
S1 Appendix: Efficiently Generating Unique
Unordered Subsets

In the following, we outline an efficient method to compute the Poisson
binomial distributions over κ for the complex contagion model. The prob-
ability distributions

P (κ|A) =
∑
s∈Sκ

∏
i∈s

(1− (1− q)ai)
∏
i/∈s

(1− q)ai , (1)

We observe that while each element of an instance of

Sκ = {s ⊆ {1, 2, . . . , |A|} , |s| = κ} , (2)

the subsets of an activity list A of size k, give a contribution to P (κ|A),
the contribution depends only on the elements of the set, and not on their
order. As the number of these subsets is a combinatorial expression that
grows very quickly with |A| and k, and as the majority of the elements in A
were ones (as most of the bots only participated once in each intervention),
we were able to complete the otherwise infeasible exact computation of
P (κ|A) by devising a method to generate unique unordered subsets from
A and then multiply each unique subset with its multiplicity, which could
in turn be computed from simple combinatorial expressions.

To illustrate our approach, we first explain a common way (as imple-
mented in the itertools module in Python 2.7) of generating all possible sub-
sets of a given length of a set. As an example, we use A = [2, 1, 2, 1, 3, 1, 1, 4]
and k = 3. Three pointers are then initialized to the three first values, and
the last of those is set as the ‘active’ pointer. A series of steps is then
repeated until none are possible:

• Attempt to move the active pointer one step to the right.

• If the pointer falls off the array or runs into another pointer, then set
to active the pointer to the left of the current one and attempt again.

◦ Terminate if we run out of pointers, i.e. if no pointers can be
moved anymore.

• When move is successful, generate the set of the values pointed to,
move all pointers to the right of the active pointer to the positions
immediately following it, and reset the ‘active’ status to the rightmost
pointer.

This then generates subsets like (2, 1, 2), (2, 1, 1), . . . (2, 1, 4), (2, 2, 1),
(2, 2, 3) etc. until (1, 1, 4) where no more pointers are able to move and the
procedure terminates.

This approach has the disadvantage of recounting subsets that are iden-
tical or are permutations of each other, such as (2, 1, 2) and (2, 2, 1) above.
We remedy this by adding to the above algorithm a preprocessing step in
which the input list A is sorted, and then defining a new list S in which
the i’th element denotes the position the active pointer should be moved
to given that it is pointing to A[i] now, i.e. the value of S[i] is the value
of the first index i′ at which A[i′] > A[i]. Reusing the example above to
illustrate this,

S = [4, 4, 4, 4, 6, 6, 7, 8],

A = [1, 1, 1, 1, 2, 2, 3, 4],

1

0 5 10 15 20 25 30 35 40 45
|A|

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
o
m

p
u
ta

ti
o
n
 t

im
e
 (

s) Brute force

Uniqueness

Figure 1: Time needed to compute P (κ|A) using a brute force approach
(solid red line) and our unique subset generation approach (dashed blue
line). For each data point, we generated a simulated activity list with
length |A| with elements drawn with probabilities based on their frequency
in our data, and computed P (κ|A) using the two methods. The runtime is
then averaged over 100 such computations in order to minimize noise. Our
approach allows us to compute Poisson binomial distributions for activity
lists of lengths that would otherwise be infeasible.

where the final index i = 8 falls off the array, consistent with the description
above. This generates subsets like (1, 1, 1), (1, 1, 2), (1, 1, 3), . . ., (1, 2, 2),
(1, 2, 3) etc. until (2, 3, 4). The multiplicity of each such subset can be
computed analytically, allowing one to compute the probability of drawing
each subset.

When some elements of A occur very frequently, this approach, which
we call the ‘uniqueness’ approach here as it only counts unique combina-
tions, results in a clear improvement over the brute force approach. Indeed,
for our data this approach turned out necessary to perform an otherwise in-
feasible computation. To illustrate this, we ran both method on simulated
lists A of varying lengths, constructing each list A by randomly drawing
elements from a distribution representative of our data. The resulting run-
times are shown in figure 1 and clearly show the speedup.

2

