452 12115 16789
8 Weibull1 9 13.68 0.134 40.9 5.187 14787 11397 18177
9 Logistic 9 7.485 0.587 29.78 0 11556 NA NA
9 Weibull2 9 8.076 0.527 30.27 0.496 11572 9935 13209
9 LogLogistic 12 10.72 0.553 33.47 3.69 10886 9207 12566
9 Weibull1 9 14.28 0.113 40.15 10.37 10114 8040 12187
10 Logistic 12 6.099 0.911 29.43 0 10030 NA NA
10 Weibull2 15 7.135 0.954 29.54 0.106 9949 8423 11476
10 LogLogistic 15 10.3 0.8 32.87 3.444 9527 7872 11183
10 Weibull1 15 13.92 0.531 37.88 8.448 8823 7195 10452

First lines of the LCx results

Time PctMort Model Estimate Std..Error Lower Upper

8 10 Logistic 6546 NA NA NA
8 20 Logistic 9599 NA NA NA
8 30 Logistic 11628 NA NA NA
8 40 Logistic 13292 318 12669 13915
8 50 Logistic 14818 NA NA NA
8 60 Logistic 16345 NA NA NA
8 70 Logistic 18008 NA NA NA
8 80 Logistic 20038 NA NA NA
8 90 Logistic 23091 NA NA NA
8 10 LogLogistic 6569 535.5 5519 7618
8 20 LogLogistic 8788 720.3 7376 10199
8 30 LogLogistic 10663 876.6 8945 12381
8 40 LogLogistic 12495 1029 10478 14512
8 50 LogLogistic 14452 1192 12115 16789
8 60 LogLogistic 16716 1381 14009 19423
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Comparison of the delta AIC values (on a log10(x+1) scale) for the 4 types of models at each day after
treatment (between D8 and D25). The horizontal dotted red line is the classical threshold of difference of
AIC = 2. When a dot is plotted, it means that the LC50 was estimated at that day but that no standard
error (and hence no confidence interval) could be estimated by the model).

Interpretation : The logistic model is almost always the best model or very close to it however from day 8
to day 15 the standard error of the LC50 could not be estimated by the model. The Weibull2 model has
generally an AIC very close to the logistic model excepted at days >15 where it regularly peaks far away
from the best model.

0.0

0.5

1.0

1.5

2.0

2.5

10 15 20 25
Time (number of days since D0)

lo
g1

0(
D

el
ta

AI
C

 +
 1

)

no_SE

FALSE

TRUE

Model type

Logistic

LogLogistic

Weibull1

Weibull2

Figure 36:

If you compare the LCx estimates for each rate (LC10, LC20,. . . ) for the 4 types of models you can see that
the estimates of the Weibull2 model and Logistic models are very close to each other. For the LC50 all four
models provide similar estimates.
The Weibull1 and LogLogistic models can deviate quite strongly from the others particularly for the estimates
of LC10, LC20, LC80 and LC90.
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Figure 37:

Here we compare the standard errors of 3 of the models types for the LC50 estimates. You can see that even
after day 15 where the Weibull2 models had some times AIC clearly higher that the Logistic model, both
the estimates and their confidence intervals are very similar (and confidence intervals are not available for
logistic models for days 8-15).

The Weibull 2 models seem to be a good compromise that works well in almost situations. The confidence
interval is not available on day 14 and on day 13 it abnormally small. However the estimates at these dates
are quite similar to the estimates of other models and within the range of the confidence interval of the next
best model (Weibull1)
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Conclusion : the Weibull2 model seem to be a good compromise that can be used to estimates LC50 and
other LCx at all days between D8 and D25.
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6.3 Lethal dietary dose (LDDx) at each time

Similar approach but instead of the nominal concentration of each treatment, we use the effective average
dose of a.i. consumed by the bees since D0.

First lines of the AIC and goodness of fit results (note that ED50 stands for LDD50 here):

Time Model df Chisq p AIC DeltaAIC ED50 LowerCI UpperCI

8 Logistic 9 6.962 0.641 30.7 0 0.316 NA NA
8 Weibull2 9 7.479 0.587 31.29 0.591 0.318 0.273 0.362
8 LogLogistic 9 8.762 0.46 32.37 1.666 0.309 0.255 0.362
8 Weibull1 9 11.22 0.261 36.31 5.606 0.309 0.23 0.388
9 Weibull2 9 2.654 0.976 23.85 0 0.265 0.231 0.299
9 Logistic 8 2.737 0.95 24.18 0.332 0.261 0.204 0.318
9 LogLogistic 9 5.541 0.785 27.09 3.245 0.249 0.214 0.284
9 Weibull1 6 10.15 0.118 33.41 9.56 0.235 0.197 0.274
10 Logistic 11 7.528 0.755 29.77 0 0.237 NA NA
10 Weibull2 12 8.135 0.775 30.15 0.377 0.245 0.199 0.29
10 LogLogistic 15 10.4 0.794 31.2 1.424 0.226 0.192 0.261
10 Weibull1 15 10.97 0.755 33.51 3.742 0.214 0.182 0.246

First lines of the LDDx results

Time PctMort Model Estimate Std..Error Lower Upper

8 10 Logistic 0.1494 0.01018 0.1294 0.1693
8 20 Logistic 0.2108 NA NA NA
8 30 Logistic 0.2517 NA NA NA
8 40 Logistic 0.2852 NA NA NA
8 50 Logistic 0.3159 NA NA NA
8 60 Logistic 0.3466 NA NA NA
8 70 Logistic 0.3801 NA NA NA
8 80 Logistic 0.421 NA NA NA
8 90 Logistic 0.4824 NA NA NA
8 10 LogLogistic 0.1637 0.02181 0.1209 0.2064
8 20 LogLogistic 0.2068 0.02084 0.166 0.2477
8 30 LogLogistic 0.2416 0.0211 0.2003 0.283
8 40 LogLogistic 0.2745 0.02306 0.2293 0.3197
8 50 LogLogistic 0.3085 0.02713 0.2554 0.3617
8 60 LogLogistic 0.3468 0.03388 0.2804 0.4133

48



Comparison of the delta AIC values (on a log10(x+1) scale) for the 4 types of models at each day after
treatment (between D8 and D25). The horizontal dotted red line is the classical threshold of difference of
AIC = 2. When a (colored) dot is plotted, it means that the LDD50 was estimated at that day but that no
standard error (and hence no confidence interval) could be estimated.

Interpretation : The logistic model is almost always the best model or very close to it however for several days,
the standard error of the LCD50 could not be estimated by the model. The Weibull2 model has generally an
AIC very close to the logistic model excepted at days >20 where it far away from the best model.
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Figure 39:

The different models show very similar patterns excepted the model Weibull1 that deviates some times from
the others. For the LDD10 estimates there is also more variability between the models with model Weibull1
being the closest to
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Figure 40:

Comparison of the confidence intervals
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Figure 41:

Conclusion : the Weibull2 model seems to be a good compromise that can be used to estimate LDD50 and
other LDDx at all days between D8 and D25. The logistic model has often a better AIC than the Weibull2
model but at several time points, the logistic model is unable to estimate the standard error of the LDD50.
In addition the estimates of both models are very close to each other so using one or the other model should
not change the final results.
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6.4 Lethal cumulative dose (LCDx) at each time

Similar approach but instead of the nominal concentration we use the effective total dose of a.i. consumed by
the bees.

First lines of the AIC and goodness of fit results (note that ED50 stands for LCD50 here):

Time Model df Chisq p AIC DeltaAIC ED50 LowerCI UpperCI

8 Logistic 9 6.962 0.641 30.7 0 2.527 2.052 3.002
8 Weibull2 9 7.479 0.587 31.29 0.591 2.542 2.187 2.896
8 LogLogistic 9 8.762 0.46 32.37 1.666 2.468 2.043 2.894
8 Weibull1 9 11.22 0.261 36.31 5.606 2.472 1.84 3.104
9 Weibull2 9 2.654 0.976 23.85 0 2.388 2.106 2.67
9 Logistic 8 2.737 0.95 24.18 0.332 2.345 1.981 2.709
9 LogLogistic 9 5.541 0.785 27.09 3.245 2.244 1.929 2.56
9 Weibull1 6 10.15 0.118 33.41 9.56 2.117 1.77 2.464
10 Logistic 11 9.521 0.574 31.07 0 2.321 1.978 2.663
10 Weibull2 12 10.53 0.57 31.9 0.83 2.382 2.015 2.75
10 LogLogistic 15 11.24 0.735 32.24 1.169 2.232 1.911 2.553
10 Weibull1 15 11.86 0.689 34.62 3.547 2.116 1.812 2.42

First lines of the LCDx results

Time PctMort Model Estimate Std..Error Lower Upper

8 10 Logistic 1.195 0.04403 1.109 1.281
8 20 Logistic 1.687 0.1203 1.451 1.923
8 30 Logistic 2.014 0.1681 1.684 2.343
8 40 Logistic 2.281 0.2069 1.876 2.687
8 50 Logistic 2.527 0.2423 2.052 3.002
8 60 Logistic 2.773 0.2777 2.229 3.317
8 70 Logistic 3.041 0.3162 2.421 3.661
8 80 Logistic 3.368 0.363 2.656 4.079
8 90 Logistic 3.859 0.4335 3.01 4.709
8 10 LogLogistic 1.309 0.1745 0.9673 1.651
8 20 LogLogistic 1.654 0.1667 1.328 1.981
8 30 LogLogistic 1.933 0.1688 1.602 2.264
8 40 LogLogistic 2.196 0.1845 1.834 2.557
8 50 LogLogistic 2.468 0.217 2.043 2.894
8 60 LogLogistic 2.775 0.2711 2.243 3.306
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Comparison of the delta AIC values (on a log10(x+1) scale) for the 4 types of models at each day after
treatment (between D8 and D25). The horizontal dotted red line is the classical threshold of difference of
AIC = 2. When a dot is plotted, it means that the LCD50 was estimated at that day but that no standard
error (and hence no confidence interval) could be estimated by the model).

Interpretation : The logistic model is almost always the best model or very close to it however for several days,
the standard error of the LCD50 could not be estimated by the model. The Weibull2 model has generally an
AIC very close to the logistic model excepted at days >20 where it far away from the best model.
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Figure 42:

The different models show similar patterns. There is a very interseting plateau of the LCDx followed by a
drop. Without cumulative toxicity, you would expect to have a LCDx independent of time (flat line).
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Figure 43:

Comparison of the confidence intervals
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Figure 44:

Conclusion : the Weibull2 model seems to be a good compromise that can be used to estimate LCD50 and
other LCDx at all days between D8 and D25.
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6.5 Lethal time (LTx) at each concentration

Same approach as for the Lethal Concentration but we fit 4 types of models of the mortality vs time for each
concentration First lines of the AIC and goodness of fit results (note that ED50 stands for LT50 here):

Conc Model df Chisq p AIC DeltaAIC ED50 LowerCI UpperCI

0 Weibull2 51 54.04 0.359 159.7 0 32 29.84 34.16
0 LogLogistic 51 55.35 0.314 160.3 0.521 32.39 30.06 34.72
0 Logistic 54 56.27 0.39 160.5 0.794 31.53 NA NA
0 Weibull1 51 55.47 0.31 161.4 1.685 34.51 32.93 36.08

1125 Weibull2 51 86.44 0.001 172 0 24.93 24.38 25.47
1125 Logistic 51 91.61 0 178.8 6.84 24.68 24.33 25.03
1125 LogLogistic 51 96.16 0 183.5 11.53 24.61 23.98 25.24
1125 Weibull1 54 104.1 0 195.8 23.84 24.02 23.34 24.7
2250 Weibull2 96 78.87 0.898 141.4 0 21.99 21.48 22.5
2250 Logistic 96 82.55 0.834 148.3 6.856 21.74 21.24 22.24
2250 LogLogistic 96 85.06 0.78 153.6 12.15 21.64 21.15 22.13
2250 Weibull1 96 93.28 0.559 166.8 25.41 21.23 20.75 21.72

First lines of the LTx results

Conc PctMort Model Estimate Std..Error Lower Upper

0 10 Logistic 19.67 0.5174 18.66 20.68
0 20 Logistic 24.05 0.3191 23.42 24.67
0 30 Logistic 26.96 0.1871 26.59 27.32
0 40 Logistic 29.34 0.07787 29.19 29.49
0 50 Logistic 31.53 NA NA NA
0 60 Logistic 33.72 0.1163 33.49 33.95
0 70 Logistic 36.1 0.225 35.66 36.54
0 80 Logistic 39.01 0.3569 38.31 39.71
0 90 Logistic 43.39 0.5551 42.3 44.48
0 10 LogLogistic 19.88 0.4511 18.99 20.76
0 20 LogLogistic 23.8 0.6636 22.5 25.1
0 30 LogLogistic 26.83 0.8399 25.18 28.48
0 40 LogLogistic 29.6 1.009 27.62 31.58
0 50 LogLogistic 32.39 1.188 30.06 34.72
0 60 LogLogistic 35.44 1.39 32.72 38.17
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Comparison of the delta AIC values for the 4 types of models at each concentration. The horizontal dotted
red line is the classical threshold of difference of AIC = 2. When a dot is plotted, it means that the LT50
was estimated at that day but that no standard error (and hence no confidence interval) could be estimated
by the model).

Interpretation : The weibull2 model is almost always the best model.
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Figure 45:

The LT50 estimates are very similar for all 4 models. There are some differences for other mortality thresholds
particularly for LT10.
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Figure 46:

Here we compare the standard errors of 3 of the models types for the LT50 estimates.
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Figure 47:

The same with LT10
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Figure 48:

Conclusion : the Weibull2 model seems to be a good compromise : it is always the best model with only
one exception and the estimates are close to the other models in most circumstances with narrow Confidence
Intervals.

59



7 Comparison of models with 2 or 3 parameters using corrected mor-
tality or not

In the previous analyses we used 3 parameters models and uncorrected mortalities. The results of such
models are identical or very similar to estimates of more classical 2 parameters models based on corrected
mortalities.

We compare here the results based on these two approaches.

We have used the corrected mortalities (Abbott’s formula on the % of dead) and performed 2 parameters
models. This approach is not ideal for at least two reasons :

1. the corrected mortality is no more a ratio of to integers (ie because of the unbalance in the design)
2. the total number of individuals used in the model (as weights) remains constant while it should decrease

when the correction is higher. However this should have mainly an impact on the standard errors and
not on the estimate itself which is our main interest here.

It could be possible to correct directly the number of dead bees and the total and then compute the corrected
ratio. This means however that we have to group the data from the 3 replicates, slightly change de way the
consumption is calculated and the correction will be unfair for the doses with a different initial number of
bees.

The comparison of the 2 approaches shows that the estimates are very close to each other particularly for the
Weibull2 model used in the previous analyses.
NB1 : the black line shows a line with slope = 1 and intercept =0 (ie the line showing the perfect match).
NB2 : the few points that deviates in the LogLogistic models and Weibull1 models are due to 2 parameters
models with a clear lack of fit and very large standard errors.

Weibull1 Weibull2

Logistic LogLogistic

0 20000 40000 60000 0 5000 10000150002000025000

0 5000 10000 15000 20000 0 10000 20000 30000
0

10000

20000

30000

0

5000

10000

15000

20000

25000

0

5000

10000

15000

20000

0

20000

40000

60000

LCx estimates based on 2 parameters 
models and corrected mortality

LC
x 

es
tim

at
es

 b
as

ed
 o

n 
3 

pa
ra

m
et

er
s 

m
od

el
s 

an
d 

un
co

rre
ct

ed
 m

or
ta

lit
y

Figure 49:

60



8 References

Bretz, F., Hothorn, T., Westfall, P., Westfall, P.H., 2010. Multiple Comparisons Using R. CRC Press.

European Food Safety Authority, 2013. Guidance on the risk assessment of plant protection products
on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA Journal 2013;11(7):3295, 266 pp. doi:
10.2903/j.efsa.2013.3295.

Miller, F.J., Schlosser, P.M., Janszen, D.B., 2000. Haber’s rule: a special case in a family of curves relating
concentration and duration of exposure to a fixed level of response for a given endpoint. Toxicology 149,
21–34.

Ritz, C., 2010. Toward a unified approach to dose–response modeling in ecotoxicology. Environmental
Toxicology and Chemistry 29, 220–229.

Automatic citation of R and all packages used :

R
R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria. <URL: https://www.R-project.org/>.

car
Fox J and Weisberg S (2011). An R Companion to Applied Regression, Second edition. Sage, Thousand Oaks
CA. <URL: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion>.

drc
Ritz C, Baty F, Streibig JC and Gerhard D (2015). “Dose-Response Analysis Using R.” PLOS ONE,
10 (e0146021). <URL: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146021>.

ggplot2
Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. ISBN
978-3-319-24277-4, <URL: http://ggplot2.org>.

knitr
Xie Y (2017). knitr: A General-Purpose Package for Dynamic Report Generation in R. R package version
1.16, <URL: http://yihui.name/knitr/>.

Xie Y (2015). Dynamic Documents with R and knitr, 2nd edition. Chapman and Hall/CRC, Boca Raton,
Florida. ISBN 978-1498716963, <URL: http://yihui.name/knitr/>.

Xie Y (2014). “knitr: A Comprehensive Tool for Reproducible Research in R.” In Stodden V, Leisch F
and Peng RD (eds.), Implementing Reproducible Computational Research. Chapman and Hall/CRC. ISBN
978-1466561595, <URL: http://www.crcpress.com/product/isbn/9781466561595>.

lme4
Bates D, Mächler M, Bolker B and Walker S (2015). “Fitting Linear Mixed-Effects Models Using lme4.”
Journal of Statistical Software, 67 (1), pp. 1-48. doi: 10.18637/jss.v067.i01 (URL: http://doi.org/10.18637/jss.
v067.i01).

MASS
Venables WN and Ripley BD (2002). Modern Applied Statistics with S, Fourth edition. Springer, New York.
ISBN 0-387-95457-0, <URL: http://www.stats.ox.ac.uk/pub/MASS4>.

Matrix
Bates D and Maechler M (2017). Matrix: Sparse and Dense Matrix Classes and Methods. R package version
1.2-11, <URL: https://CRAN.R-project.org/package=Matrix>.

61

doi:10.2903/j.efsa.2013.3295
doi:10.2903/j.efsa.2013.3295
https://www.R-project.org/
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0146021
http://ggplot2.org
http://yihui.name/knitr/
http://yihui.name/knitr/
http://www.crcpress.com/product/isbn/9781466561595
http://doi.org/10.18637/jss.v067.i01
http://doi.org/10.18637/jss.v067.i01
http://www.stats.ox.ac.uk/pub/MASS4
https://CRAN.R-project.org/package=Matrix


multcomp
Hothorn T, Bretz F and Westfall P (2008). “Simultaneous Inference in General Parametric Models.”
Biometrical Journal, 50 (3), pp. 346-363.

mvtnorm
Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F and Hothorn T (2017). mvtnorm: Multivariate Normal
and t Distributions. R package version 1.0-6, <URL: https://CRAN.R-project.org/package=mvtnorm>.

Genz A and Bretz F (2009). Computation of Multivariate Normal and t Probabilities, series Lecture Notes in
Statistics. Springer-Verlag, Heidelberg. ISBN 978-3-642-01688-2.

pander
Daróczi G and Tsegelskyi R (2015). pander: An R Pandoc Writer. R package version 0.6.0, <URL:
https://CRAN.R-project.org/package=pander>.

reshape
Wickham and Hadley (2007). “Reshaping data with the reshape package.” Journal of Statistical Software,
21 (12). <URL: http://www.jstatsoft.org/v21/i12/paper>.

survival
Therneau T (2015). A Package for Survival Analysis in S. version 2.38, <URL: https://CRAN.R-project.
org/package=survival>.

Terry M. Therneau and Patricia M. Grambsch (2000). Modeling Survival Data: Extending the Cox Model.
Springer, New York. ISBN 0-387-98784-3.

TH.data
Hothorn T (2017). TH.data: TH’s Data Archive. R package version 1.0-8, <URL: https://CRAN.R-project.
org/package=TH.data>.

62

https://CRAN.R-project.org/package=mvtnorm
https://CRAN.R-project.org/package=pander
http://www.jstatsoft.org/v21/i12/paper
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=TH.data
https://CRAN.R-project.org/package=TH.data


9 Session Information

## R version 3.4.3 (2017-11-30)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 16.04.3 LTS
##
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.6.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.6.0
##
## locale:
## [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C LC_TIME=en_GB.UTF-8
## [4] LC_COLLATE=en_GB.UTF-8 LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=fr_BE.UTF-8
## [7] LC_PAPER=fr_BE.UTF-8 LC_NAME=C LC_ADDRESS=C
## [10] LC_TELEPHONE=C LC_MEASUREMENT=fr_BE.UTF-8 LC_IDENTIFICATION=C
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] multcomp_1.4-6 TH.data_1.0-8 survival_2.41-3 mvtnorm_1.0-6
## [5] car_2.1-5 lme4_1.1-13 Matrix_1.2-11 reshape_0.8.6
## [9] drc_3.0-1 MASS_7.3-47 ggplot2_2.2.1.9000 pander_0.6.0
## [13] knitr_1.16
##
## loaded via a namespace (and not attached):
## [1] gtools_3.5.0 zoo_1.8-0 splines_3.4.3 lattice_0.20-35
## [5] colorspace_1.3-2 htmltools_0.3.6 yaml_2.1.14 mgcv_1.8-22
## [9] base64enc_0.1-3 rlang_0.1.2 nloptr_1.0.4 withr_2.0.0
## [13] foreign_0.8-69 RColorBrewer_1.1-2 plyr_1.8.4 stringr_1.2.0
## [17] MatrixModels_0.4-1 munsell_0.4.3 gtable_0.2.0 htmlwidgets_0.9
## [21] codetools_0.2-15 evaluate_0.10.1 labeling_0.3 latticeExtra_0.6-28
## [25] SparseM_1.77 quantreg_5.33 pbkrtest_0.4-7 parallel_3.4.3
## [29] htmlTable_1.9 Rcpp_0.12.13 acepack_1.4.1 checkmate_1.8.3
## [33] scales_0.5.0.9000 backports_1.1.0 plotrix_3.6-6 Hmisc_4.0-3
## [37] gridExtra_2.2.1 digest_0.6.12 stringi_1.1.5 bookdown_0.4
## [41] grid_3.4.3 rprojroot_1.2 tools_3.4.3 sandwich_2.3-4
## [45] magrittr_1.5 lazyeval_0.2.0 tibble_1.3.4 Formula_1.2-2
## [49] cluster_2.0.6 data.table_1.10.4 minqa_1.2.4 rmarkdown_1.6
## [53] rpart_4.1-11 nnet_7.3-12 nlme_3.1-131 compiler_3.4.3

63


	Introduction - Context
	Context
	Aims of this project
	Methods and data analysis

	Raw data and computations
	Syrup consumption and evaporation
	Evaporation data
	Consumption of syrup between doses and over time
	Kinetics of the consumption without evaporation correction
	Kinetics of the consumption with evaporation correction
	Kinetics of the consumption up to 50% of mortality
	Average consumption (without taking the time into account)

	Conclusions

	Kinetics of the toxicity : LTx, LCx, LDDx, LCDx at different time or concentration
	Raw mortality rates
	LTx vs Concentration
	LCx vs time
	LDDx vs Time
	LCDx vs Time
	Conclusion

	Testing for cumulative toxicity (= time reinforced toxicity)
	Log-log relationship between concentration and time
	log(Concentraton) vs log(LTx)
	log(LCx) vs log(Time)
	log(LDDx) vs log(Time)
	log(LCDx) vs log(Time)

	Comparing cumulative dose between concentrations (EFSA protocol)
	With raw mortalities
	With corrected mortalities

	Estimation of \alpha and \beta

	Comparison of the 4 types of models
	Main results
	Lethal concentrations (LCx) at each time
	Lethal dietary dose (LDDx) at each time
	Lethal cumulative dose (LCDx) at each time
	Lethal time (LTx) at each concentration

	Comparison of models with 2 or 3 parameters using corrected mortality or not
	References
	Session Information

